Skip to main content

Regulation of phytoalexin biosynthesis for agriculture and human health

Abstract

Phytoalexins are diverse secondary metabolites of plants that are biosynthesized transiently and in relatively low amounts in response to pathogens and certain abiotic stresses. They commonly have potent antimicrobial and medicinal activities. As such, scientists have attempted to increase their accessibility by inventing diverse in vitro and in vivo approaches. Among these approaches, bioengineering plant transcription factors that directly regulate phytoalexin biosynthesis genes may be the most promising. Recent research has identified conserved transcription factors that directly regulate distinct phytoalexin biosynthesis pathways in different plant species. The intriguing results provide new insight into how conserved defense signaling pathways in plants result in lineage-specific biochemical defenses. These recent findings also suggest that a common transcription factor network could be engineered to enhance the biosynthesis of different phytoalexins in plants. However, the picture is far from complete since one or more transcription factors required to fully activate phytoalexin biosynthesis remain unidentified, and the exact mechanism of how the conserved factors regulate diverse phytoalexin pathways remains to be clarified. Here we review the agricultural and medicinal importance of phytoalexins, recent approaches to increase their accessibility, and the mechanisms that plants employ to activate and limit their biosynthesis. This review contributes to providing a systems level understanding of the regulation of phytoalexin biosynthesis so that effective bioengineering strategies can be developed to enhance phytoalexin biosynthesis for medicine and agriculture.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

This figure was adapted from Meng and Zhang (2013). (Color figure online)

Abbreviations

ABA:

Abscisic acid

BLAST:

Basic local alignment search tool

BLASTPs:

BLAST for proteins

CHIP:

Chromatin immunoprecipitation

CHIP-Seq:

Chromatin immunoprecipitation next generation sequencing

COR:

Cornatine

DNA:

Deoxyribonucleic acid

ED:

Effective dose

H22 cells:

Hippocampal neuronal cell line

HR:

Hypersensitive response

JA:

Jasmonic acid

PCR:

Polymerase chain reaction

pH:

Potential hydrogen

PP2C:

Protein phosphatase 2C

qRT-PCR:

Quantitative real-time reverse transcription PCR

RNA:

Ribonucleic acid

RNAi:

RNA interference

RNA-Seq:

RNA next generation sequencing

ROS:

Reactive oxygen species

RT-PCR:

Reverse transcription PCR

TF:

Transcription factor

UV:

Ultra violet irradiation

WGE:

Wall glucan elicitor

WT:

Wild type

References

  • Adrian M, Jeandet P, Veneau J, Weston LA, Bessis R (1997) Biological activity of resveratrol, a stilbenic compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. J Chem Ecol 23(7):1689–1702

    CAS  Article  Google Scholar 

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17(2):73–90

    CAS  PubMed  Article  Google Scholar 

  • Aisyah S, Gruppen H, Madzora B, Vincken JP (2013) Modulation of isoflavonoid composition of Rhizopus oryzae elicited soybean (Glycine max) seedlings by light and wounding. J Agric Food Chem 61(36):8657–8667. https://doi.org/10.1021/jf4020203

    CAS  Article  PubMed  Google Scholar 

  • Amorim A, Lidiane L, da Fonseca dos Santos R, Pacifico Bezerra Neto J, Guida-Santos M, Crovella S, Maria Benko-Iseppon A (2017) Transcription factors involved in plant resistance to pathogens. Curr Protein Pept Sci 18(4):335–351

    CAS  PubMed  Article  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16(12):3460–3479. https://doi.org/10.1105/tpc.104.025833

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Asselbergh B, Curvers K, França SC, Audenaert K, Vuylsteke M, Van Breusegem F, Höfte M (2007) Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol 144(4):1863–1877

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Audenaert K, De Meyer GB, Hofte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128(2):491–501. https://doi.org/10.1104/pp.010605

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Bai R, Luo Y, Wang L, Li J, Wu K, Zhao G, Duan D (2019) A specific allele of MYB14 in grapevine correlates with high stilbene inducibility triggered by Al3+ and UV-C radiation. Plant Cell Rep 38(1):37–49

    CAS  PubMed  Article  Google Scholar 

  • Bamji SF, Corbitt C (2017) Glyceollins: soybean phytoalexins that exhibit a wide range of health-promoting effects. J Funct Foods 34:98–105

    CAS  Article  Google Scholar 

  • Bavaresco L, Petegolli D, Canto E, Fregoni M, Chiusa G, Trevisan M (1997) Elicitation and accumulation of stilbene phytoalexins in grapevine berries infected by Botrytis cinerea. VITIS-GEILWEILERHOF- 36:77–84

    CAS  Google Scholar 

  • Bhattacharyya M, Ward E (1985) Differential sensitivity of Phytophthora megasperma f. sp. glycinea isolates to glyceollin isomers. Physiol Plant Pathol 27(3):299–310

    CAS  Article  Google Scholar 

  • Bhattacharyya M, Ward E (1986) Resistance, susceptibility and accumulation of glyceollins I–III in soybean organs inoculated with Phytophthora megasperma f. sp. glycinea. Physiol Mol Plant Pathol 29(2):227–237

    CAS  Article  Google Scholar 

  • Bhattacharyya M, Ward E (1987) Biosynthesis and metabolism of glyceollin I in soybean hypocotyls following wounding or inoculation with Phytophthora megasperma f. sp. glycinea. Physiol Mol Plant Pathol 31(3):387–405

    CAS  Article  Google Scholar 

  • Boue SM, Carter CH, Ehrlich KC, Cleveland TE (2000) Induction of the soybean phytoalexins coumestrol and glyceollin by Aspergillus. J Agric Food Chem 48(6):2167–2172

    CAS  PubMed  Article  Google Scholar 

  • Brand LH, Fischer NM, Harter K, Kohlbacher O, Wanke D (2013) Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays. Nucleic Acids Res 41(21):9764–9778

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Breuil A-C, Adrian M, Pirio N, Meunier P, Bessis R, Jeandet P (1998) Metabolism of stilbene phytoalexins by Botrytis cinerea: 1. Characterization of a resveratrol dehydrodimer. Tetrahedron Lett 39(7):537–540

    CAS  Article  Google Scholar 

  • Budovská M, Selešová I, Tischlerová V, Michalková R, Mojžiš J (2020) Design, synthesis and biological evaluation of novel 5-bromo derivatives of indole phytoalexins. Beilstein Arch 1:23

    Google Scholar 

  • Cahill D, Ward E (1989) Rapid localized changes in abscisic acid concentrations in soybean in interactions with Phytophthora megasperma f. sp. glycinea or after treatment with elicitors. Physiol Mol Plant Pathol 35(6):483–493

    CAS  Article  Google Scholar 

  • Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A, Stacey G (2014) The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. Elife 3:e03766

    PubMed Central  Article  Google Scholar 

  • Carriere PP, Llopis SD, Naiki AC, Nguyen G, Phan T, Nguyen MM, Preyan LC, Yearby L, Pratt J, Burks H (2015) Glyceollin I reverses epithelial to mesenchymal transition in letrozole resistant breast cancer through ZEB1. Int J Environ Res Public Health 13(1):10

    PubMed Central  Article  CAS  Google Scholar 

  • Chang H-X, Hartman GL (2017) Characterization of insect resistance loci in the USDA soybean germplasm collection using genome-wide association studies. Front Plant Sci 8:670

    PubMed  PubMed Central  Article  Google Scholar 

  • Cheng Q, Li N, Dong L, Zhang D, Fan S, Jiang L, Wang X, Xu P, Zhang S (2015) Overexpression of soybean isoflavone reductase (GmIFR) enhances resistance to phytophthora sojae in soybean. Front Plant Sci 6:1024. https://doi.org/10.3389/fpls.2015.01024

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng CK, Luo JY, Lau CW, Chen ZY, Tian XY, Huang Y (2020) Pharmacological basis and new insights of resveratrol action in the cardiovascular system. Br J Pharmacol 177:1258–1277

    CAS  PubMed  Article  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411(6839):826–833. https://doi.org/10.1038/35081161

    CAS  Article  PubMed  Google Scholar 

  • de Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Egea PR, Bogre L, Grant M (2007) Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J 26(5):1434–1443. https://doi.org/10.1038/sj.emboj.7601575

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • de Torres-Zabala M, Bennett MH, Truman WH, Grant MR (2009) Antagonism between salicylic and abscisic acid reflects early host–pathogen conflict and moulds plant defence responses. Plant J 59(3):375–386. https://doi.org/10.1111/j.1365-313X.2009.03875.x

    CAS  Article  PubMed  Google Scholar 

  • Demirer GS, Zhang H, Matos JL, Goh NS, Cunningham FJ, Sung Y, Chang R, Aditham AJ, Chio L, Cho M-J (2019) High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat Nanotechnol 14:456–464

    CAS  PubMed  Article  Google Scholar 

  • Denby KJ, Jason LJ, Murray SL, Last RL (2005) ups1, an Arabidopsis thaliana camalexin accumulation mutant defective in multiple defence signalling pathways. Plant J 41(5):673–684

    CAS  PubMed  Article  Google Scholar 

  • Doyle C, Higginbottom K, Swift TA, Winfield M, Bellas C, Benito-Alifonso D, Fletcher T, Galan CM, Edwards K, Whitney HM (2019) A simple method for spray-on gene editing in planta. bioRxiv:805036

  • Duan D, Fischer S, Merz P, Bogs J, Riemann M, Nick P (2016) An ancestral allele of grapevine transcription factor MYB14 promotes plant defence. J Exp Bot 67(6):1795–1804

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ebel J, Feger M, Kissel U, Mithöfer A, Waldmüller T, Bhagwat AA, Cosio EG (1995) Elicitor-binding proteins and signal transduction in the activation of a phytoalexin defense response. Can J Bot 73(S1):506–510

    Article  Google Scholar 

  • Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17(5):250–259

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Fan J, Hill L, Crooks C, Doerner P, Lamb C (2009) Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiol 150(4):1750–1761

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Fang L, Hou Y, Wang L, Xin H, Wang N, Li S (2014) Myb14, a direct activator of STS, is associated with resveratrol content variation in berry skin in two grape cultivars. Plant Cell Rep 33(10):1629–1640

    CAS  PubMed  Article  Google Scholar 

  • Farrell KC, Jahan MA, Kovinich N (2017) Distinct mechanisms of biotic and chemical elicitors enable additive elicitation of the anticancer phytoalexin Glyceollin I. Molecules 22(8):1261–1273

    PubMed Central  Article  CAS  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18(3):265–276

    CAS  PubMed  Article  Google Scholar 

  • Fischer DC, Kogan M, Paxton J (1990) Effect of glyceollin, a soybean phytoalexin, on feeding by three phytophagous beetles (Coleoptera: Coccinellidae and Chrysomelidae): dose versus response. Environ Entomol 19(5):1278–1282

    CAS  Article  Google Scholar 

  • Fliegmann J, Schüler G, Boland W, Ebel J, Mithöfer A (2003) The role of octadecanoids and functional mimics in soybean defense responses. Biol Chem 384(3):437–446

    CAS  PubMed  Article  Google Scholar 

  • Fliegmann J, Mithofer A, Wanner G, Ebel J (2004) An ancient enzyme domain hidden in the putative beta-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. J Biol Chem 279(2):1132–1140. https://doi.org/10.1074/jbc.M308552200

    CAS  Article  PubMed  Google Scholar 

  • Flor H (1942) Inheritance of pathogenicity in Melampsora lini. Phytopathology 32:653–669

    Google Scholar 

  • Frerigmann H, Glawischnig E, Gigolashvili T (2015) The role of MYB34, MYB51 and MYB122 in the regulation of camalexin biosynthesis in Arabidopsis thaliana. Front Plant Sci 6:654

    PubMed  PubMed Central  Article  Google Scholar 

  • Fu J, Liu Q, Wang C, Liang J, Liu L, Wang Q (2017) ZmWRKY79 positively regulates maize phytoalexin biosynthetic gene expression and is involved in stress response. J Exp Bot 69(3):497–510

    Article  CAS  Google Scholar 

  • Fukushima S, Mori M, Sugano S, Takatsuji H (2016) Transcription factor WRKY62 plays a role in pathogen defense and hypoxia-responsive gene expression in rice. Plant Cell Physiol 57(12):2541–2551

    CAS  PubMed  Article  Google Scholar 

  • Gao H, Narayanan NN, Ellison L, Bhattacharyya MK (2005) Two classes of highly similar coiled coil-nucleotide binding-leucine rich repeat genes isolated from the Rps1-k locus encode Phytophthora resistance in soybean. Mol Plant Microbe Interact 18(10):1035–1045. https://doi.org/10.1094/MPMI-18-1035

    CAS  Article  PubMed  Google Scholar 

  • Gary S, Adegboye J, Popp B, Cocuron J-C, Woodrum B, Kovinich N (2018) Combining semi-synthesis with plant and microbial biocatalysis: new frontiers in producing a chemical arsenal against cancer. RSC Adv 8(38):21332–21339

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Glenn A, Bacon C (2009) FDB2 encodes a member of the arylamine N-acetyltransferase family and is necessary for biotransformation of benzoxazolinones by Fusarium verticillioides. J Appl Microbiol 107(2):657–671

    CAS  PubMed  Article  Google Scholar 

  • Gong C, Xia H (2020) Resveratrol suppresses melanoma growth by promoting autophagy through inhibiting the PI3K/AKT/mTOR signaling pathway. Exp Ther Med 19(3):1878–1886

    CAS  PubMed  Google Scholar 

  • Goossens J, Vendrig J (1982) Effects of abscisic acid, cytokinins, and light on isoflavonoid phytoalexin accumulation in Phaseolus vulgaris L. Planta 154(5):441–446

    CAS  PubMed  Article  Google Scholar 

  • Goossens A, Mertens J, Pollier J, Bossche RV, López-Vidriero I, Franco-Zorrilla JM (2015) The bHLH transcription factors TSAR1 and TSAR2 regulate triterpene saponin biosynthesis in Medicago truncatula. Plant Physiol 170(1):194–210

    PubMed  PubMed Central  Google Scholar 

  • Graham T, Kim J, Graham M (1990) Role of constitutive isoflavone conjugates in the accumulation of glyceollin in soybean infected with Phytophthora megasperma. Mol Plant Microbe Interact 3:157–166

    CAS  Article  Google Scholar 

  • Graham TL, Graham MY, Subramanian S, Yu O (2007) RNAi silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in Phytophthora sojae infected tissues. Plant Physiol 144(2):728–740

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Großkinsky DK, van der Graaff E, Roitsch T (2012) Phytoalexin transgenics in crop protection—fairy tale with a happy end? Plant Sci 195:54–70

    PubMed  Article  CAS  Google Scholar 

  • Guerra T, Schilling S, Hake K, Gorzolka K, Sylvester FP, Conrads B, Westermann B, Romeis T (2020) Calcium-dependent protein kinase 5 links calcium signaling with N-hydroxy-l-pipecolic acid-and SARD 1-dependent immune memory in systemic acquired resistance. New Phytol 225(1):310–325

    CAS  PubMed  Article  Google Scholar 

  • Hahn MG, Bonhoff A, Grisebach H (1985) Quantitative localization of the phytoalexin glyceollin I in relation to fungal hyphae in soybean roots infected with Phytophthora megasperma f. sp. glycinea. Plant Physiol 77(3):591–601

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Hasegawa M, Mitsuhara I, Seo S, Imai T, Koga J, Okada K, Yamane H, Ohashi Y (2010) Phytoalexin accumulation in the interaction between rice and the blast fungus. Mol Plant Microbe Interact 23(8):1000–1011

    CAS  PubMed  Article  Google Scholar 

  • He Y, Xu J, Wang X, He X, Wang Y, Zhou J, Zhang S, Meng X (2019) The Arabidopsis pleiotropic drug resistance transporters PEN3 and PDR12 mediate camalexin secretion for resistance to Botrytis cinerea. Plant Cell 31(9):2206–2222

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Heinze M, Brandt W, Marillonnet S, Roos W (2015) “Self” and “non-self” in the control of phytoalexin biosynthesis: plant phospholipases A2 with alkaloid-specific molecular fingerprints. Plant Cell 27(2):448–462

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Henfling J, Bostock R, Kuc J (1980) Effect of abscisic acid on rishitin and lubimin accumulation and resistance to Phytophthora infestans and Cladosporium cucumerinum in potato tuber tissue slices. Phytopathology 70(11):1074–1078

    CAS  Article  Google Scholar 

  • Heo KT, Kang S-Y, Hong Y-S (2017) De novo biosynthesis of pterostilbene in an Escherichia coli strain using a new resveratrol O-methyltransferase from Arabidopsis. Microb Cell Fact 16(1):30

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Hillwig MS, Chiozza M, Casteel CL, Lau ST, Hohenstein J, Hernandez E, Jander G, MacIntosh GC (2016) Abscisic acid deficiency increases defence responses against Myzus persicae in Arabidopsis. Mol Plant Pathol 17(1):225–235. https://doi.org/10.1111/mpp.12274

    CAS  Article  PubMed  Google Scholar 

  • Hohenstein JD, Studham ME, Klein A, Kovinich N, Barry K, Lee YJ, MacIntosh GC (2019) Transcriptional and chemical changes in soybean leaves in response to long-term Aphid colonization. Front Plant Sci 10:310

    PubMed  PubMed Central  Article  Google Scholar 

  • Höll J, Vannozzi A, Czemmel S, D’Onofrio C, Walker AR, Rausch T, Lucchin M, Boss PK, Dry IB, Bogs J (2013) The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera. Plant Cell 25(10):4135–4149

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Huang J-S, Barker KR (1991) Glyceollin I in soybean-cyst nematode interactions: spatial and temporal distribution in roots of resistant and susceptible soybeans. Plant Physiol 96(4):1302–1307

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Huang X-S, Luo T, Fu X-Z, Fan Q-J, Liu J-H (2011) Cloning and molecular characterization of a mitogen-activated protein kinase gene from Poncirus trifoliata whose ectopic expression confers dehydration/drought tolerance in transgenic tobacco. J Exp Bot 62(14):5191–5206

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Huffaker A, Kaplan F, Vaughan MM, Dafoe NJ, Ni X, Rocca JR, Alborn HT, Teal PE, Schmelz EA (2011) Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiol 156(4):2082–2097

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ingham JL (1979) Phytoalexin production by flowers of garden pea (Pisum sativum). Zeitschrift für Naturforschung C 34(3–4):296–298

    Article  Google Scholar 

  • Jahan MA, Kovinich N (2019) Acidity stress for the systemic elicitation of glyceollin phytoalexins in soybean plants. Plant Signal Behav 14(7):1604018

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Jahan MA, Harris B, Lowery M, Coburn K, Infante AM, Percifield RJ, Ammer AG, Kovinich N (2019) The NAC family transcription factor GmNAC42–1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean. BMC Genom 20(1):149

    Article  Google Scholar 

  • Jahan MA, Harris B, Lowery M, Infante AM, Percifield RJ, Kovinich N (2020) Glyceollin transcription factor GmMYB29A2 regulates soybean resistance to Phytophthora sojae. Plant Physiol. https://doi.org/10.1104/pp.19.01293

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeandet P, Delaunois B, Conreux A, Donnez D, Nuzzo V, Cordelier S, Clément C, Courot E (2010) Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. BioFactors 36(5):331–341

    CAS  PubMed  Article  Google Scholar 

  • Jeandet P, Clément C, Courot E, Cordelier S (2013) Modulation of phytoalexin biosynthesis in engineered plants for disease resistance. Int J Mol Sci 14(7):14136–14170

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Jeandet P, Hébrard C, Deville M-A, Cordelier S, Dorey S, Aziz A, Crouzet J (2014) Deciphering the role of phytoalexins in plant-microorganism interactions and human health. Molecules 19(11):18033–18056

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Jeandet P, Clément C, Cordelier S (2019a) Regulation of resveratrol biosynthesis in grapevine: new approaches for disease resistance? J Exp Bot 70(2):375–378

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Jeandet P, Sobarzo-Sánchez E, Silva AS, Clément C, Nabavi SF, Battino M, Rasekhian M, Belwal T, Habtemariam S, Koffas M (2019b) Whole-cell biocatalytic, enzymatic and green chemistry methods for the production of resveratrol and its derivatives. Biotechnol Adv 39:107461

    PubMed  Article  CAS  Google Scholar 

  • Jiang C-J, Shimono M, Sugano S, Kojima M, Yazawa K, Yoshida R, Inoue H, Hayashi N, Sakakibara H, Takatsuji H (2010) Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-magnaporthe grisea interaction. Mol Plant Microbe Interact 23(6):791–798. https://doi.org/10.1094/mpmi-23-6-0791

    CAS  Article  PubMed  Google Scholar 

  • Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J (2017) WRKY transcription factors in plant responses to stresses. J Integr Plant Biol 59(2):86–101

    CAS  PubMed  Article  Google Scholar 

  • Jiang J, Xi H, Dai Z, Lecourieux F, Yuan L, Liu X, Patra B, Wei Y, Li S, Wang L (2018) VvWRKY8 represses stilbene synthase genes through direct interaction with VvMYB14 to control resveratrol biosynthesis in grapevine. J Exp Bot 70(2):715–729

    PubMed Central  Article  CAS  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329. https://doi.org/10.1038/nature05286

    CAS  Article  PubMed  Google Scholar 

  • Katsumata S, Hamana K, Horie K, Toshima H, Hasegawa M (2017) Identification of sternbin and naringenin as detoxified metabolites from the rice flavanone phytoalexin sakuranetin by Pyricularia oryzae. Chem Biodivers 14(2):e1600240

    Article  CAS  Google Scholar 

  • Kerchev PI, Karpinska B, Morris JA, Hussain A, Verrall SR, Hedley PE, Fenton B, Foyer CH, Hancock RD (2013) Vitamin C and the abscisic acid-insensitive 4 transcription factor are important determinants of aphid resistance in Arabidopsis. Antioxid Redox Signal 18(16):2091–2105. https://doi.org/10.1089/ars.2012.5097

    CAS  Article  PubMed  Google Scholar 

  • Kettle AJ, Batley J, Benfield AH, Manners JM, Kazan K, Gardiner DM (2015) Degradation of the benzoxazolinone class of phytoalexins is important for virulence of Fusarium pseudograminearum towards wheat. Mol Plant Pathol 16(9):946–962

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Khupse RS, Sarver JG, Trendel JA, Bearss NR, Reese MD, Wiese TE, Boue SM, Burow ME, Cleveland TE, Bhatnagar D, Erhardt PW (2011) Biomimetic syntheses and antiproliferative activities of racemic, natural (−), and unnnatural (+) glyceollin I. J Med Chem 54(10):3506–3523. https://doi.org/10.1021/jm101619e

    CAS  Article  PubMed  Google Scholar 

  • Kiselev KV (2011) Perspectives for production and application of resveratrol. Appl Microbiol Biotechnol 90(2):417–425

    CAS  PubMed  Article  Google Scholar 

  • Kishi-Kaboshi M, Takahashi A, Hirochika H (2010) MAMP-responsive MAPK cascades regulate phytoalexin biosynthesis. Plant Signal Behav 5(12):1653–1656

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Koga J, Shimura M, Oshima K, Ogawa N, Yamauchi T, Ogasawara N (1995) Phytocassanes A, B, C and D, novel diterpene phytoalexins from rice, Oryza sativa L. Tetrahedron 51(29):7907–7918

    CAS  Article  Google Scholar 

  • Koga H, Dohi K, Mori M (2004) Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol Mol Plant Pathol 65(1):3–9

    CAS  Article  Google Scholar 

  • Kuc J (1995) Phytoalexins, stress metabolism, and disease resistance in plants. Annu Rev Phytopathol 33(1):275–297

    CAS  PubMed  Article  Google Scholar 

  • Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16(12):3496–3507

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kusajima M, Yasuda M, Kawashima A, Nojiri H, Yamane H, Nakajima M, Akutsu K, Nakashita H (2010) Suppressive effect of abscisic acid on systemic acquired resistance in tobacco plants. J Gen Plant Pathol 76(2):161–167. https://doi.org/10.1007/s10327-010-0218-5

    CAS  Article  Google Scholar 

  • Lamb CJ, Ryals JA, Ward ER, Dixon RA (1992) Emerging strategies for enhancing crop resistance to microbial pathogens. Nat Biotechnol 10(11):1436–1445

    CAS  Article  Google Scholar 

  • Lee SH, Jee JG, Bae JS, Liu KH, Lee YM (2015) A group of novel HIF-1α inhibitors, glyceollins, blocks HIF-1α synthesis and decreases its stability via inhibition of the PI3K/AKT/mTOR pathway and Hsp90 binding. J Cell Physiol 230(4):853–862

    CAS  PubMed  Article  Google Scholar 

  • Lee EJ, Jiménez Z, Seo K-H, Nam GB, Kang Y-G, Lee TR, Kim D, Yang DC (2020) Mass production of coumestrol from soybean (Glycine max) adventitious roots through bioreactor: effect on collagen production. Plant Biotechnol Rep 14(1):99–110

    Article  Google Scholar 

  • Li D, Chung K-R, Smith DA, Schardl CL (1995) The Fusarium solani gene encoding kievitone hydratase, a secreted enzyme that catalyzes detoxification of a bean phytoalexin. MPMI-Mol Plant Microbe Interact 8(3):388–397

    CAS  Article  Google Scholar 

  • Li G, Meng X, Wang R, Mao G, Han L, Liu Y, Zhang S (2012) Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet 8(6):e1002767

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lin F, Zhao M, Baumann DD, Ping J, Sun L, Liu Y, Zhang B, Tang Z, Hughes E, Doerge RW (2014) Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics. BMC Genom 15(1):18

    Article  Google Scholar 

  • Lindemose S, Jensen MK, de Velde JV, O’Shea C, Heyndrickx KS, Workman CT, Vandepoele K, Skriver K, Masi FD (2014) A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana. Nucleic Acids Res 42(12):7681–7693

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Liu S, Norris DM, Hartwig EE, Xu M (1992) Inducible phytoalexins in juvenile soybean genotypes predict soybean looper resistance in the fully developed plants. Plant Physiol 100(3):1479–1485

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lu KT, Chiou RY, Chen LG, Chen MH, Tseng WT, Hsieh HT, Yang YL (2006) Neuroprotective effects of resveratrol on cerebral ischemia-induced neuron loss mediated by free radical scavenging and cerebral blood flow elevation. J Agric Food Chem 54(8):3126–3131

    CAS  PubMed  Article  Google Scholar 

  • Luniwal A, Khupse R, Reese M, Liu J, El-Dakdouki M, Malik N, Fang L, Erhardt P (2011) Multigram synthesis of glyceollin I. Org Process Res Dev 15(5):1149–1162

    CAS  Article  Google Scholar 

  • Luo Y, Bai R, Li J, Yang W, Li R, Wang Q, Zhao G, Duan D (2019) The transcription factor MYB15 is essential for basal immunity (PTI) in Chinese wild grape. Planta 249(6):1889–1902

    CAS  PubMed  Article  Google Scholar 

  • Luo Y, Wang Q, Bai R, Li R, Chen L, Xu Y, Zhang M, Duan D (2020) The effect of transcription factor MYB14 on defense mechanisms in Vitis quinquangularis-Pingyi. Int J Mol Sci 21(3):706

    CAS  PubMed Central  Article  Google Scholar 

  • Lygin AV, Hill CB, Zernova OV, Crull L, Widholm JM, Hartman GL, Lozovaya VV (2010) Response of soybean pathogens to glyceollin. Phytopathology 100(9):897–903. https://doi.org/10.1094/PHYTO-100-9-0897

    CAS  Article  PubMed  Google Scholar 

  • Lygin AV, Zernova OV, Hill CB, Kholina NA, Widholm JM, Hartman GL, Lozovaya VV (2013) Glyceollin is an important component of soybean plant defense against Phytophthora sojae and Macrophomina phaseolina. Phytopathology 103(10):984–994

    CAS  PubMed  Article  Google Scholar 

  • Malik N, Zhang Z, Erhardt P (2015) Total synthesis of (±)-glyceollin II and a dihydro derivative. J Nat Prod 78(12):2940–2947

    CAS  PubMed  Article  Google Scholar 

  • Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23(4):1639–1653

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant–pathogen interactions. Curr Opin Plant Biol 8(4):409–414

    CAS  PubMed  Article  Google Scholar 

  • McDonald KL, Cahill DM (1999) Influence of abscisic acid and the abscisic acid biosynthesis inhibitor, norflurazon, on interactions between Phytophthora sojae and soybean (Glycine max). Eur J Plant Pathol 105(7):651–658

    CAS  Article  Google Scholar 

  • Mead MN (2007) Women’s health: mining for glyceollins. Environ Health Perspect 115(4):A189

    PubMed  PubMed Central  Article  Google Scholar 

  • Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245–266

    CAS  PubMed  Article  Google Scholar 

  • Mewis I, Khan MA, Glawischnig E, Schreiner M, Ulrichs C (2012) Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L.). PLoS ONE 7(11):e48661

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Mialoundama AS, Heintz D, Debayle D, Rahier A, Camara B, Bouvier F (2009) Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco. Plant Physiol 150(3):1556–1566

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Mine A, Berens ML, Nobori T, Anver S, Fukumoto K, Winkelmüller TM, Takeda A, Becker D, Tsuda K (2017) Pathogen exploitation of an abscisic acid-and jasmonate-inducible MAPK phosphatase and its interception by Arabidopsis immunity. Proc Natl Acad Sci 114(28):7456–7461

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Mohr PG, Cahill DM (2001) Relative roles of glyceollin, lignin and the hypersensitive response and the influence of ABA in compatible and incompatible interactions of soybeans with Phytophthora sojae. Physiol Mol Plant Pathol 58(1):31–41

    CAS  Article  Google Scholar 

  • Mohr PG, Cahill DM (2003) Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol 30(4):461–469

    CAS  PubMed  Article  Google Scholar 

  • Moy P, Qutob D, Chapman BP, Atkinson I, Gijzen M (2004) Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. Mol Plant Microbe Interact 17(10):1051–1062

    CAS  PubMed  Article  Google Scholar 

  • Mueller KO, Börger H (1939) Experimentelle Untersuchungen über die Phytophthora-Resistenz der Kartoffel

  • Müller K (1940) Experimentelle untcrsuchungcn uber die Phytophthora-resistem der kartoffel. Reichsasnstalt Landw Forstw Berlin Arb Biol 23:189–231

    Google Scholar 

  • Müller KO, Meyer G, Klinkowski M (1939) Physiologisch-genetische Untersuchungen über die Resistenz der Kartoffel gegenüber Phytophthora infestans. Naturwissenschaften 27(46):765–768

    Article  Google Scholar 

  • Nahar K, Kyndt T, Nzogela YB, Gheysen G (2012) Abscisic acid interacts antagonistically with classical defense pathways in rice-migratory nematode interaction. New Phytol 196(3):901–913. https://doi.org/10.1111/j.1469-8137.2012.04310.x

    CAS  Article  PubMed  Google Scholar 

  • Nawaz W, Zhou Z, Deng S, Ma X, Ma X, Li C, Shu X (2017) Therapeutic versatility of resveratrol derivatives. Nutrients 9(11):1188

    PubMed Central  Article  CAS  Google Scholar 

  • Nawrath C, Metraux J-P (1999) Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11(8):1393–1404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa S, Miyamoto K, Nemoto K, Sawasaki T, Yamane H, Nojiri H, Okada K (2017) OsMYC2, an essential factor for JA-inductive sakuranetin production in rice, interacts with MYC2-like proteins that enhance its transactivation ability. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  • Ohnishi M, Morishita H, Iwahashi H, Toda S, Shirataki Y, Kimura M, Kido R (1994) Inhibitory effects of chlorogenic acids on linoleic acid peroxidation and haemolysis. Phytochemistry 36(3):579–583

    CAS  Article  Google Scholar 

  • Okada A, Okada K, Miyamoto K, Koga J, Shibuya N, Nojiri H, Yamane H (2009) OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice. J Biol Chem 284(39):26510–26518

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Pan M-H, Chiou Y-S, Chen W-J, Wang J-M, Badmaev V, Ho C-T (2009) Pterostilbene inhibited tumor invasion via suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Carcinogenesis 30(7):1234–1242

    CAS  PubMed  Article  Google Scholar 

  • Park S, da Kim S, Kim JH, Kim JS, Kim HJ (2012) Glyceollin-containing fermented soybeans improve glucose homeostasis in diabetic mice. Nutrition 28(2):204–211. https://doi.org/10.1016/j.nut.2011.05.016

    CAS  Article  PubMed  Google Scholar 

  • Pastorczyk M, Kosaka A, Piślewska-Bednarek M, López G, Frerigmann H, Kułak K, Glawischnig E, Molina A, Takano Y, Bednarek P (2020) The role of CYP 71A12 monooxygenase in pathogen-triggered tryptophan metabolism and Arabidopsis immunity. New Phytol 225(1):400–412

    CAS  PubMed  Article  Google Scholar 

  • Pedras MSC, Abdoli A (2017) Pathogen inactivation of cruciferous phytoalexins: detoxification reactions, enzymes and inhibitors. RSC Advances 7(38):23633–23646

    Article  Google Scholar 

  • Pedras MSC, Ahiahonu PW (2002) Probing the phytopathogenic stem rot fungus with phytoalexins and analogues: unprecedented glucosylation of camalexin and 6-methoxycamalexin. Bioorg Med Chem 10(10):3307–3312

    CAS  PubMed  Article  Google Scholar 

  • Pedras MSC, Ahiahonu PW (2005) Metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi. Phytochemistry 66(4):391–411

    CAS  PubMed  Article  Google Scholar 

  • Pedras MSC, Khan AQ (2000) Biotransformation of the phytoalexin camalexin by the phytopathogen Rhizoctonia solani. Phytochemistry 53(1):59–69

    CAS  PubMed  Article  Google Scholar 

  • Pedras MSC, Thapa C (2020) Unveiling fungal detoxification pathways of the cruciferous phytoalexin rapalexin A: sequential l-cysteine conjugation, acetylation and oxidative cyclization mediated by Colletotrichum spp. Phytochemistry 169:112188

    CAS  PubMed  Article  Google Scholar 

  • Pedras M, Jha M, Ahiahonu P (2003) The synthesis and biosynthesis of phytoalexins produced by cruciferous plants. Curr Org Chem 7(16):1635–1647

    CAS  Article  Google Scholar 

  • Pedras MSC, Yaya EE, Glawischnig E (2011) The phytoalexins from cultivated and wild crucifers: chemistry and biology. Nat Product Rep 28(8):1381–1405

    CAS  Article  Google Scholar 

  • Pham TH, Lecomte S, Efstathiou T, Ferriere F, Pakdel F (2019) An update on the effects of glyceollins on human health: possible anticancer effects and underlying mechanisms. Nutrients 11(1):79

    CAS  PubMed Central  Article  Google Scholar 

  • Pilatova M, Ivanova L, Kutschy P, Varinska L, Saxunova L, Repovska M, Sarissky M, Seliga R, Mirossay L, Mojzis J (2013) In vitro toxicity of camalexin derivatives in human cancer and non-cancer cells. Toxicol In Vitro 27(2):939–944

    CAS  PubMed  Article  Google Scholar 

  • Poloni A, Schirawski J (2014) Red card for pathogens: phytoalexins in sorghum and maize. Molecules 19(7):9114–9133

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17(6):369–381

    CAS  PubMed  Article  Google Scholar 

  • Qiu JL, Fiil BK, Petersen K, Nielsen HB, Botanga CJ, Thorgrimsen S, Palma K, Suarez-Rodriguez MC, Sandbech-Clausen S, Lichota J (2008) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. The EMBO J 27(16):2214–2221

    CAS  PubMed  Article  Google Scholar 

  • Rajniak J, Barco B, Clay NK, Sattely ES (2015) A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence. Nature 525(7569):376–379

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ren D, Liu Y, Yang K-Y, Han L, Mao G, Glazebrook J, Zhang S (2008) A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci 105(14):5638–5643

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Rhodes LV, Tilghman SL, Boue SM, Wang S, Khalili H, Muir SE, Bratton MR, Zhang Q, Wang G, Burow ME (2012) Glyceollins as novel targeted therapeutic for the treatment of triple-negative breast cancer. Oncol Lett 3(1):163–171

    CAS  PubMed  Article  Google Scholar 

  • Roetschi A, Si-Ammour A, Belbahri L, Mauch F, Mauch-Mani B (2001) Characterization of an Arabidopsis–Phytophthora pathosystem: resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant J 28(3):293–305

    CAS  PubMed  Article  Google Scholar 

  • Rowe HC, Walley JW, Corwin J, Chan EK-F, Dehesh K, Kliebenstein DJ (2010) Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis. PLoS Pathog 6(4):e1000861

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich I (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15(20):5690–5700

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Saga H, Ogawa T, Kai K, Suzuki H, Ogata Y, Sakurai N, Shibata D, Ohta D (2012) Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis. Mol Plant Microbe Interact 25(5):684–696

    CAS  PubMed  Article  Google Scholar 

  • Salvo VA, Boue SM, Fonseca JP, Elliott S, Corbitt C, Collins-Burow BM, Curiel TJ, Srivastav SK, Shih BY, Carter-Wientjes C, Wood CE, Erhardt PW, Beckman BS, McLachlan JA, Cleveland TE, Burow ME (2006) Antiestrogenic glyceollins suppress human breast and ovarian carcinoma tumorigenesis. Clin Cancer Res 12(23):7159–7164. https://doi.org/10.1158/1078-0432.CCR-06-1426

    CAS  Article  PubMed  Google Scholar 

  • Sbaghi M, Jeandet P, Bessis R, Leroux P (1996) Degradation of stilbene-type phytoalexins in relation to the pathogenicity of Botrytis cinerea to grapevines. Plant Pathol 45(1):139–144

    Article  Google Scholar 

  • Schmelz EA, Huffaker A, Sims JW, Christensen SA, Lu X, Okada K, Peters RJ (2014) Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant J 79(4):659–678

    CAS  PubMed  Article  Google Scholar 

  • Schmidt K, Pflugmacher M, Klages S, Maeser A, Mock A, Stahl DJ (2008) Accumulation of the hormone abscisic acid (ABA) at the infection site of the fungus Cercospora beticola supports the role of ABA as a repressor of plant defence in sugar beet. Mol Plant Pathol 9(5):661–673

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Schmidt A, Mächtel R, Ammon A, Engelsdorf T, Schmitz J, Maurino VG, Voll LM (2020) Reactive oxygen species dosage in Arabidopsis chloroplasts can improve resistance towards Colletotrichum higginsianum by the induction of WRKY33. New Phytol 226(1):189–204

    CAS  PubMed  Article  Google Scholar 

  • Sen S (2017) Role of Phytoalexins in Plant-Microbe Interactions and Human Health. Int J Sci Res Manag 5(7):6215–6225

    Google Scholar 

  • Seo J, Kim B, Oh J, Kim J-S (2018) Soybean-derived phytoalexins improve cognitive function through activation of Nrf2/HO-1 signaling pathway. Int J Mol Sci 19(1):268

    PubMed Central  Article  CAS  Google Scholar 

  • Shahnejat-Bushehri S, Tarkowska D, Sakuraba Y, Balazadeh S (2016) Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling. Nat Plants 2:16013

    CAS  PubMed  Article  Google Scholar 

  • Shukla Y, Singh R (2011) Resveratrol and cellular mechanisms of cancer prevention. Ann N Y Acad Sci 1215(1):1–8

    CAS  PubMed  Article  Google Scholar 

  • Simons R, Vincken JP, Roidos N, Bovee TFH, van Iersel M, Verbruggen MA, Gruppen H (2011) Increasing soy isoflavonoid content and diversity by simultaneous malting and challenging by a fungus to modulate estrogenicity. J Agric Food Chem 59(12):6748–6758. https://doi.org/10.1021/jf2010707

    CAS  Article  PubMed  Google Scholar 

  • Smith B, Randle D, Mezencev R, Thomas L, Hinton C, Odero-Marah V (2014) Camalexin-induced apoptosis in prostate cancer cells involves alterations of expression and activity of lysosomal protease cathepsin D. Molecules 19(4):3988–4005

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Song H, Sun W, Yang G, Sun J (2018) WRKY transcription factors in legumes. BMC Plant Biol 18(1):243

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Stäb MR, Ebel J (1987) Effects of Ca2+ on phytoalexin induction by fungal elicitor in soybean cells. Arch Biochem Biophys 257(2):416–423

    PubMed  Article  Google Scholar 

  • Stahl E, Bellwon P, Huber S, Schlaeppi K, Bernsdorff F, Vallat-Michel A, Mauch F, Zeier J (2016) Regulatory and functional aspects of indolic metabolism in plant systemic acquired resistance. Mol Plant 9(5):662–681

    CAS  PubMed  Article  Google Scholar 

  • Strange R, Ingham J, Cole D, Cavill M, Edwards C, Cooksey C, Garrattd P (1985) Isolation of the phytoalexin medicarpin from leaflets of Arachis hypogaea and related species of the tribe Aeschynomeneae. Zeitschrift für Naturforschung C 40(5–6):313–316

    Article  Google Scholar 

  • Suh N, Paul S, Hao X, Simi B, Xiao H, Rimando AM, Reddy BS (2007) Pterostilbene, an active constituent of blueberries, suppresses aberrant crypt foci formation in the azoxymethane-induced colon carcinogenesis model in rats. Clin Cancer Res 13(1):350–355

    CAS  PubMed  Article  Google Scholar 

  • Sun P-W, Xu Y-H, Yu C-C, Lv F-F, Tang X-L, Gao Z-H, Zhang Z, Wang H, Liu Y, Wei J-H (2020) WRKY44 represses expression of the wound-induced sesquiterpene biosynthetic gene ASS1 in Aquilaria sinensis. J Exp Bot 71(3):1128–1138

    CAS  PubMed  Google Scholar 

  • Takahashi H, Kanayama Y, Zheng MS, Kusano T, Hase S, Ikegami M, Shah J (2004) Antagonistic interactions between the SA and JA signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic virus. Plant Cell Physiol 45(6):803–809

    CAS  PubMed  Article  Google Scholar 

  • Thaler JS, Bostock RM (2004) Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects. Ecology 85(1):48–58. https://doi.org/10.1890/02-0710

    Article  Google Scholar 

  • Thomma BP, Nelissen I, Eggermont K, Broekaert WF (1999) Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J 19(2):163–171

    CAS  PubMed  Article  Google Scholar 

  • Tyler BM (2007) Phytophthora sojae: root rot pathogen of soybean and model oomycete. Mol Plant Pathol 8(1):1–8. https://doi.org/10.1111/j.1364-3703.2006.00373.x

    CAS  Article  PubMed  Google Scholar 

  • Ube N, Harada D, Katsuyama Y, Osaki-Oka K, Tonooka T, Ueno K, Taketa S, Ishihara A (2019) Identification of phenylamide phytoalexins and characterization of inducible phenylamide metabolism in wheat. Phytochemistry 167:112098

    CAS  PubMed  Article  Google Scholar 

  • VanEtten H, Matthews P, Mercer E (1983) (+)-Maackiain and (+)-medicarpin as phytoalexins in Sophora Japonica and identification of the (−) isomers by biotransformation. Phytochemistry 22(10):2291–2295

    CAS  Article  Google Scholar 

  • Wang F, Chen Q, Zhang R, Li D, Ling Y, Song R (2019) The anti-phytoalexin gene Bx-cathepsin W supports the survival of Bursaphelenchus xylophilus under Pinus massoniana phytoalexin stress. BMC Genom 20(1):779

    Article  CAS  Google Scholar 

  • Wanke A, Rovenich H, Schwanke F, Velte S, Becker S, Hehemann JH, Wawra S, Zuccaro A (2020) Plant species-specific recognition of long and short β-1, 3-linked glucans is mediated by different receptor systems. Plant J. https://doi.org/10.1111/tpj.14688

    Article  PubMed  Google Scholar 

  • Ward EW, Cahill DM, Bhattacharyya MK (1989) Abscisic acid suppression of phenylalanine ammonia-lyase activity and mRNA, and resistance of soybeans to Phytophthora megasperma f. sp. glycinea. Plant Physiol 91(1):23–27

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor M-I, Asensi-Fabado MA, Munné-Bosch S, Antonio C, Tohge T (2012) JUNGBRUNNEN1, a reactive oxygen species–responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24(2):482–506

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wu C-H, Derevnina L, Kamoun S (2018) Receptor networks underpin plant immunity. Science 360(6395):1300–1301

    CAS  PubMed  Article  Google Scholar 

  • Xu Y-H, Wang J-W, Wang S, Wang J-Y, Chen X-Y (2004) Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-δ-cadinene synthase-A. Plant Physiol 135(1):507–515

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Xu J, Audenaert K, Hofte M, Vleesschauwer Dd, Xu J, de Vleesschauwer D (2013a) Abscisic acid promotes susceptibility to the rice leaf blight pathogen Xanthomonas oryzae pv oryzae by suppressing salicylic acid-mediated defenses. PLoS ONE 8(6):e67413–e67413

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Xu Z-Y, Kim SY, Kim DH, Dong T, Park Y, Jin JB, Joo S-H, Kim S-K, Hong JC, Hwang D (2013b) The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. Plant Cell 25(11):4708–4724

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Xu W, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends Plant Sci 20(3):176–185

    CAS  PubMed  Article  Google Scholar 

  • Yamamura C, Mizutani E, Okada K, Nakagawa H, Fukushima S, Tanaka A, Maeda S, Kamakura T, Yamane H, Takatsuji H (2015) Diterpenoid phytoalexin factor, a bHLH transcription factor, plays a central role in the biosynthesis of diterpenoid phytoalexins in rice. Plant J 84(6):1100–1113

    CAS  PubMed  Article  Google Scholar 

  • Yoshida Y, Miyamoto K, Yamane H, Nishizawa Y, Minami E, Nojiri H, Okada K (2017) OsTGAP1 is responsible for JA-inducible diterpenoid phytoalexin biosynthesis in rice roots with biological impacts on allelopathic interaction. Physiol Plant 161(4):532–544

    CAS  PubMed  Article  Google Scholar 

  • Yoshikawa M, Masago H (1982) Biochemical mechanism of glyceollin accumulation in soybean. Plant infection: the physiological and biochemical basis/edited by Yasuji Asada[et al]

  • Yoshikawa M, Yamauchi K, Masago H (1978) Glyceollin: its role in restricting fungal growth in resistant soybean hypocotyls infected with Phytophthora megasperma var. sojae. Physiol Plant Pathol 12(1):73–82

    CAS  Article  Google Scholar 

  • Zaïdi I, Ebel C, Touzri M, Herzog E, Evrard J-L, Schmit AC, Masmoudi K, Hanin M (2010) TMKP1 is a novel wheat stress responsive MAP kinase phosphatase localized in the nucleus. Plant Mol Biol 73(3):325–338

    PubMed  Article  CAS  Google Scholar 

  • Zeilinger S, Gupta VK, Dahms TE, Silva RN, Singh HB, Upadhyay RS, Gomes EV, Tsui CK-M, Nayak SC (2015) Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol Rev 40(2):182–207

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Zhang H, Demirer GS, Zhang H, Ye T, Goh NS, Aditham AJ, Cunningham FJ, Fan C, Landry MP (2019) DNA nanostructures coordinate gene silencing in mature plants. Proc Natl Acad Sci 116(15):7543–7548

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333

    CAS  PubMed  Article  Google Scholar 

  • Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40(1):22–34

    CAS  PubMed  Article  Google Scholar 

  • Zimmermann MC, Tilghman SL, Boue SM, Salvo VA, Elliott S, Williams KY, Skripnikova EV, Ashe H, Payton-Stewart F, Vanhoy-Rhodes L, Fonseca JP, Corbitt C, Collins-Burow BM, Howell MH, Lacey M, Shih BY, Carter-Wientjes C, Cleveland TE, McLachlan JA, Wiese TE, Beckman BS, Burow ME (2010) Glyceollin I, a novel antiestrogenic phytoalexin isolated from activated soy. J Pharmacol Exp Ther 332(1):35–45. https://doi.org/10.1124/jpet.109.160382

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), Funding Number RGPIN-2020-06111. We express our sincere gratitude to the National Institutes of Health AREA R-15 Program for selecting our proposal entitled ‘Unlocking the Regulation of Phytoalexin Biosynthesis’ for funding, despite that we were not permitted to retain the award upon moving our research program to Canada. We also thank Phytochemistry Reviews Editor-In-Chief Dr. Reinhard Jetter for the invitation to write this review and the excellent Reviewers for their suggested improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nik Kovinich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S., Kovinich, N. Regulation of phytoalexin biosynthesis for agriculture and human health. Phytochem Rev 20, 483–505 (2021). https://doi.org/10.1007/s11101-020-09691-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-020-09691-8

Keywords

  • Bioengineering
  • Transcription factor
  • Defense
  • Secondary metabolite
  • Signaling