Skip to main content

Advertisement

Log in

A critical review: traditional uses, phytochemistry, pharmacology and toxicology of Stephania tetrandra S. Moore (Fen Fang Ji)

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Stephania tetrandra S. Moore (S. tetrandra) is distributed widely in tropical and subtropical regions of Asia and Africa. The root of this plant is known in Chinese as “Fen Fang Ji”. It is commonly used in traditional Chinese medicine to treat arthralgia caused by rheumatism, wet beriberi, dysuria, eczema and inflamed sores. Although promising reports have been published on the various chemical constituents and activities of S. tetrandra, no review comprehensively summarizes its traditional uses, phytochemistry, pharmacology and toxicology. Therefore, the review aims to provide a critical and comprehensive evaluation of the traditional use, phytochemistry, pharmacological properties, pharmacokinetics and toxicology of S. tetrandra in China, and meaningful guidelines for future investigations.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Agnihotri VK, ElSohly HN, Khan SI et al (2008) Constituents of Nelumbo nucifera leaves and their antimalarial and antifungal activity. Phytochem Lett 1(2):89–93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angerhofer CK, Guinaudeau H, Wongpanich V et al (1999) Antiplasmodial and cytotoxic activity of natural bisbenzylisoquinoline alkaloids. J Nat Prod 62(1):59–66

    CAS  PubMed  Google Scholar 

  • Aota K, Yamanoi T, Kani K et al (2018) Cepharanthine inhibits IFN-γ induced CXCL10 by suppressing the JAK2/STAT1 signal pathway in human salivary gland ductal cells. Inflammation 41(1):50–58

    CAS  PubMed  Google Scholar 

  • Avci FG, Sayar NA, Sariyar Akbulut B (2018) An OMIC approach to elaborate the antibacterial mechanisms of different alkaloids. Phytochemistry 149:123–131

    CAS  PubMed  Google Scholar 

  • Ayyildiz D, Arga KY, Avci FG et al (2017) Transcriptomic analysis displays the effect of (-)-roemerine on the motility and nutrient uptake in Escherichia coli. Curr Genet 63(4):709–722

    CAS  PubMed  Google Scholar 

  • Baghdikian B, Mahiou-Leddet V, Bory S et al (2013) New antiplasmodial alkaloids from Stephania rotunda. J Ethnopharmacol 145(1):381–385

    CAS  PubMed  Google Scholar 

  • Bai SS, Dong C (2016) The protective effect and mechanism of tetrandrine combined with prednisone for renal fibrosis rats caused by Adriamycin. Jilin Med J 37(8):1845–1848

    Google Scholar 

  • Bai HM, Liu H, Zhou BQ et al (2015) Radiosensitization of tetrandrine in the esophageal carcinoma. J Basic Clin Oncol 28(2):129–131

    Google Scholar 

  • Bai XY, Liu YG, Song W et al (2018) Anticancer activity of tetrandrine by inducing pro-death apoptosis and autophagy in human gastric cancer cells. J Pharm Pharmacol 70(8):1048–1058

    CAS  PubMed  Google Scholar 

  • Bailly C (2019) Cepharanthine: an update of its mode of action, pharmacological properties and medical applications. Phytomedicine 62:152956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bao S, Geng P, Wang S et al (2015) Pharmacokinetics in rats and tissue distribution in mouse of magnoflorine by ultra performanceliquid chromatography-tandem mass spectrometry. Int J Clin Exp Med 8:20168–20177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bao G, Li C, Qi L et al (2016) Tetrandrine protects against oxygen-glucose serum deprivation/reoxygenation-induced injury via PI3K/AKT/NF-κB signaling pathway in rat spinal cord astrocytes. Biomed Pharmacother 84:925–930

    CAS  PubMed  Google Scholar 

  • Benhamou RI, Steinbuch KB, Fridman M (2016) Antifungal imidazole-decorated cationic amphiphiles with markedly low hemolytic activity. Chemistry 22(32):11148–11151

    CAS  PubMed  Google Scholar 

  • Bhagya N, Chandrashekar KR (2016) Tetrandrine-a molecule of wide bioactivity. Phytochemsitry 125:5–13

    CAS  Google Scholar 

  • Bhagya N, Chandrashekar KR (2018) Tetrandrine and cancer-an overview on the molecular approach. Biomed Pharmacother 97:624–632

    CAS  Google Scholar 

  • Cai ZY, Zhou JM, Ge YR (2005) Influence of high-dose tetrandra on rat renal function and tissue morphology. Chin J Hosp Pharm 25:1200–1201

    Google Scholar 

  • Cai Y, Qi XH, Gong LK et al (2006) Tetrandrine-induced apoptosis in rat primary hepatocytes is initiated from mitochondria: caspases and endonuclease G (Endo G) pathway. Toxicology 218(1):1–12

    CAS  Google Scholar 

  • Cai XH, Wang S, Chen BA (2011) Research advances on the pharmacological effects of tetrandrine. Chin J Nat Med 9:473–480

    CAS  Google Scholar 

  • Cai Z, Feng Y, Li C et al (2018) Magnoflorine with hyaluronic acid gel promotes subchondral bone regeneration and attenuates cartilage degeneration in early osteoarthritis. Bone 116:266–278

    CAS  PubMed  Google Scholar 

  • Castranova V, Kang JH, Ma JK et al (1991) Effects of bisbenzylisoquinoline alkaloids on alveolar macrophages: correlation between binding affinity, inhibitory potency, and antifibrotic potential. Toxicol Appl Pharmacol 108(2):242–252

    CAS  PubMed  Google Scholar 

  • Chea A, Bun SS, Azas N et al (2010) Antiplasmodial activity of three bisbenzylisoquinoline alkaloids from the tuber of Stephania rotunda. Nat Prod Res 24:1766–1770

    CAS  PubMed  Google Scholar 

  • Chen W (2006) Research on herbal literuatures of Fangji and its adverse drug reaction. Chengdu University of Traditional Chinese Medicine

  • Chen KS, Ko FN, Teng CM et al (1996) Antiplatelet of vaso relaxing actions of some benzylisoquinoline and phenanthrene alkaloids. J Nat Prod 59:531–534

    CAS  PubMed  Google Scholar 

  • Chen YJ, Tu ML, Kuo HC et al (1997) Protective effect of tetrandrine on normal human mononuclear cells against ionizing irradiation. Biol Pharm Bull 20(11):1160–1164

    CAS  PubMed  Google Scholar 

  • Chen G, Shi DZ, Li WK (2002) Effect of tetrandrine and albendazole on Echinococcus multilocularis infection in mice. Chin J Zoonoses 18(6):69–72

    Google Scholar 

  • Chen G, Shi DZ, Li WK (2003) An approach to mechanism of tetrandrine and albendazole against Echinococcus multilocularis infection in mice. Endemic Dis Bull 18(2):18–21

    Google Scholar 

  • Chen WC, Hayakawa S, Yamamoto T et al (2004) The plasma glucose lowering action of tetrandrine in streptozotocin-induced diabetic rats. J Pharm Pharmacol 56:643–648

    CAS  PubMed  Google Scholar 

  • Chen JH, Du ZZ, Shen YM et al (2009a) Aporphine alkaloids from Clematis parviloba and their antifungal activity. Arc Pharm Res 32(1):3–5

    CAS  Google Scholar 

  • Chen J, Liu J, Wang T et al (2009b) The relaxation mechanisms of tetrandrine on the rabbit corpus cavernosum tissue in vitro. Nat Prod Res 23:112–121

    CAS  PubMed  Google Scholar 

  • Chen L, Li QY, Li ZW et al (2009c) Inhibitory effects of tetrandrine on the Na+ channel of human atrial fibrillation myocardium. Acta Pharmcol Sin 30:166–174

    Google Scholar 

  • Chen L, Chen L, Lv Y et al (2013) Tetrandrine ameliorates cognitive impairment via inhibiting astrocyte-derived S100B activation in a rat model of chronic cerebral hypoperfusion. Neurol Res 35(6):614–621

    CAS  PubMed  Google Scholar 

  • Chen T, Ji B, Chen Y (2014) Tetrandrine triggers apoptosis and cell cycle arrest in human renal cell carcinoma cells. J Nat Med 68:46–52

    CAS  PubMed  Google Scholar 

  • Chen Y, Xiao X, Wang C et al (2015) Beneficial effect of tetrandrine on refractory epilepsy via suppressing P-glycoprotein. Int J Neurosci 125(9):703–710

    CAS  PubMed  Google Scholar 

  • Chen S, Liu W, Wang K et al (2017a) Tetrandrine inhibits migration and invasion of human renal cell carcinoma by regulating Akt/NF-κB/MMP-9 signaling. PLoS ONE 12:e0173725

    PubMed  PubMed Central  Google Scholar 

  • Chen Z, He T, Zhao K et al (2017b) Anti-metastatic activity of fangchinoline in human gastric cancer AGS cells. Oncol Lett 13:655–660

    CAS  PubMed  Google Scholar 

  • Chen N, Rong XH, Zhao J (2018) Clinical observation on the therapeutic effect of tetrandrine combined with ursolic acid in the treatment of silicosis. Ind Health Occup Dis 44(6):454–456

    Google Scholar 

  • Chinese Botany Editorial Committee (1996) Flora of China. Science Press, Beijing, p 31

    Google Scholar 

  • Chinese Pharmacopoeia Commission (2015) Pharmacopoeia of People’s Republic of China, Part 1. China Medical Science Press, Beijing, p 148

    Google Scholar 

  • Chiou WF, Lee WS, Yeh PH (2006) Tetrandrine selectively protects against amyloid-beta protein -but not against MPTP-induced cytotoxicity in SK-N-SH neuroblastoma cells. Plant Med 72(14):1300–1304

    CAS  Google Scholar 

  • Cho SO, Seong YH (2002) Protective effect of fangchinoline on cyanide-induced neurotoxicity in cultured rat cerebellar granule cells. Arch Pharm Res 25:349–356

    CAS  PubMed  Google Scholar 

  • Cho HS, Chang SH, Chung YS et al (2009) Synergistic effect of ERK inhibition on tetrandrine-induced apoptosis in A549 human lung carcinoma cells. J Vet Sci 10:23–95

    PubMed  PubMed Central  Google Scholar 

  • Choi SU, Park SH, Kim KH et al (1998) The bisbenzylisoquinoline alkaloids, tetrandine and fangchinoline, enhance the cytotoxicity of multidrug resistance-related drugs via modulation of P-glycoprotein. Anticancer Drug 9:255–261

    CAS  Google Scholar 

  • Choi HS, Kim HS, Min KR et al (2000) Anti-inflammatory effects of fangchinoline and tetrandrine. J Ethnopharmacol 69(2):173–179

    CAS  PubMed  Google Scholar 

  • Chor JS, Yu J, Chan KK et al (2009) Stephania tetrandra prevents and regresses liver fibrosis induced by carbon tetrachloride in rats. J Gastroenterol Hepatol 24(5):853–859

    PubMed  Google Scholar 

  • Chow LWC, Cheng KS, Leong F et al (2018) Enhancing tetrandrine cytotoxicity in human lung carcinoma A549 cells by suppressing mitochondrial ATP production. Naunyn Schmiedebergs Arch Pharmacol 392(4):427–436

    PubMed  Google Scholar 

  • Cos P, Vlietinck AJ, Berghe DV (2006) Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J Ethnopharmacol 106:209–302

    Google Scholar 

  • Deng JZ, Zhao SX, Lou FC (1990) A new monquaternary bisbenzylisoquinoline alkaloid from Stephania tetrandra. J Nat Prod 53:993–994

    CAS  Google Scholar 

  • Deng Y, Wu W, Ye S et al (2017) Determination of cepharanthine in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. Pharma Biol 55(1):1775–1779

    CAS  Google Scholar 

  • Desgrouas C, Taudon N, Bun SS et al (2014a) Ethnobotany, phytochemistry and pharmacology of Stephania rotunda Lour. J Ethnopharmacol 154:537–563

    CAS  PubMed  Google Scholar 

  • Desgrouas C, Dormoi J, Chapus C et al (2014b) In vitro and in vivo combination of cepharanthine with anti-malarial drugs. Malar J 13:90

    PubMed  PubMed Central  Google Scholar 

  • Desgrouas C, Chapus C, Desplans J et al (2014c) In vitro antiplasmodial activity of cepharanthine. Malar J 13:327

    PubMed  PubMed Central  Google Scholar 

  • Ding W, Zhang HB, Zhang DF et al (2008) Clinical study on radiotherapy sensitization of nasopharyngeal carcinoma by tetrandrine. J Benbu Med Coll 33:339–341

    Google Scholar 

  • Ding W, Yang AZ, Xu HJ et al (2016) Effects of tetrandrine on radiosensitvity of lung adenocarcinoma cell line and its mechanism. Chin Clin Oncol 21:409–412

    Google Scholar 

  • Dong JW, Cai L, Fang YS et al (2015) Proaporphine and aporphine alkaloids with acetylcholinesterase inhibitory activity from Stephania epigaea. Fitoterapia 104:102–107

    CAS  PubMed  Google Scholar 

  • Estellés R, López-Martín J, Milian L et al (2003) Effect of two phenanthrene alkaloids on angiotensin II-induced leukocyte-endothelial cell interactions in vivo. Br J Pharmacol 140(6):1057–1067

    PubMed  PubMed Central  Google Scholar 

  • Fadaeinasab M, Taha H, Fauzi PN et al (2015) Anti-malarial activity of isoquinoline alkaloids from the stem bark of Actinodaphne macrophylla. Nat Prod Commun 10(9):1541–1542

    PubMed  Google Scholar 

  • Fan B, Zhang X, Ma Y et al (2017) Fangchinoline induces apoptosis, autophagy and energetic impairment in bladder cancer. Cell Physiol Biochem 43(3):1003–1011

    CAS  PubMed  Google Scholar 

  • Fang QZ, Zhong N, Zhang Y et al (2004) Tetrandrine inhibits Ca2+-activated chloride channel in cultured human umbilical vein endothelial cells. Acta Pharmacol Sin 25:327–333

    CAS  PubMed  Google Scholar 

  • Fang LH, Zhang YH, Ku BS (2005) Fangchinoline inhibited the antinociceptive effect of morphine in mice. Phytomedicine 12:183–188

    CAS  PubMed  Google Scholar 

  • Feng YX, Zhu ZY, Chen H (1983) Comparison of pharmacognosy morphology and histological structure of the medicinal plants of the genus Stephania (Menispermaceae). Acta Pharm Sin 18:849–861

    CAS  Google Scholar 

  • Gao KY (2017) Clinical experience of YU Junsheng in treating renal edema with modified FangjiHuangqi decoction. Shandong J Trad Chin Med 36:786–790

    Google Scholar 

  • Gao LN, Feng QS, Zhang XF et al (2016) Tetrandrine suppresses articular inflammatory response by inhibiting pro-inflammatory factors via NF-κB inactivation. J Orthop Res 34(9):1557–1568

    CAS  PubMed  Google Scholar 

  • Gao S, Li X, Ding X et al (2017) Cepharanthine induces autophagy, apoptosis and cell cycle arrest in breast cancer cells. Cell Physiol Biochem 41(4):1633–1648

    CAS  PubMed  Google Scholar 

  • García Díaz J, Tuenter E, Escalona Arranz JC et al (2019) Antimicrobial activity of leaf extracts and isolated constituents of Croton linearis. J Ethnopharmacol 236:250–257

    PubMed  Google Scholar 

  • Gertsch J (2009) How scientific is the science in ethnopharmacology? Historical perspectives and epistemological problems. J Ethnopharmacol 122:177–183

    PubMed  Google Scholar 

  • Gokgoz NB, Akbulut BS (2015) Proteomics evidence for the activity of the putative antibacterial plant alkaloid (-)-roemerine: mainstreaming omics-guided drug discovery. OMICS 19(8):478–489

    CAS  PubMed  Google Scholar 

  • González-Coloma A, Reina M, Sáenz C et al (2012) Antileishmanial, antitrypanosomal, and cytotoxic screening of ethnopharmacologically selected Peruvian plants. Parasitol Res 110(4):1381–1392

    PubMed  Google Scholar 

  • Guo Y, Pei X (2019) Tetrandrine-induced autophagy in MDA-MB-231 triple-negative breast cancer cell through the inhibition of PI3K/AKT/mTOR signaling. Evid based Complement Altern Med 2019:7517431

    Google Scholar 

  • Guo C, Wang M, Li J et al (2015) Effect of inflammatory cytokines in the LPS-induced RAW264.7 cells by the decoction and its split components from Stephania tetrandra S.Moore. Acta Chin Med Pharmacol 43:33–36

    Google Scholar 

  • Guo B, Xie P, Su J et al (2016) Fangchinoline suppresses the growth and invasion of human glioblastoma cells by inhibiting the kinase activity of Akt and Akt-mediated signaling cascades. Tumour Biol 37(2):2709–2719

    CAS  PubMed  Google Scholar 

  • Guo S, Jiang K, Wu H et al (2018) Magnoflorine ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-κB and MAPK activation. Front Pharmacol 30:982

    Google Scholar 

  • Han B, Fu P, Ye Y et al (2015) Protective effects of tetrandrine on brain cells in phenobarbital dependent and -withdrawn rats. Mol Med Rep 11:1939–1944

    CAS  PubMed  Google Scholar 

  • Hao G, Liang H, Li Y et al (2010) Simple, sensitive and rapid HPLC-MS/MS method for the determination of cepharanthine in human plasma. J Chromatogr B Anal Technol Biomed Life Sci 878(28):2923–2927

    CAS  Google Scholar 

  • Hao JR, Sun N, Lei L et al (2015) L-Stepholidine rescues memory deficit and synaptic plasticity in models of Alzheimer's diseasevia activating dopamine D1 receptor/PKA signaling pathway. Cell Death Dis 6(11):e1965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haque MA, Jantan I, Harikrishnan H et al (2018) Magnoflorine enhances LPS-activated pro inflammatory responses via MyD88-dependent pathways in U937 macrophages. Plant Med 84:1255–1264

    CAS  Google Scholar 

  • He FQ, Qiu BY, Zhang XH et al (2011) Tetrandrine attenuates spatial memory impairment and hippocampal neuroinfla-mmation viainhibiting NF-κB activation in a rat model of Alzheimer's disease induced by amyloid-β(1–42). Brain Res 1384:89–96

    CAS  PubMed  Google Scholar 

  • Henny NC, Li B, Elford C et al (2009) A large-conductance (BK) potassium channel subtype affects both growth and mineralization of human osteoblasts. Am J Physiol Cell Physiol 297:C1397–C1408

    Google Scholar 

  • Hicks C, Huang P, Ramos L et al (2018) Dopamine D1-like receptor agonist and D2-like receptor antagonist (–)-stepholidine reduces reinstatement of drug-seeking behavior for 3,4-methylenedioxypyrovalerone (MDPV) in rats. ACS Chem Neurosci 9(6):1327–1337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hošt'álková A, Opletal L, Kuneš J et al (2015) Alkaloids from Peumus boldus and their acetylcholinesterase, butyrylcholinesterase and prolyloligopeptidase inhibition activity. Nat Prod Commun 10:577–580

    PubMed  Google Scholar 

  • Hsu JH, Wu YC, Liou SS et al (2004) Mediation of endogenous beta endorphin by tetrandrine to lower plasma glucose in streptozotocin-induced diabetic Rats. Evid based Complement Altern Med 1(2):193–201

    Google Scholar 

  • Hsu YC, Chiu YT, Cheng CC et al (2007) Antifibrotic effects of tetrandrine on hepatic stellate cells and rats with liver fibrosis. J Gastroenterol Hepatol 22(1):99–111

    CAS  PubMed  Google Scholar 

  • Hu SL (2009) Textual research on herbal medicine of Fang Ji. Modern Pharm Clin 24:286–288

    Google Scholar 

  • Hu S, Dutt J, Zhao T et al (1997) Tetrandrine potently inhibits herpes simplex virus type-1 induced keratitis in BALB/c mice. Ocul Immunol and Inflamm 5(3):173–180

    CAS  Google Scholar 

  • Hu YY, He KW, Guo RL (2012) Six alkaloids inhibit secretion of IL-1α, TXB (2), ET-1 and E-selectin in LPS-induced endothelial cells. Immunol Invest 41(3):261–274

    CAS  PubMed  Google Scholar 

  • Hua P, Sun M, Zhang G et al (2015) Cepharanthine induces apoptosis through reactive oxygen species and mitochondrial dysfunction in human non-small-cell lung cancer cells. Biochem Biophys Res Commun 460(2):136–142

    CAS  PubMed  Google Scholar 

  • Huang RL, Chen CC, Huang YL et al (1998) Anti-tumor effects of d-dicentrine from the root of Lindera megaphylla. Plant Med 64:212–215

    CAS  Google Scholar 

  • Huang YT, Chang FC, Chen KJ et al (1999) Acute hemodynamic effects of tetramethylpyrazine and tetrandrine on cirrhotic rats. Plant Med 65:130–134

    CAS  Google Scholar 

  • Huang P, Xu Y, Wei R et al (2011) Efficacy of tetrandrine on lowering intraocular pressure in animal model with ocular hypertension. J Glaucoma 20(3):183–188

    PubMed  Google Scholar 

  • Huang AC, Lien JC, Lin MW et al (2013) Tetrandrine induces cell death in SAS human oral cancer cells through caspase activation-dependent apoptosis and LC3-I and LC3-II activation-dependent autophagy. Int J Oncol 43(2):485–494

    CAS  PubMed  Google Scholar 

  • Huang HP, Peng HS, Wang DL et al (2015) Textual research on historical evolution of Traditional Chinese medicine of Fang Ji. J Chin Med Mater 38:1533–1535

    Google Scholar 

  • Huang YL, Cui SY, Cui XY et al (2016) Tetrandrine, an alkaloid from S. tetrandra exhibits anti-hypertensive and sleep-enhancing effects in SHR via different mechanisms. Phytomedicine 23:1821–1829

    CAS  PubMed  Google Scholar 

  • Hung TM, Na M, Min BS et al (2007a) Protective effect of magnoflorine isolated from coptidis rhizoma on Cu2+-induced oxidation of human low density lipoprotein. Plant Med 73:1281–1284

    CAS  Google Scholar 

  • Hung TM, Lee JP, Min BS et al (2007b) Magnoflorine from Coptidis Rhizoma protects high density lipoprotein during oxidant stress. Biol Pharm Bull 30:1157–1160

    CAS  PubMed  Google Scholar 

  • Idec-Sadkowska I, Andrzejak R, Antonowicz-Juchniewicz J et al (2006) Trials of casual treatment of silicosis. Med Pr 57:271–280

    CAS  PubMed  Google Scholar 

  • Indra B, Tadano T, Nakagawasai O et al (2002) Suppressive effect of nantenine, isolated from Nandina domestica Thunberg, on the 5-hydroxy-L-tryptophan plus clorgyline-induced head-twitch response in mice. Life Sci 70:2647–2656

    CAS  PubMed  Google Scholar 

  • Ingkaninan K, Phengpa P, Yuenyongsawad S et al (2006) Acetylcholinesterase inhibitors from Stephania venosa tuber. J Pharm Pharmacol 58:695–700

    CAS  PubMed  Google Scholar 

  • Jang BC (2016) Tetrandrine has anti-adipogenic effect on 3T3-L1 preadipocytes through the reduced expressionand/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3. Biochem Biophys Res Commun 476:481–486

    CAS  PubMed  Google Scholar 

  • Jiang Y, Liu J, Zhou Z et al (2018) Fangchinoline protects against renal injury in diabetic nephropathy by modulating the MAPK signaling pathway. Exp Clin Endocrinol Diabetes. https://doi.org/10.1055/a-0636-3883

    Article  PubMed  Google Scholar 

  • Jiang YW, Cheng HY, Kuo CL et al (2019) Tetrandrine inhibits human brain glioblastoma multiforme GBM 8401 cancer cell migration and invasion in vitro. Environ Toxicol 34(4):364–374

    CAS  PubMed  Google Scholar 

  • Jiangsu New Medical College (2006) Dictionary of traditional Chinese medicine. Shanghai Science and Technology Publishing House, Shanghai, pp 1182–1185

    Google Scholar 

  • Joshi VC, AvulaIkhlas B, Khan IA (2008) Authentication of Stephania tetrandra S. Moore (Fang Ji) and differentiation of its common adulterants using microscopy and HPLC analysis. J Nat Med 62:117–121

    PubMed  Google Scholar 

  • Kang HS, Kim YH, Lee CS et al (1996) Anti-inflammatory effects of Stephania tetrandra S Moore on interleukin 6 production and experimental inflammatory disease models. Mediat Inflamm 5(4):280–291

    CAS  Google Scholar 

  • Kang OH, An HJ, Kim SB et al (2014) Tetrandrine suppresses pro-inflammatory mediators in PMA plus A23187-induced HMC-1 cells. Int J Mol Med 33(5):1335–1340

    CAS  PubMed  Google Scholar 

  • Kashiwada Y, Aoshima A, Ikeshiro Y et al (2005) Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids. Bioorg Med Chem 13(2):443–448

    CAS  PubMed  Google Scholar 

  • Kim HS, Zhang YH, Oh KW et al (1997) Vasodilating and hypotensive effects of fangchinoline and tetrandrine on the rat aorta and the stroke-prone spontaneously hypertensive rat. J Ethnopharmacol 58:117–123

    CAS  PubMed  Google Scholar 

  • Kim HS, Zhang YH, Fang LH et al (1999) Effects of tetrandrine and fangchinoline on human platelet aggregation and thromboxane B2 formation. J Ethnopharmacol 66:241–246

    CAS  PubMed  Google Scholar 

  • Kim SD, Oh SK, Kim HS et al (2001) Inhibitory effect of fangchinoline on excitatory amino acids-induced neurotoxicity in cultured ratcerebellar granule cells. Arch Pharm Res 24(2):164–170

    CAS  PubMed  Google Scholar 

  • Kim J, Ha Q, Bao T et al (2018) Antifungal activity of magnoflorine against Candida strains. World J Microbiol Biotechnol 34(11):167

    PubMed  Google Scholar 

  • Koh SB, Ban JY, Lee BY et al (2003) Protective effects of fangchinoline and tetrandrine on hydrogen peroxide-induced oxidative neuronal cell damage in cultured rat cerebellar granule cells. Plant Med 69:506–512

    CAS  Google Scholar 

  • Kondo Y, Takano F, Hojo H (1993) Inhibitory effect of bisbenzylisoquinoline alkaloids on nitric oxide production in activated macrophages. Biochem Pharmacol 46:1887–1892

    CAS  PubMed  Google Scholar 

  • Kongkiatpaiboon S, Duangdee N, Prateeptongkum S et al (2016) Acetylcholinesterase inhibitory activity of alkaloids isolated from Stephania venosa. Nat Prod Commun 11:1805–1806

    PubMed  Google Scholar 

  • Konkimalla VB, Efferth T (2010) Inhibition of epidermal growth factor receptor over-expressing cancer cells by the aphorphine-type isoquinoline alkaloid, dicentrine. Biochem Pharmacol 79(8):1092–1099

    CAS  PubMed  Google Scholar 

  • Kukula-Koch W, Kruk-Słomka M, Stępnik K et al (2017) The evaluation of pro-cognitive and antiamnestic properties of berberine and magnoflorine isolated from Barberry species by centrifugal partition chromatography (CPC), in relation to QSAR modelling. Int J Mol Sci 18(12):E2511

    PubMed  Google Scholar 

  • Kwan CY, Leung YM, Kwan TK et al (2001) Tetrandrine inhibits Ca2+ release-activated Ca2+ channels in vascular endothelial cells. Life Sci 68:841–847

    CAS  PubMed  Google Scholar 

  • Lai JH (2002) Immunomodulatory effects and mechanisms of plant alkaloid tetrandrine in autoimmune diseases. Acta Pharmacol Sin 23:1093–1101

    CAS  PubMed  Google Scholar 

  • Lai JH, Ho LJ, Kwan CY et al (1999) Plant alkaloid tetrandrine and its analog block CD28-costimulated activities of human peripheral blood T cells: potential immunosuppressants in transplantation immunology. Transplantation 68:1383–1392

    CAS  PubMed  Google Scholar 

  • Lai YC, Kuo TF, Chen CK et al (2010) Metabolism of dicentrine: identification of the phase I and phase II metabolites in miniature pig urine. Drug Metab Dispos 38(10):1714–1722

    CAS  PubMed  Google Scholar 

  • Lan J, Huang L, Lou H et al (2018) Design and synthesis of novel C14-urea-tetrandrine derivatives with potent anti-cancer activity. Eur J Med Chem 143:1968–1980

    CAS  PubMed  Google Scholar 

  • Lee YS, Han SH, Lee SH et al (2011) Synergistic effect of tetrandrine and ethidium bro-mide against methicillin-resistant staphylococcus aureus. J Toxicol Sci 36:645–651

    CAS  PubMed  Google Scholar 

  • Lee YS, Han SH, Lee SH et al (2012) The mechanism of antibacterial activity of tetrandrine against Staphylococcus aureus. Foodborne Pathog Dis 9:686–691

    CAS  PubMed  Google Scholar 

  • Lee HS, Safe S, Lee SO et al (2017) Inactivation of the orphan nuclear receptor NR4A1 contributes to apoptosis induction by fangchinoline in pancreatic cancer cells. Toxicol Appl Pharmacol 332:32–39

    CAS  PubMed  Google Scholar 

  • Legendre O, Pecic S, Chaudhary S et al (2010) Synthetic studies and pharmacological evaluations on the MDMA ('Ecstasy') antagonist nantenine. Bioorg Med Chem Lett 20(2):628–631

    CAS  PubMed  Google Scholar 

  • Leung YM, Kwan CY, Loh TT et al (1996) Capacitative Ca2+ entry in HL-60 cells: tetrandrine and SK & F 96365 as probes. China J Chin Mater Med 17(2):97–101

    CAS  Google Scholar 

  • Li FX, Zhang H (2006) In vitro study of the synergistic effect of tetrandrine and fluconazole against Candida albicans. Chin J Dermatol 39:454–456

    CAS  Google Scholar 

  • Li CX, Li L, Lou J et al (1998) The protective effects of traditional Chinese medicine prescription, han-dan-gan-le, on CCl4-induced liver fibrosis in rats. Am J Chin Med 26(3–4):325–332

    CAS  PubMed  Google Scholar 

  • Li QP, Lu ZA, Rao MR (2001) Depressive effect of tetrandrine on collagen synthesis in vascular smooth muscle cells. Acta Pharm Sin 36(7):481–484

    CAS  Google Scholar 

  • Li QP, Leng J, Peng T et al (2003) Regression of vascular remodeling in renovascular hypertensive rats by tetrandrine and enalapril. Acta Pharm Sin 38(5):328–332

    CAS  Google Scholar 

  • Li XN, Yan HX, Sha N et al (2009a) Isolation and identification of alkaloids from the root of Stephania tetrandra. J Shenyang Pharm Univ 26:430–433

    CAS  Google Scholar 

  • Li ZH, Fan XL, Cai MM et al (2009b) Pharmacokinetics of fangchinoline and tetrandrine in rats. China J Chin Mater Med 34(23):3110–3113

    Google Scholar 

  • Li ZW, Zhong SZ, Liu DW et al (2012) Effect of tetrandrine on the TGF-β-induced smad signal transduction pathway in human hypertrophic scar fibroblasts in vitro. Burns 38(3):404–413

    CAS  Google Scholar 

  • Li SX, Song YJ, Zhang LL et al (2015a) An in vitro and in vivo study on the synergistic effect and mechanism of itraconazole or voriconazole alone and in combination with tetrandrine against Aspergillus fumigatus. J Med Microbiol 64:1008–1020

    CAS  PubMed  Google Scholar 

  • Li D, Lu Y, Sun P et al (2015b) Inhibition on proteasome β1 subunit might contribute to the anti-cancer effects of fangchinoline in human prostate cancer cells. PLoS ONE 10:e0141681

    PubMed  PubMed Central  Google Scholar 

  • Li XY, Mei GH, Dong Q et al (2015c) Enhanced neuroprotective effects of coadministration of tetrandrine with Glutathione in preclinical model of parkinson's disease. Parkinsons Dis 2015:931058

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Zeng RJ, Chen JZ et al (2015d) Pharmacokinetics and metabolism study of isoboldine, a major bioactive component from Radix Linderae in male rats by UPLC-MS/MS. J Ethnopharmacol 171:154–160

    CAS  PubMed  Google Scholar 

  • Li X, Jin Q, Wu YL et al (2016) Tetrandrine regulates hepatic stellate cell activation via TAK1 and NF-κB signaling. Int Immunopharmacol 36:263–270

    CAS  PubMed  Google Scholar 

  • Li SX, Song YJ, Jiang L et al (2017a) Synergistic effects of tetrandrine with posaconazole against Aspergillus fumigatus. Microb Drug Resist 23(6):674–681

    CAS  PubMed  Google Scholar 

  • Li X, Yang Z, Han W et al (2017b) Fangchinoline suppresses the proliferation, invasion and tumorigenesis of human osteosarcomacells through the inhibition of PI3K and downstream signaling pathways. Int J Mol Med 40(2):311–318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li HJ, Wang GM, Li Y et al (2018a) Comparison of therapeutic effect of Fangji Fuling decoction formula granule and conventional Fangji Fuli decoction on post-thrombotic syndrome. Shandong J Trad Chin Med 37(10):821–823

    Google Scholar 

  • Li X, Wu Z, He B et al (2018b) Tetrandrine alleviates symptoms of rheumatoid arthritis in rats by regulating the expression of cyclooxygenase-2 and inflammatory factors. Exp Ther Med 16(3):2670–2676

    PubMed  PubMed Central  Google Scholar 

  • Li JN, Wang QH, Wang ZB et al (2019) Tetrandrine inhibits colon carcinoma HT-29 cells growth via the Bcl-2/Caspase 3/PARP pathway and G1/S phase. Biosci Rep 39(5):BSR20182109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Q, Ni C, Yan XZ et al (2010) Comparative study on metabonomics and on liver and kidney toxicity of Aristolochia fangchi and Stephania tetrandra. China J Chin Mater Med 35(21):2882–2888

    Google Scholar 

  • Lien JC, Lin MW, Chang SJ et al (2017) Tetrandrine induces programmed cell death in human oral cancer CAL 27 cells through the reactive oxygen species production and caspase-dependent pathways and associated with beclin-1-induced cell autophagy. EnvironToxicol 32(1):329–343

    CAS  Google Scholar 

  • Lin TY, Lu CW, Tien LT et al (2009) Fangchinoline inhibits glutamate release from rat cerebral cortex nerve terminals (synaptosomes). Neurochem Int 54(8):506–512

    CAS  PubMed  Google Scholar 

  • Lin YC, Chang CW, Wu CR (2015) Anti-nociceptive, anti-inflammatory and toxicological evaluation of Fang-Ji-Huang-Qi-Tang in rodents. BMC Complement Altern Med 15:10

    PubMed  PubMed Central  Google Scholar 

  • Lin YJ, Peng SF, Lin ML et al (2016) Tetrandrine induces apoptosis of human nasopharyngeal carcinoma NPC-TW 076 cells through reactive oxygen species accompanied by an endoplasmic reticulum stress signaling pathway. Molecules 21:1353

    PubMed Central  Google Scholar 

  • Lin X, Song F, Zhou L et al (2019) Cepharanthine suppresses osteoclast formation by modulating the nuclear factor-κB and nuclear factor of activated T-cell signaling pathways. J Cell Biochem 120:1990–1996

    CAS  Google Scholar 

  • Liou JT, Chen ZY, Ho LJ et al (2008) Differential effects of triptolide and tetrandrine on activation of COX-2, NF-κB, and AP-1 and virus production in dengue virus-infected human lung cells. Eur J Pharmacol 589(1–3):288–298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T (2017) Studies on the antitumor differentiation therapy of tetrandrine, Wuhan University

  • Liu BC, He YX, Miao Q et al (1994) The effects of tetrandrine (TT) and polyvinylpyridine-N-oxide (PVNO) on gene expression of type I and type III collagens during experimental silicosis. Biomed Environ Sci 7(3):199–204

    CAS  PubMed  Google Scholar 

  • Liu XJ, Wang YF, Zhang MY et al (2004) Study on the inhibitory effect of cepharanthine on herpes simplex type-1 virus (HSV-1) in vitro. J Chin Med Mater 27(2):107–109

    Google Scholar 

  • Liu YQ, He GH, Li HL et al (2014) Plasma pharmacokinetics and tissue distribution study of roemerine in rats by liquidchromatography with tandem mass spectrometry (LC-MS/MS). J Chromatogr B Anal Technol Biomed Life Sci 969:249–255

    CAS  Google Scholar 

  • Liu T, Liu X, Li WH (2016) Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget 7:40800–40815

    PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhang Y, Zhao W et al (2017a) Advances in chemical constituents and pharmacology of Stephania tetrandra. Acta Chin Med Pharm 45:100–103

    Google Scholar 

  • Liu KC, Lin YJ, Hsiao YT et al (2017b) Tetrandrine induces apoptosis in human nasopharyngeal carcinoma NPC-TW 039 cells by endoplasmic reticulum stress and Ca2+/Calpain pathways. Anticancer Res 37(11):6107–6118

    CAS  PubMed  Google Scholar 

  • Liu T, Zhang Z, Yu C et al (2017c) Tetrandrine antagonizes acute megakaryoblastic leukaemia growth by forcing autophagy-mediated differentiation. Br J Pharmacol 174(23):4308–4328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lohombo-Ekomba ML, Okusa PN, Penge O et al (2004) Antibacterial, antifungal, antiplasmodial, and cytotoxic activities of Albertisia villosa. J Ethnopharmacol 93(2–3):331–335

    PubMed  Google Scholar 

  • Lou JS, Zhang CL (1993) Pharmcokinetic studies studies on drug interaction between tetrandrine and propranolol in rabbits. China Trad Herb Drugs 24:24–26

    CAS  Google Scholar 

  • Lu Y, Li F, Xu T et al (2017) Tetrandrine prevents multidrug resistance in the osteosarcoma cell line, U-2OS, by preventing Pgp overexpression through the inhibition of NF-κB signaling. Int J Mol Med 39(4):993–1000

    CAS  PubMed  Google Scholar 

  • Luo XR (1982) A systematic notes on the genus Stephania of China. Bull Botan Res 2:33–59

    Google Scholar 

  • Luo X, Peng JM, Su LD et al (2016) Fangchinoline inhibits the proliferation of SPC-A-1 lung cancer cells by blocking cell cycle progression. Exp Ther Med 11(2):613–618

    CAS  PubMed  Google Scholar 

  • Lv XL, Zhang H, Song YJ et al (2014) A preliminary research of tetrandrine and fluconazole affecting the cell cycle in Candida albicans. Chin J Mycol 9:215–217

    Google Scholar 

  • Lv Q, Zhu XY, Xia YF et al (2015) Tetrandrine inhibits migration and invasion of rheumatoid arthritis fibroblast-like synoviocytesthrough down-regulating the expressions of Rac1, Cdc42, and RhoA GTPases and activation of the PI3K/Akt and JNK signaling pathways. Chin J Nat Med 13(11):831–841

    PubMed  Google Scholar 

  • Lv YL, Wu ZZ, Chen LX et al (2016) Neuroprotective effects of tetrandrine against vascular dementia. Neural Regen Res 11(3):454–459

    PubMed  PubMed Central  Google Scholar 

  • Ma W, Nomura M, Takahashi-Nishioka T et al (2007) Combined effects of fangchinoline from Stephania tetrandra Radix and formononetin and calycosin from Astragalus membranaceus Radix on hyperglycemia and hypoinsulinemia in streptozotocin-diabetic mice. Biol Pharm Bull 30(11):2079–2083

    CAS  PubMed  Google Scholar 

  • Ma C, Du F, Yan L et al (2015) Potent activities of roemerine against Candida albicans and the underlying mechanisms. Molecules 20:17913–17928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Yao L, Pang L et al (2016) Tetrandrine ameliorates sevoflurane-induced cognitive impairment via the suppression of inflammation and apoptosis in aged rats. Mol Med Rep 13(6):4814–4820

    CAS  PubMed  Google Scholar 

  • Ma HB, Tian ZS, Gui SL et al (2017) Anti-prostate cancer effect of roemerine: an experimental study. Natl J Androl 23(1):27–33

    Google Scholar 

  • Makarasen A, Sirithana W, Mogkhuntod S et al (2011) Cytotoxic and antimicrobial activities of aporphine alkaloids isolated from Stephania venosa (Blume) Spreng. Plant Med 77:1519–1524

    CAS  Google Scholar 

  • Manuszak M, Harding W, Gadhiya S et al (2018) (–)-Stepholidine reduces cue induced reinstatement of cocaine seeking and cocaine self-administration in rats. Drug Alcohol Depend 189:49–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin ML, Diaz MT, Montero MJ et al (1993) Antispasmodic activity of benzylisoquinoline alkaloids analogous to papaverine. Plant Med 59:63–67

    CAS  Google Scholar 

  • Meade JA, Free RB, Miller NR et al (2015) (–)-Stepholidine is a potent pan-dopamine receptor antagonist of both G protein- and β-arrestin-mediated signaling. Psychopharmacology 232:917–930

    CAS  PubMed  Google Scholar 

  • Meng LH, Zhang H, Hayward L et al (2004) Tetrandrine induces early G1 arrest in human colon carcinoma cells by down-regulating the activity and inducing the degradation of G1-S-specific cyclin-dependent kinases and by inducing p53 and p21Cip1. Cancer Res 64:9086–9092

    CAS  PubMed  Google Scholar 

  • Meyer MM, Chen TP, William M et al (2000) Chinese herb nephropathy. Proc (Bayl Univ Med Cent) 13(4):334–337

    CAS  Google Scholar 

  • Montrucchio DP, Córdova MM, Santos AR et al (2013) Plant derived aporphinic alkaloid S-(+) dicentrine induces antinociceptive effect in both acute and chronic inflammatory pain models: evidence for a role of TRPA1 channels. PLoS ONE 28:e67730

    Google Scholar 

  • Morais LC, Barbosa-Filho JM, Almeida RN (1998) Central depressant effects of reticuline extracted from Ocotea duckei in rats and mice. J Ethnopharmacol 62(1):57–61

    CAS  PubMed  Google Scholar 

  • Mullaicharam AR (2011) Counterfeit herbal medicine. Int J Nutr Pharm Neurol Dis 1:97–102

    Google Scholar 

  • Nakamura K, Tsuchiya S, Sugimoto Y et al (1992) Histamine release inhibition activity of bisbenzylisoquinoline alkaloids. Plant Med 58:505–508

    CAS  Google Scholar 

  • Naman CB, Gupta G, Varikuti S et al (2015) Northalrugosidine is a bisbenzyltetrahydroisoquinoline alkaloid from Thalictrum alpinum with in vivo antileishmanial activity. J Nat Prod 78:552–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ning P, Peng Y, Liu DW et al (2016) Tetrandrine induces microRNA differential expression in human hypertrophic scar fibroblasts in vitro. Genet Mol Res 15(1):gmr7288

    Google Scholar 

  • Nortier J, Pozdzik A, Roumeguere T et al (2015) Aristolochic acid nephropathy ("Chinese herb nephropathy"). Nephrol Ther 11(7):574–588

    PubMed  Google Scholar 

  • Ogino T, Katsuhara T, Sato T et al (1998) New alkaloids from the root of Stephania tetrandra (Fen-Fang-Ji). Heterocycles 48:311–317

    CAS  Google Scholar 

  • Okada M (1999) Chinese-herb nephropathy. Lancet 354:1732

    CAS  PubMed  Google Scholar 

  • Orallo F (2004) Acute cardiovascular effects of (+)-nantenine, an alkaloid isolated from Platycapnos spicata, in an aesthetised normotensive rats. Plant Med 70:117–126

    CAS  Google Scholar 

  • Otshudi AL, Apers S, Pieters L et al (2005) Biologically active bisbenzylisoquinoline alkaloids from the root bark of Epinetrum villosum. J Ethnopharmacol 102(1):89–94

    CAS  PubMed  Google Scholar 

  • Park PH, Nan JX, Park EJ et al (2000) Effect of tetrandrine on experimental hepatic fibrosis induced by bile duct ligation and scission in rats. Pharmacol Toxicol 87(6):261–268

    CAS  PubMed  Google Scholar 

  • Payon V, Kongsaden C, Ketchart W et al (2019) Mechanism of cepharanthine cytotoxicity in human ovarian cancer cells. Plant Med 85:41–47

    CAS  Google Scholar 

  • Pinelli A, Trivulzio S, Brenna S et al (2010) Pretreatment with tetrandrine has protective effects against isoproterenol-induced myocardialinfarction in rabbits. In Vivo 24(3):265–270

    CAS  PubMed  Google Scholar 

  • Qi XM, Miao LL, Cai Y et al (2013) ROS generated by CYP450, especially CYP2E1, mediate mitochondrial dysfunction induced by tetrandrine in rat hepatocytes. Acta Pharmacol Sin 34(9):1229–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qian QW, Zhu YM, Zhang MY et al (2010) Study on the anti-HSV-2 effect of cepharanthine hydrochloride in vitro. Chin J Health LabTechnol 20:2082–2083

    Google Scholar 

  • Qin R, Shen H, Cao Y et al (2013) Tetrandrine induces mitochondria-mediated apoptosis in human gastric cancer BGC-823 cells. PLoS ONE 8:e76486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MR (2002) Effects of tetrandrine on cardiac and vascular remodeling. Acta Pharmacol Sin 23:1075–1085

    CAS  PubMed  Google Scholar 

  • Rattanawong A, Payon V, Limpanasittikul W et al (2018) Cepharanthine exhibits a potent anticancer activity in p53-mutated colorectal cancer cells through upregulation of p21Waf1/Cip1. Oncol Rep 39:227–238

    CAS  PubMed  Google Scholar 

  • Reist RH, Dey RD, Durham JP et al (1993) Inhibition of proliferative activity of pulmonary fibroblasts by tetrandrine. Toxicol App Pharm 122:70–76

    CAS  Google Scholar 

  • Rhein BA, Maury WJ (2015) Ebola virus entry into host cells: identifying therapeutic strategies. Curr Clin Microbiol Rep 2:115–124

    PubMed  PubMed Central  Google Scholar 

  • Ribeiro RA, Leite JR (2003) Nantenine alkaloid presents anticonvulsant effect on two classical animal models. Phytomedicine 10:563–568

    CAS  PubMed  Google Scholar 

  • Rosenkranz HS, Klopman G (1990) Novel structural concepts in elucidating the potential genotoxicity and carcinogenicity of tetrandrine, a traditional herbal drug. Mutat Res 244(4):265–271

    CAS  PubMed  Google Scholar 

  • Ruan L, Huang HS, Jin WX et al (2013) Tetrandrine attenuated cerebral ischemia/reperfusion injury and induced differential proteomic changes in a MCAO mice model using 2-D DIGE. Neurochem Res 38(9):1871–1879

    CAS  PubMed  Google Scholar 

  • Sakurai Y, Kolokoltsov AA, Chen CC et al (2015) Two pore channels control Ebolavirus host cell entry and are drug targets for disease treatment. Science 347:995–998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samra YA, Said HS, Elsherbiny NM et al (2016) Cepharanthine and piperine ameliorate diabetic nephropathy in rats: role of NF-κB and NLRP3 inflammasome. Life Sci 157:187–199

    CAS  PubMed  Google Scholar 

  • Schafer A, Cheng H, Lee C et al (2018) Development of potential small molecule therapeutics for treatment of Ebola virus disease. Curr Med Chem 25:5177–5190

    CAS  PubMed  Google Scholar 

  • Sekiya N, Shimada Y, Niizawa A et al (2004) Suppressive effects of Stephania tetrandra on the neutrophil function in patients with rheumatoid arthritis. Phytother Res 18:247–249

    PubMed  Google Scholar 

  • Semwal DK, Badoni R, Semwal R et al (2010) The genus Stephania (Menispermaceae): chemical and pharmacological perspectives. J Ethnopharmacol 132(2):369–383

    CAS  PubMed  Google Scholar 

  • Seow WK, Ferrante A, Goh DB et al (1988) In vitro immunosuppressive properties of the plant alkaloid tetrandrine. Int Arch Allergy Appl Immunol 85(4):410–415

    CAS  PubMed  Google Scholar 

  • Shan YQ, Zhu YP, Pang J et al (2013) Tetrandrine potentiates the hypoglycemic efficacy of berberine by inhibiting P-glycoprotein function. Biol Pharm Bull 36(10):1562–1569

    CAS  PubMed  Google Scholar 

  • Shan L, Tong L, Hang L et al (2018) Fangchinoline supplementation attenuates inflammatory markers in experimental rheumatoidarthritis-induced rats. Biomed Pharmacother 111:142–150

    PubMed  Google Scholar 

  • Shen YC, Chen CF, Sung YJ (1999) Tetrandrine ameliorates ischaemia-reperfusion injury of rat myocardium through inhibition of neutrophil priming and activation. Br J Pharmacol 128(7):1593–1601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen YC, Chou CJ, Chiou WF et al (2001) Anti-inflammatory effects of the partially purified extract of Radix Stephaniae tetrandrae: comparative studies of its active principles tetrandrine and fangchinoline on human polymorphonuclear leukocyte functions. Mol Pharmacol 60(5):1083–1090

    CAS  PubMed  Google Scholar 

  • Shi JP, Li SX, Zhu KJ et al (2016a) Tetrandrine on the dynamic changes of cytokines and antifungal effects in mice with Candida albicans. Chin J Zoonoses 32:689–695

    Google Scholar 

  • Shi JP, Li SX, Ma ZL et al (2016b) Acute and sub-chronic toxicity of tetrandrine in intravenously exposed female BALB/c mice. Chin J Integr Med 22:925–931

    CAS  PubMed  Google Scholar 

  • Shi J, Guo B, Hui Q et al (2017) Fangchinoline suppresses growth and metastasis of melanoma cells by inhibiting the phosphorylation of FAK. Oncol Rep 38:63–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Si DY, Zhao SX (1991) Aporphine alkaloidal components from the aerial part of Stephania tetrandra. J Jiling Med Coll 14:1–6

    Google Scholar 

  • Si DY, Zhao SX (1993) Non-alkaloidal components from the aerial part of Stephania tetrandra. J Jiling Med Coll 16:1–5

    Google Scholar 

  • Si DY, Zhao SX, Deng JZ et al (1992) A 4, 5-dioxoaporphine from the aerial parts of Stephania tetrandra. J Nat Prod 55:828–829

    CAS  Google Scholar 

  • Si DY, Zhong DF, Sha Y et al (2001) Biflavonoids from the aerial part of Stephania tetrandra. Phytochemistry 58:563–566

    CAS  PubMed  Google Scholar 

  • Sim HJ, Kim JH, Lee KR et al (2013) Simultaneous determination of structurally diverse compounds in different Fangchi species by UHPLC-DAD and UHPLC-ESI-MS/MS. Molecules 18:5235–5250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sim HJ, Yoon SH, Kim MS et al (2015) Identification of alkaloid constituents from Fangchi species using pH control liquid-liquid extraction and liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 29(9):837–854

    CAS  PubMed  Google Scholar 

  • Singh K, Dong Q, Timiri PS et al (2018) Tetrandrine inhibits deregulated cell cycle in pancreatic cancer cells: Differential regulation of p21Cip1/Waf1, p27Kip1 and cyclin D1. Cancer Lett 425:164–173

    CAS  PubMed  Google Scholar 

  • Song N, Zhang S, Li Q et al (2008) Establishment of a liquid chromatographic/mass spectrometry method for quantification of tetrandrine in rat plasma and its application to pharmacokinetic study. J Pharm Biomed Anal 48(3):974–979

    CAS  PubMed  Google Scholar 

  • Sun YF, Wink M (2014) Tetrandrine and fangchinoline, bisbenzylisoquinoline alkaloids from Stephania tetrandra can reverse multidrug resistance by inhibiting P-glycoprotein activity in multidrug resistant humancancer cells. Phytomedicine 21:1110–1119

    CAS  PubMed  Google Scholar 

  • Sun K, Wu JH (2012) Modern research development of fangchi. Chin Foreign Med Res 10:157–158

    Google Scholar 

  • Sun SA, Tang YP, Wang H et al (1999) Clinical and experimental study on the treatment of hepatic fibrosis by Stephania tetrandra. Chin J Hepatol 7:62–63

    Google Scholar 

  • Sun Y, Dai J, Hu Z et al (2009) Oral bioavailability and brain penetration of (–)-stepholidine, a tetrahydroprotoberberine agonistat dopamine D(1) and antagonist at D(2) receptors, in rats. Br J Pharmacol 158(5):1302–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun M, Wang J, Zhou Y et al (2016) Isotetrandrine reduces astrocyte cytotoxicity in neuromyelitis optica by blocking the binding of NMO-IgG to aquaporin 4. NeuroImmunomodulation 23(2):98–108

    CAS  PubMed  Google Scholar 

  • Takahashi T, Tonami Y, Tachibana M et al (2012) Tetrandrine prevents bone loss in sciatic-neurectomized mice and inhibits receptor activator of nuclear factor κB ligand-induced osteoclast differentiation. Biol Pharm Bull 35(10):1765–1774

    CAS  PubMed  Google Scholar 

  • Takemura H, Imoto K, Ohshika H et al (1996) Tetrandrine as a calcium antagonist. Clin Exp Pharmacol Physiol 23(8):751–753

    CAS  PubMed  Google Scholar 

  • Tang X, Di X, Zhong Z et al (2016) In vitro metabolism of l-corydalmine, a potent analgesic drug, in human, cynomolgus monkey, beagle dog, rat and mouse liver microsomes. J Pharm Biomed Anal 128:98–105

    CAS  PubMed  Google Scholar 

  • Tankeu S, Vermaak L, Chen W et al (2016) Differentiation between two “fang ji” herbal medicines, Stephania tetrandra and the nephrotoxic Aristolochia fangchi, using hyperspectral imaging. Phytochemistry 122:213–222

    CAS  PubMed  Google Scholar 

  • Teng CM, Yu SM, Ko FN et al (1991) Dicentrine, a natural vascular alpha 1-adrenoceptor antagonist, isolated from Lindera megaphylla. Br J Pharmacol 104:651–656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teng G, Svystonyuk D, Mewhort HE et al (2015) Tetrandrine reverses human cardiac myofibroblast activation and myocardial fibrosis. Am J Physiol Heart Circ Physiol 308(12):H1564–H1574

    PubMed  Google Scholar 

  • Tian XQ (2014) Study on the constituents of Brucea Javanica and Stephania Tetrandra. Donghua University

  • Tian X, Zhang Y, Li Z et al (2016a) Systematic and comprehensive strategy for metabolite profiling in bioanalysis using software-assisted HPLC-Q-TOF: magnoflorine as an example. Anal Bioanal Chem 408(9):2239–2254

    CAS  PubMed  Google Scholar 

  • Tian Y, Shen S, Jiang Y et al (2016) CYP3A5 mediates bioactivation and cytotoxicity of tetrandrine. Arch Toxicol 90:1737–1748

    CAS  PubMed  Google Scholar 

  • Tian DD, Zhang RX, Wu N et al (2017) Tetrandrine inhibits the proliferation of human osteosarcoma cells by upregulating the PTEN pathway. Oncol Rep 237:2795–2802

    Google Scholar 

  • Tsai TH, Tsai TR, Chou CJ et al (1996) Determination of dicentrine in rat plasma by high-performance liquid chromatography and its application to pharmacokinetics. J Chromatogr B 681:277–281

    CAS  Google Scholar 

  • Tsutsumi T, Kobayashi S, Liu YY et al (2003) Anti-hyperglycemic effect of fangchinoline isolated from Stephania Tetrandra Radix in streptozotocin-diabetic mice. Biol Pharm Bull 26(3):313–317

    CAS  PubMed  Google Scholar 

  • Tzeng CC, Wu YC, Su TL et al (1990) Inhibitory effects of isoquinoline type alkaloids on leukemic cell growth and macromolecule biosynthesis. Kaohsiung J Med Sci 6:58–65

    CAS  Google Scholar 

  • Uche FI, Drijfhout FP, McCullagh J et al (2016) Cytotoxicity effects and apoptosis induction by bisbenzylisoquinoline alkaloids from Triclisia subcordata. Phytother Res 30:1533–1539

    CAS  PubMed  Google Scholar 

  • Vanherweghem JL (1994) A new form of nephropathy secondary to the absorption of Chinese herbs. Bulletin et Memoires de I′ Academie Royale de Medecine Belgique 149:128–135

    CAS  Google Scholar 

  • Vichkanova SA, Makarova LV, Solov'eva LF (1973) Chemotherapeutic properties of the alkaloid tetrandrine in experimental tuberculosis. Farmakologiya i Toksikologiya (Moscow) 36:74–78

    CAS  Google Scholar 

  • Wan Z, Lu Y, Liao Q et al (2012) Fangchinoline inhibits human immunodeficiency virus type 1 replication by interfering with gp160 proteolytic processing. PLoS ONE 7:e39225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Lemos JR (1994) Tetrandrine: a new ligand to block voltage-dependent Ca2+ and Ca(+)-activated K+ channels. Life Sci 56:295–306

    CAS  Google Scholar 

  • Wang M, Lu S (2015) Clinical observation of Fangji Fuling decoction on chronic heart failure. J Emerg Trad Chin Med 24:355–357

    Google Scholar 

  • Wang HX, Kwan CY, Wong TM (1997) Tetrandrine inhibits electrically induced [Ca2+]i transient in the isolated single rat cardiomyocyte. Eur J Pharmacol 319:115–122

    CAS  PubMed  Google Scholar 

  • Wang G, Lemos JR, Ladecola C (2004) Herbal alkaloid tetrandrine: from an ion channel blocker to inhibitor of tumor proliferation. TRENDS Pharmacol Sci 25(3):120–123

    CAS  PubMed  Google Scholar 

  • Wang N, Pan W, Zhu M et al (2011) Fangchinoline induces autophagic cell death via p53/sestrin2/AMPK signalling in human hepatocellular carcinoma cells. Br J Pharmacol 164(2b):731–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang TH, Wan JY, Gong X et al (2012) Tetrandrine enhances cytotoxicity of cisplatin in human drug-resistant esophageal squamous carcinoma cells by inhibition of multidrug resistance-associated protein 1. Oncol Rep 28:1681–1686

    CAS  PubMed  Google Scholar 

  • Wang Y, Chen J, Wang L et al (2013) Fangchinoline induces G0/G1 arrest by modulating the expression of CDKN1A and CCND2 in K562 human chronic myelogenous leukemia cells. Exp Ther Med 5:1105–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang QS, Cui YL, Gao LN et al (2014a) Reduction of the pro-inflammatory response by tetrandrine-loading poly(l-lactic acid) films in vitro and in vivo. J Biomed Mater Res 102:4098–4107

    Google Scholar 

  • Wang CD, Yuan CF, Bu YQ et al (2014b) Fangchinoline inhibits cell proliferation via Akt/GSK-3beta/ cyclin D1 signaling and induces apoptosis in MDA-MB-231 breast cancer cells. Asian Pac J Cancer Prev 15(2):769–773

    CAS  PubMed  Google Scholar 

  • Wang M, Li J, Wei Q et al (2016a) Study on analgesic and anti-inflammatory effects and mechanism of total alkaloids from Stephania tetrandra S.Moore decoction. Lishizhen Med Mater Med Res 27:335–338

    CAS  Google Scholar 

  • Wang L, Ci X, Lv H et al (2016b) Isotetrandrine ameliorates tert-butyl hydroperoxide-induced oxidative stress through upregulation of heme oxygenase-1 expression. Exp Biol Med (Maywood) 241(14):1568–1576

    CAS  Google Scholar 

  • Wang X, Yang Y, Yang D et al (2016c) Tetrandrine prevents monocrotaline-induced pulmonary arterial hypertension in rats through regulation of the protein expression of inducible nitric oxide synthase and cyclic guanosinemonophosphate-dependent protein kinase type 1. J Vasc Surg 64(5):1468–1477

    PubMed  Google Scholar 

  • Wang R, Ma TM, Liu F et al (2017a) Research progress on pharmacological action and clinical application of Stephania Tetrandrae Radix. China J Chin Mater Med 42:634–639

    Google Scholar 

  • Wang B, Xing Z, Wang F et al (2017b) Fangchinoline inhibits migration and causes apoptosis of human breast cancer MDA-MB-231 cells. Oncol Lett 14:5307–5312

    PubMed  PubMed Central  Google Scholar 

  • Wang J, Chang LH, Li X et al (2017c) Effect of tetrandrine on radiosensitivity of nasopharyngeal carcinoma cells. Chin J Pathophysiol 33:1611–1618

    Google Scholar 

  • Wang J, Chang LH, Lai XP et al (2018) Tetrandrine enhances radiosensitivity through the CDC25C/CDK1/cyclin B1 pathway in nasopharyngeal carcinoma cells. Cell Cycle 17:671–680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whong WZ, Lu CH, Stewart JD et al (1989) Genotoxicity and genotoxic enhancing effect of tetrandrine in Salmonella typhimurium. Mutat Res 222(3):237–244

    CAS  PubMed  Google Scholar 

  • Wino T, Sato T, Sasaki H et al (1988) Four new bisbenzylisoquionoline alkaloids from the root of Stephania tetrandra. Heterocycles 27:1149–1154

    Google Scholar 

  • Wong TM, Wu S, Yu XC et al (2000) Cardiovascular actions of Radix Stephaniae tetrandrae: a comparison with its main component, tetrandrine. Acta Pharm Sin 21:1083–1088

    CAS  Google Scholar 

  • Wu SJ, Ng LT (2007) Tetrandrine inhibits proinflammatory cytokines, iNOS and COX2 expression in human monocytic cells. Biol Pharm Bull 30(1):59–62

    CAS  PubMed  Google Scholar 

  • Wu J, Suzuki H, Zhou YW et al (2001) Cepharanthine activates caspases and induces apoptosis in Jurkat and K562 human leukemia cell lines. J Cell Biochem 82:200–214

    CAS  PubMed  Google Scholar 

  • Wu WN, McKown LA, Gopaul VS (2004) In-vitro metabolism of isotetrandrine, a bisbenzylisoquinoline alkaloid, in rat hepatic S9 fractionby high-performance liquid chromatography-atmospheric pressure ionization mass spectrometry. J Pharm Pharmacol 56:749–755

    CAS  PubMed  Google Scholar 

  • Wu CJ, Wang YH, Lin CJ et al (2011) Tetrandrine down-regulates ERK/NF-κB signaling and inhibits activation of mesangial cells. Toxicol In Vitro 25:1834–1840

    CAS  PubMed  Google Scholar 

  • Wu XL, Li JX, Li ZD et al (2015) Protective effect of tetrandrine on sodium taurocholate-induced severe acute pancreatitis. Evid Based Complement Altern Med 2015:129103

    Google Scholar 

  • Xiao J, Song N, Lu T et al (2018) Rapid characterization of TCM qianjinteng by UPLC-QTOF-MS and its application in the evaluation of three species of Stephania. J Pharm Biomed Anal 156:284–296

    CAS  PubMed  Google Scholar 

  • Xie DT (2014) A taxonomic study of the genus Stephania Lour. from China. Fudan University

  • Xing SG, Shi XC, Wu ZL (1989) Effect of tetrandrine on micronucleus formation and sister-chromatid exchange in both in vitro and in vivo assays. Mutat Res 224:5–10

    CAS  PubMed  Google Scholar 

  • Xing ZB, Wang FM, Wang CP et al (2014) Advance on study of chemical components and pharmacological effect of Stephania tetrandra. Chin J Exp Trad Med Form 20:241–246

    CAS  Google Scholar 

  • Xu J, Liu D, Yin Q et al (2016a) Tetrandrine suppresses β-glucan-induced macrophage activation via inhibiting NF-κB, ERK and STAT3 signaling pathways. Mol Med Rep 13:5177–5184

    CAS  PubMed  Google Scholar 

  • Xu XL, Yang LJ, Jiang JG et al (2016b) Renal toxic ingredients and their toxicology from traditional Chinese medicine. Expert Opin Drug Metab Toxicol 12(2):149–159

    CAS  PubMed  Google Scholar 

  • Xuan B, Liu F, Zhang MY et al (2009) Inhibitory effects of tetrandrine on intracellular free Ca2+ increase induced by glutamate, serotonin and histamine in dissociated retina cells. J Ocul Pharmacol Ther 12(3):331–336

    Google Scholar 

  • Xue Y, Wang Y, Feng DC et al (2008) Tetrandrine suppresses lipopolysaccharide-induced microglial activation by inhibiting NF-kappaB pathway. Acta Pharmacol Sin 29:245–251

    CAS  PubMed  Google Scholar 

  • Xv J, Zhou ZH (2015) Effect of tetrandrine on anti-lung fibrosis of patients with silicosis. J Clin Pulm Med 20:1658–1660

    Google Scholar 

  • Yang G, Zhang C, Hu P et al (2017) An UPLC-MS/MS method for quantifying tetrandrine and its metabolite berbamine in human blood: Application to a human pharmacokinetic study. J Chromatogr B Anal Technol Biomed Life Sci 1070:92–96

    CAS  Google Scholar 

  • Yang HY, Wang YH, Du GH (2018a) Tetrandrine, in natural small molecule drugs from Plants, (G.-H. Du, editor), p 161

  • Yang X, Gao X, Cao Y et al (2018b) Anti-inflammatory effects of boldine and reticuline isolated from Litsea cubeba through JAK2/STAT3 and NF-κB signaling pathways. Plant Med 84:20–25

    CAS  Google Scholar 

  • Yao M, Yuan B, Wang X et al (2017) Synergistic cytotoxic effects of arsenite and tetrandrine in human breast cancer cell line MCF-7. Int J Oncol 51:587–598

    CAS  PubMed  Google Scholar 

  • Yasuda K, Moro M, Akasu M et al (1989) Pharmacokinetic disposition of cepharanthin following single and multiple intravenous doses in healthy subjects. Jpn J Clin Pharmacol Ther 20:741–748

    Google Scholar 

  • Ye Z, Dyke KV (1989) Selective antimalarial activity of tetrandrine against chloroquine resistant Plasmodium falciparum. Biochem Biophys Res Commun 159(1):242–248

    CAS  PubMed  Google Scholar 

  • Ye Z, Dyke KV, Castranova V (1989) The potentiating action of tetrandrine in combination with chloroquine or qinghaosu against chloroquine sensitive and resistant falciparum malaria. Biochem Biophys Res Commun 165(2):758–765

    CAS  PubMed  Google Scholar 

  • Ye Z, Dyke KV, Rossan RN (2013) Effective treatment with a tetrandrine/ chloroquine combination for chloroquine-resistant falciparum malaria in Aotusmonkeys. Malar J 12:117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin S, Rao G, Wang J et al (2015) Roemerine improves the survival rate of septicemic BALB/c mice by increasing the cell membrane permeability of staphylococcus aureus. PLoS ONE 10:e0143863

    PubMed  PubMed Central  Google Scholar 

  • Yodkeeree S, Ooppachai C, Pompimon W et al (2018) O-methylbulbocapnine and dicentrine suppress LPS-induced inflammatory response by blocking NF-κB and AP-1 activation through inhibiting MAPKs and Akt signaling in RAW264.7 macrophages. Biol Pharm Bull 41(8):1219–1227

    CAS  PubMed  Google Scholar 

  • Young ML, Su MJ, Wu MH et al (1994) The electrophysiological effects of dicentrine on the conduction system of rabbit heart. Br J Pharmacol 113(1):69–76

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu VW, Ho WS (2013) Tetrandrine inhibits hepatocellular carcinoma cell growth through the caspase pathway and G2/M phase. Oncol Rep 29:2205–2210

    CAS  PubMed  Google Scholar 

  • Yu SM, Hsu SY, Ko FN et al (1992a) Haemodynamic effects of dicentrine, a novel alpha 1-adrenoceptor antagonist: comparison with prazosin in spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br J Pharmacol 106(4):797–801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu SM, Chen CC, Ko FN et al (1992b) Dicentrine, a novel antiplatelet agent inhibiting thromboxane formation and increasing the cyclicAMP level of rabbit platelets. Biochem Pharmacol 43:323–329

    CAS  PubMed  Google Scholar 

  • Yu SM, Kang YF, Chen CC et al (1993) Effects of dicentrine on haemodynamic, plasma lipid, lipoprotein level and vascular reactivity in hyperlipidaemic rats. Br J Pharmacol 108(4):1055–1061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu SM, Ko FN, Chueh SC et al (1994) Effects of dicentrine, a novel alpha 1-adrenoceptor antagonist, on human hyperplastic prostates. Eur J Pharmacol 252(1):29–34

    CAS  PubMed  Google Scholar 

  • Yu XC, Wu S, Wang GY et al (2001) Cardiac effects of the extract and active components of radix stephaniae tetrandrae. II. Myocardial infarct, arrhythmias, coronary arterial flow and heart rate in the isolated perfused rat heart. Life Sci 68:2863–2872

    CAS  PubMed  Google Scholar 

  • Yu XC, Wu S, Chen CF et al (2004) Antihypertensive and anti-arrhythmic effects of an extract of Radix Stephaniae Tetrandrae in the rat. J Pharm Pharmacol 56:115–122

    CAS  PubMed  Google Scholar 

  • Yu Y, Hu B, Bao J et al (2018) Otoprotective effects of stephania tetrandra S. Moore herb isolate against Acoustic Trauma. J Assoc Res Otolaryngol 19(6):653–668

    PubMed  PubMed Central  Google Scholar 

  • Yuan X, Tong B, Dou Y et al (2016) Tetrandrine ameliorates collagen-induced arthritis in mice by restoring the balance between Th17and Treg cells via the aryl hydrocarbon receptor. Biochem Pharmacol 101:87–99

    CAS  PubMed  Google Scholar 

  • Yun X, Dong S, Hu Q et al (2018) 1H NMR-based metabolomics approach to investigate the urine samples of collagen-inducedarthritis rats and the intervention of tetrandrine. J Pharm Biomed Anal 154:302–311

    CAS  PubMed  Google Scholar 

  • Zeng FD, Shaw DH, Ogilvie RI (1985) Kinetic disposition and hemodynamic effects of tetrandrine in anesthetized dogs. J Cardiovasc Pharmacol 7:1034–1039

    CAS  PubMed  Google Scholar 

  • Zhang YZ (2014) Clinical efficacy and safety evaluation of tetrandrine combined with methotrexate in the treatment of rheumatoid arthritis. Chin J Clin 42:55–56

    Google Scholar 

  • Zhang YH, Fang LH (2001) Antagonism of morphine-induced antinociception by tetrandrine is dependent on serotonergic mechanisms. Life Sci 69:1429–1439

    CAS  PubMed  Google Scholar 

  • Zhang X, Huang HJ, Liu YM et al (2001) Effects of tetrandrine on intracelluar free Ca2+ and lipid peroxidation of hippocampus in rat cerebral ischemic damage. J Tongji Med Univ 30:53–55

    Google Scholar 

  • Zhang CH, Wang YF, Liu XJ et al (2005) Antiviral activity of cepharanthine against severe acute respiratory syndrome coronavirus in vitro. Chin Med J 118:493–496

    CAS  PubMed  Google Scholar 

  • Zhang H, Gao A, Li F et al (2009a) Mechanism of action of tetrandrine, a natural inhibitor of Candida albicans drug efflux pumps. Yakugaku Zasshi 129:623–630

    CAS  PubMed  Google Scholar 

  • Zhang DK, Cheng LN, Huang XL et al (2009b) Tetrandrine ameliorates dextran-sulfate-sodium-induced colitis in mice through inhibition of nuclear factor -kappaB activation. Int J Colorectal Dis 24(1):5–12

    PubMed  Google Scholar 

  • Zhang H, Wang K, Zhang G et al (2010) Synergistic anti-candidal activity of tetrandrine on ketoconazole: an experimental study. Plant Med 76:53–61

    CAS  Google Scholar 

  • Zhang X, Guo H, Gao L et al (2013) Molecular mechanisms underlying the tetrandrine-mediated reversal of the fluconazole resistance of Candida albicans. Pharm Biol 51(6):749–752

    PubMed  Google Scholar 

  • Zhang J, Yu B, Zhang XQ et al (2014) Tetrandrine, an antihypertensive alkaloid, improves the sleep state of spontaneously hypertensive rats (SHRs). J Ethnopharmacol 151(1):729–732

    CAS  PubMed  Google Scholar 

  • Zhang Z, Yan J, Xu KJ et al (2015) Tetrandrine reverses drug resistance in isoniazid and ethambutol dual drug-resistant Mycobacterium tuberculosis clinical isolates. BMC Infect Dis 15:153

    PubMed  PubMed Central  Google Scholar 

  • Zhang MF, Ding XD, Fei ZW et al (2017a) Growth inhibition and apoptosis induction of tetrandrine in human thyroid cancer cells (B-CPAP). Mod Oncol 25:3410–3414

    Google Scholar 

  • Zhang Y, Wen YL, Ma JW et al (2017a) Tetrandrine inhibits glioma stem-like cells by repressing β-catenin expression. Int J Oncol 50:101–110

    PubMed  Google Scholar 

  • Zhang Z, Liu T, Yu M et al (2018a) The plant alkaloid tetrandrine inhibits metastasis via autophagy-dependent Wnt/β-catenin and metastatic tumor antigen 1 signaling in human liver cancer cells. J Exp Clin Cancer Res 37:7

    PubMed  PubMed Central  Google Scholar 

  • Zhang H, Xie B, Zhang Z et al (2018b) Tetrandrine suppresses cervical cancer growth by inducing apoptosis in vitro and in vivo. Drug Des Dev Ther 13:119–127

    Google Scholar 

  • Zhang H, Gao L, Shu M et al (2018c) Development of a highly sensitive and specific ELISA method for the determination of l-corydalmine in SD rats with monoclonal antibody. J Chromatogr B Anal Technol Biomed Life Sci 1073:163–169

    CAS  Google Scholar 

  • Zhang L, Cui MY, Ding LL et al (2018d) Tetrandrine combined with leflunomide in the treatment of rheumatoid arthritis. Prog Anat Sci 24:69–71

    Google Scholar 

  • Zhao TX (2018) Fang-Ji-Di-Huang decoction combined with methotrexate in the treatment of 40 cases of early active rheumatoid arthritis. Zhejiang J Trad Chin Med 53:444–445

    Google Scholar 

  • Zhao WH, Hu ZQ, Okubo S et al (2001) Mechanism of synergy between epigallocatechin gallate and beta-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 45(6):1737–1742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Cui XY, Chen BQ et al (2004) Tetrandrine, a bisbenzylisoquinoline alkaloid from Chinese herb Radix, augmented the hypnotic effect of pentobarbital through serotonergic system. Eur J Pharmacol 506(2):101–105

    CAS  PubMed  Google Scholar 

  • Zhao H, Luo F, Li H et al (2014) Antinociceptive effect of tetrandrine on LPS-induced hyperalgesia via the inhibition of IKKβ phosphorylation and the COX-2/PGE2 pathway in mice. PLoS ONE 10:e94586

    Google Scholar 

  • Zhao YJ, Liu WD, Shen YN et al (2019) The efflux pump inhibitor tetrandrine exhibits synergism with fluconazole or voriconazole against Candida parapsilosis. Mol Biol Rep 46(4):5867–5874

    CAS  PubMed  Google Scholar 

  • Zhou DX, Yang GT, He XX et al (2007) Effects of tetrandrine on Ang II-induced cardiomyocyte hypertrophy and p-ERK1/2 expression. China J Chin Mater Med 32:1921–1924

    CAS  Google Scholar 

  • Zhou YB, Wang YF, Zhang Y et al (2012) In vitro activity of cepharanthine hydrochloride against clinical wild-type and lamivudine-resistant hepatitis B virus isolates. Eur J Pharmacol 683(1–3):10–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou CH, Meng JH, Yang YT et al (2018) Cepharanthine prevents estrogen deficiency-induced bone loss by inhibiting bone resorption. Front Pharmacol 9:210

    PubMed  PubMed Central  Google Scholar 

  • Zhu ZY, Feng YX, He LY et al (1983) Studies on the utilization of medicinal plant resources of the genus Stephania (Menispermaceae) in China. Acta Pharm Sin 18:460–467

    CAS  Google Scholar 

  • Zhu R, Liu T, Tan Z et al (2014) Tetrandrine induces apoptosis in gallbladder carcinoma in vitro. Int J Clin Pharmacol ther 52:900–905

    CAS  PubMed  Google Scholar 

  • Zhu Q, Guo B, Chen L et al (2017) Cepharanthine exerts antitumor activity on choroidal melanoma by reactive oxygen species production and c-Jun N-terminal kinase activation. Oncol Lett 13:3760–3766

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research did not receive any funding from public, commercial or non-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

YJ retrieved the relevant literature and drafted the manuscript. SL originated the work, led the discussions, provided helpful comments and revised the manuscript. ML and HL provided helpful comments and revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Shao Liu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Liu, M., Liu, H. et al. A critical review: traditional uses, phytochemistry, pharmacology and toxicology of Stephania tetrandra S. Moore (Fen Fang Ji). Phytochem Rev 19, 449–489 (2020). https://doi.org/10.1007/s11101-020-09673-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-020-09673-w

Keywords