Skip to main content

Advertisement

Log in

Karanja (Milletia pinnata (L.) Panigrahi): a tropical tree with varied applications

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Milletia pinnata, popularly known as Karanja, is a perennial tropical tree indigenous to India, South-Eastern Asia, and Australia. This highly favored oilseed plant is used in agroforestry as well as for restoration of wastelands due to its moderate tolerance to drought and salinity. Karanja tree, though widely investigated as biofuel feedstock producer, possess wider commercializing values that can be exploited in agricultural and industrial sectors. The oil, leaves, and bark of the Karanja tree have remarkable medicinal properties. In contrast, oil cakes have broad pesticidal applications due to the presence of various bioactive constituents (e.g., karanjin and pongamol). Due to richness in proteins and fatty acids, oil cakes have also been utilized as feedstock for industrially relevant enzyme production and animal feed. In this paper, we have presented the recent and updated review of varied applications of Karanja biomass classified into medicinal, industrial, and agricultural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abhilash PC, Singh B, Srivastava P, Schaeffer A, Singh N (2013) Remediation of lindane by Jatropha curcas L: utilization of multipurpose species for rhizoremediation. Biomass Bioenergy 51:189–193

    CAS  Google Scholar 

  • Akhtar M, Malik A (2000) Roles of organic amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Biores Technol 74:35–47

    CAS  Google Scholar 

  • Arora K, Sharma S, Krishna SB, Adam JK, Kumar A (2017) Non-edible oil cakes as a novel substrate for DPA production and augmenting biocontrol activity of Paecilomyces variotii. Front Microbiol 8:753

    PubMed  PubMed Central  Google Scholar 

  • Arulvasu C, Supriya SV, Babu G (2012) Anticancer activity of Pongamia glabra V. seed oil extract against selected human cancer cell lines. Int Res J Pharm 3:131–134

    Google Scholar 

  • Badole SL, Bodhankar SL (2009) Investigation of antihyperglycaemic activity of aqueous and petroleum ether extract of stem bark of Pongamia pinnata on serum glucose level in diabetic mice. J Ethnopharmacol 123:115–120

    PubMed  Google Scholar 

  • Badole SL, Zanwar AA, Khopade AN, Bodhankar SL (2011) In vitro antioxidant and antimicrobial activity cycloart-23-ene-3β,-25-diol (B2) isolated from Pongamia pinnata (L. Pierre). Asian Pac J Trop Med 4(11):910–916

    CAS  PubMed  Google Scholar 

  • Badole SL, Chaudhari SM, Jangam GB, Kandhare AD, Bodhankar SL (2015) Cardioprotective activity of Pongamia pinnata in streptozotocin-nicotinamide induced diabetic rats. BioMed Res Int 2015:403291–403291

    PubMed  PubMed Central  Google Scholar 

  • Bala M, Nag TN, Kumar S, Vyas M, Kumar A, Bhogal NS (2011) Proximate composition and fatty acid profile of Pongamia pinnata, a potential biodiesel crop. J Am Oil Chem Soc 88:559–562

    CAS  Google Scholar 

  • Balaji V, Ebenezer P (2008) Optimization of extracellular lipase production in Colletotrichum gloeosporioides by solid state fermentation. Ind J Sci Technol 1:1–8

    Google Scholar 

  • Barik D, Murugan S (2015) Assessment of sustainable biogas production from de-oiled seed cake of karanja-an organic industrial waste from biodiesel industries. Fuel 148:25–31

    CAS  Google Scholar 

  • Belide S, Sajjalaguddam RR, Paladugu A (2010) Cytokinin preconditioning enhances multiple shoot regeneration in Pongamia pinnata (L.) Pierre-a potential, non-edible tree seed oil source for biodiesel. Electron J Biotechnol 13:3–4

    Google Scholar 

  • Biswas NP, Biswas AK (2006) Use of non-edible oils as grain protectant against rice weevil (Sitophilus oryzae L.) and their subsequent effect on germination. Adv Plant Sci 19:653–656

    Google Scholar 

  • Chandra R, Vijay VK, Subbarao PMV, Khura TK (2012) Production of methane from anaerobic digestion of jatropha and pongamia oil cakes. Appl Energy 93:148–159

    CAS  Google Scholar 

  • Chutia RS, Kataki R, Bhaskar T (2014) Characterization of liquid and solid product from pyrolysis of Pongamia glabra deoiled cake. Biores Technol 165:336–342

    CAS  Google Scholar 

  • De D, Aniya V, Satyavathi B (2019) Application of an agro-industrial waste for the removal of As (III) in a counter-current multiphase fluidized bed. Int J Environ Sci Technol 16:279–294

    CAS  Google Scholar 

  • Dhanavath KN, Shah K, Bhargava SK, Bankupalli S, Parthasarathy R (2018) Oxygen–steam gasification of karanja press seed cake: fixed bed experiments, ASPEN Plus process model development and benchmarking with saw dust, rice husk and sunflower husk. J Environ Chem Eng 6(2):3061–3069

    CAS  Google Scholar 

  • Divakara BN, Alur AS, Tripati S (2010) Genetic variability and relationship of pod and seed traits in Pongamia pinnata (L.) Pierre., a potential agroforestry tree. Int J Plant Prod 4:131–141

    Google Scholar 

  • Doshi P, Srivastava G (2013) Sustainable approach to produce bioethanol from Karanja (Pongamia pinnata) oilseed residue. Turk J Agric For 37:781–788

    CAS  Google Scholar 

  • Dwivedi G, Sharma MP (2014) Prospects of biodiesel from Pongamia in India. Renew Sustain Energy Rev 32:114–122

    CAS  Google Scholar 

  • Dwivedi G, Sharma MP (2016) Investigation of oxidation stability of Pongamia biodiesel and its blends with diesel. Egypt J Pet 25:15–20

    Google Scholar 

  • George S, Bhalerao SV, Lidstone EA, Ahmad IS, Abbasi A, Cunningham BT, Watkin KL (2010) Cytotoxicity screening of Bangladeshi medicinal plant extracts on pancreatic cancer cells. BMC Complement Altern Med 10(1):52

    PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Coloma A, Reina M, Diaz CE, Fraga BM, Santana-Meridas O (2013) Natural product-based biopesticides for insect control. In: Reedijk J (ed) Reference module in chemistry, molecular sciences and chemical engineering. Elsevier, Amsterdam

    Google Scholar 

  • Habib M, Ferdaus AJ, Islam MT, Hassin BM, Ali MS (2016) Performance of broiler fed on diet containing deoiled Koroch (Pongamia pinnata) seed cake treated with NaOH and HCl. Res Agric Livest Fis 3:323–329

    Google Scholar 

  • Hazra B, Sarkar R, Biswas S, Mandal N (2011a) Antioxidant and iron chelating potential of Pongamia pinnata and its role in preventing free radical induced oxidative damage in plasmid DNA. Int J Phytomed 3:240–253

    CAS  Google Scholar 

  • Hazra C, Kundu D, Ghosh P, Joshi S, Dandi N, Chaudhari A (2011b) Screening and identification of Pseudomonas aeruginosa AB4 for improved production, characterization and application of a glycolipid biosurfactant using low-cost agro-based raw materials. J Chem Technol Biotechnol 86:185–198

    CAS  Google Scholar 

  • International Diabetes Federation (IDF) Diabetes atlas-7th edition (2015) http://www.diabetesatlas.org/resources/2015-atlas

  • Joshi G, Rawat DS, Lamba BY, Bisht KK, Kumar P, Kumar N, Kumar S (2015) Transesterification of Jatropha and Karanja oils by using waste egg shell derived calcium based mixed metal oxides. Energy Convers Manag 96:258–267

    CAS  Google Scholar 

  • Joshi G, Rawat DS, Sharma AK, Pandey JK (2016) Microwave enhanced alcoholysis of non-edible (algal, jatropha and pongamia) oils using chemically activated egg shell derived CaO as heterogeneous catalyst. Biores Technol 219:487–492

    CAS  Google Scholar 

  • Kalra R, Kaushik N (2015) Prospecting of oil and deoiled cakes of Jatropha curcas L. and Pongamia pinnata L. for pesticidal activity. In: Abstracts of papers of the American Chemical Society (250) 1155 16TH ST, NW, Washington, DC 20036 USA: American Chemical Society

  • Kavitha MT, Chaithra U, Kavya M, Bharathi S, Yogesh J, Sekar V (2014) Antibacterial activity of Pongamia pinnata and Moringa oleifera Lam flower extracts against selected bacterial strains and their comparative evaluation. Int Res J Pharm 5(7):593–596

    Google Scholar 

  • Kumar D, Pant KK (2015) Production and characterization of biocrude and biochar obtained from non-edible de-oiled seed cakes hydrothermal conversion. J Anal Appl Pyrol 115:77–86

    CAS  Google Scholar 

  • Kumar RSAR, Rajeswari R, Selvakumar M (2016) Study of Pongamia pinnata flower and seed extracts for their antioxidant and antibacterial activity. Indo Am J Pharm Res 6:6618–6621

    Google Scholar 

  • Kumar D, Tripathi DK, Liu S, Singh VK, Sharma S, Dubey NK, Prasad SM, Chauhan DK (2017a) Pongamia pinnata (L.) Pierre tree seedlings offer a model species for arsenic phytoremediation. Plant Gene 11:238–246

    CAS  Google Scholar 

  • Kumar PN, Swapna TH, Khan MY, Reddy G, Hameeda B (2017b) Statistical optimization of antifungal iturin a production from Bacillus amyloliquefaciens RHNK22 using agro-industrial wastes. Saudi J Biol Sci 24(7):1722–1740

    Google Scholar 

  • Kumar D, Das T, Giri B, Verma B (2018) Characterization and compositional analysis of highly acidic Karanja oil and its potential feedstock for enzymatic synthesis of biodiesel. New J Chem 42:15593–15602

    CAS  Google Scholar 

  • Malaikozhundan B, Vinodhini J (2018) Nanopesticidal effects of Pongamia pinnata leaf extract coated zinc oxide nanoparticle against the Pulse beetle, Callosobruchus maculatus. Mater Today Commun 14:106–115

    CAS  Google Scholar 

  • Manikannan M, Balamurugan R, Varatharajan R, Dinesh S, Manickan E (2011) Nitric oxide induce IL-10, a CD4þ T Helper Type-2 (Th-2) cytokines in human PBMC. J Pharm Biomed Sci 7:1–6

    Google Scholar 

  • Manyà JJ (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol 46(15):7939–7954

    PubMed  Google Scholar 

  • Marriboina S, Sengupta D, Kumar S, Reddy AR (2017) Physiological and molecular insights into the high salinity tolerance of Pongamia pinnata (L.) pierre, a potential biofuel tree species. Plant Sci 258:102–111

    CAS  PubMed  Google Scholar 

  • Marshal JJS, Kumar TMN, Kennedy ZR, Sundari GK (2019) Air gasification of char drived from Pongamia de-oiled Cake in a fluidized bed reactor. Int J Mech Eng Technol 10:1571–1580

    Google Scholar 

  • Masilamani T, Subramaniam T, Nordin N, Rosli R (2017) Neuroprotective effects of Peltophorum pterocarpum leaf extract against hydrogen peroxide induced oxidative stress and cytotoxicity. Clin Phytosci 3(1):1–13

    Google Scholar 

  • Mofijur M, Rasul M, Hyder J, Azad AK, Mamat R, Bhuiya MMK (2016) Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction. Renew Sustain Energy Rev 53:265–278

    CAS  Google Scholar 

  • Mondal A, Walia S, Shrivastava C, Kumar B, Kumar J (2010) Synthesis and insecticidal activity of karanj ketone oxime and its ester derivatives against the mustard aphid (Lipaphis erysimi). Pestic Res J 22:39–43

    CAS  Google Scholar 

  • Muktham R, Ball AS, Bhargava SK, Bankupalli S (2016a) Bioethanol production from non-edible de-oiled Pongamia pinnata seed residue-optimization of acid hydrolysis followed by fermentation. Ind Crops Prod 94:490–497

    CAS  Google Scholar 

  • Muktham R, Ball AS, Bhargava SK, Bankupalli S (2016b) Study of thermal behavior of deoiled karanja seed cake biomass: thermogravimetric analysis and pyrolysis kinetics. Energy Sci Eng 4:86–95

    Google Scholar 

  • Muqarrabun LMR, Ahmat N, Ruzaina SAS, Ismail NH, Sahidin I (2013) Medicinal uses, phytochemistry and pharmacology of Pongamia pinnata (L.) Pierre: a review. J Ethnopharmacol 150:395–420

    PubMed  Google Scholar 

  • Nagaprashantha LD, Vatsyayan R, Singhal J, Fast S, Roby R, Awasthi S, Singhal SS (2011) Anti-cancer effects of novel flavonoid vicenin-2 as a single agent and in synergistic combination with docetaxel in prostate cancer. Biochem Pharmacol 82:1100–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  • National Centre for Disease Informatics and Research Centre National Cancer Registry Programme (2017) Indian Council of Medical Research 22

  • Nobre-Junior HV, Oliveira RA, Maia FD, Nogueira MA, de Moraes MO, Bandeira MAM, Andrade GM, Viana GS (2009) Neuroprotective effects of chalcones from Myracrodruon urundeuva on 6-hydroxydopamine-induced cytotoxicity in rat mesencephalic cells. Neurochem Res 34:1066–1075

    CAS  PubMed  Google Scholar 

  • Oguntibeju OO (2018) Medicinal plants with anti-inflammatory activities from selected countries and regions of Africa. J Inflamm Res 11:307–317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oka Y (2010) Mechanisms of nematode suppression by organic soil amendments: a review. Appl Soil Ecol 44:101–115

    Google Scholar 

  • Packiam SM, Anbalagan V, Ignacimuthu S, Vendan SE (2012) Formulation of a novel phytopesticide PONNEEM and its potentiality to control generalist herbivorous lepidopteran insect pests, Spodoptera litura (Fabricius) and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Asian Pac J Trop Dis 2:720–723

    Google Scholar 

  • Panda AK, Sastry VRB, Mandal AB, Saha SK, Kumar A (2007) Physico-chemical carcass characteristics and sensory attributes of meat of broiler chickens fed diets incorporated with processed karanja cake. Indian J Poult Sci 42:257–263

    Google Scholar 

  • Pandey VC, Bajpai O, Singh N (2016) Energy crops in sustainable phytoremediation. Renew Sustain Energy Rev 54:58–73

    Google Scholar 

  • Pant M, Dubey S, Patanjali PK, Naik SN, Sharma S (2014) Insecticidal activity of eucalyptus oil nanoemulsion with karanja and jatropha aqueous filtrates. Int Biodeterior Biodegrad 91:119–127

    CAS  Google Scholar 

  • Pant M, Sharma S, Dubey S, Naik SN, Patanjali PK (2016) Utilization of biodiesel by-products for mosquito control. J Biosci Bioeng 121:299–302

    CAS  PubMed  Google Scholar 

  • Patel RL, Sankhavara CD (2017) Biodiesel production from Karanja oil and its use in diesel engine: a review. Renew Sustain Eng Rev 71:464–474

    CAS  Google Scholar 

  • Patel PP, Trivedi ND (2017) Effect of karanjin on 2, 4, 6-trinitrobenzenesulfonic acid-induced colitis in Balb/c mice. Indian J Pharm 49:161–167

    CAS  Google Scholar 

  • Patil P, Prasad K, Nitin M, Sreenivasa RK (2010) Anti-ulcer and anti-secretory properties of the Pongamia Pinnata root extract with relation to anti-oxidant studies. Res J Pharm Biol Chem Sci 1:235–244

    Google Scholar 

  • Paulraj MG, Ignacimuthu S, Gandhi MR, Shajahan A, Ganesan P, Packiam SM, Al-Dhabi NA (2017) Comparative studies of tripolyphosphate and glutaraldehyde cross-linked chitosan-botanical pesticide nanoparticles and their agricultural applications. Int J Biol Macromol 104:1813–1819

    CAS  Google Scholar 

  • Pavela R, Herda G (2007a) Effect of pongam oil on adults of the greenhouse whitefly Trialeurodes vaporariorum (Homoptera: Trialeurodidae). Entomol Gen 30:193–201

    Google Scholar 

  • Pavela R, Herda G (2007b) Repellent effects of pongam oil on settlement and oviposition of the common greenhouse whitefly Trialeurodes vaporariorum on chrysanthemum. Insect Sci 14:219–224

    Google Scholar 

  • Pavithra HR, Shivanna MB, Chandrika K, Prasanna KT, Gowda B (2010) Seed protein profiling of Pongamia pinnata (L.) Pierre for investigating inter and intra-specific population genetic diversity. Int J Sci Nat 2:246–252

    Google Scholar 

  • Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Ind J Clinic Biochem 30:11–26

    CAS  Google Scholar 

  • Prasad L, Subbarao PMV, Subrahmanyam JP (2014) Pyrolysis and gasification characteristics of Pongamia residue (de-oiled cake) using thermogravimetry and downdraft gasifier. Appl Therm Eng 63:379–386

    CAS  Google Scholar 

  • Prasad L, Subbarao PMV, Subrahmanyam JP (2015) Experimental investigation on gasification characteristic of high lignin biomass (Pongamia shells). Renew Energy 80:415–423

    CAS  Google Scholar 

  • Priya RS, Geetha D, Ramesh PS (2016) Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs: a comparative study. Ecotoxicol Environ Saf 134:308–318

    CAS  PubMed  Google Scholar 

  • Punitha R, Manoharan S (2006) Antihyperglycemic and antilipidperoxidative effects of Pongamia pinnata (Linn.) Pierre flowers in alloxan induced diabetic rats. J Ethnopharm 105:39–46

    CAS  Google Scholar 

  • Radhakumari M, Taha M, Shahsavari E, Bhargava SK, Satyavathi B, Ball AS (2017) Pongamia pinnata seed residue: a low cost inedible resource for on-site/in-house lignocellulases and sustainable ethanol production. Renew Energy 103:682–687

    CAS  Google Scholar 

  • Raghav D, Mahanty S, Rathinasamy K (2019) Biochemical and toxicological investigation of karanjin, a bio-pesticide isolated from Pongamia seed oil. Pesticide Biochem Physiol 157:108–121

    CAS  Google Scholar 

  • Raj DN, Ramana JV, Rao SBN, Kumar DD, Suryanarayana MVA, ReddyYR Prasad KS (2016) Effect of incorporation of detoxified karanja (Pongamia pinnata) and neem (Azadirachta indica) seed cakes in total mixed rations on milk yield, composition and efficiency in crossbred dairy cows. Indian J Anim Sci 86:489–492

    CAS  Google Scholar 

  • Rangabhashiyam S, Sayantani S, Balasubramanian P (2019) Assessment of hexavalent chromium biosorption using biodiesel extracted seeds of Jatropha sp., Ricinus sp. and Pongamia sp. Int J Env Sci Technol 16:5707–5724

    CAS  Google Scholar 

  • Rao SBN, Kumar DD (2015) Effect of substitution of soybean meal by detoxified karanja cake on diet digestibility, growth, carcass and meat traits of sheep. Small Ruminant Res 126:26–33

    Google Scholar 

  • Rao RR, Tiwari AK, Reddy PP, Babu KS, Ali AZ, Madhusudana K, Rao JM (2009) New furanoflavanoids, intestinal a-glucosidase inhibitory and free-radical (DPPH) scavenging, activity from antihyperglycemic root extract of Derris indica (Lam.). Bioorg Med Chem 17:5170–5175

    Google Scholar 

  • Rasool U, Hemalatha S (2016) A review on bioenergy and biofuels: sources and their production. Braz J Biol Sci 3(5):3–22

    Google Scholar 

  • Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Technol Biotech 56:174

    CAS  Google Scholar 

  • Sahayaraj K, Madasamy M, Anbu Radhika S (2016) Insecticidal activity of bio-silver and gold nanoparticles against Pericallia ricini Fab. (Lepidaptera: Archidae). J Biopestic 9:63–72

    CAS  Google Scholar 

  • Saini P, Lakshmayya L, Bisht VS (2017) Anti-Alzheimer activity of isolated karanjin from Pongamia pinnata (L.) pierre and embelin from Embelia ribes. Burm F Ayu 38:76–81

    PubMed  Google Scholar 

  • Sajid ZI, Anwar F, Shabir G, Rasul G, Alkharfy KM, Gilani AH (2012) Antioxidant, antimicrobial properties and phenolics of different solvent extracts from bark, leaves and seeds of Pongamia pinnata (L.) Pierre. Molecules 17:3917–3932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sangeetha R, Geetha A, Arulpandi I (2011) Pongamia pinnata seed cake: a promising and inexpensive substrate for production of protease and lipase from Bacillus pumilus SG2 on solid-state fermentation. Ind J Biochem Biophys 48:435–439

    CAS  Google Scholar 

  • Sangwan S, Rao DV, Sharma RA (2010) A review on Pongamia pinnata (L.) Pierre: a great versatile leguminous plant. Nat Sci 8(11):130–139

    Google Scholar 

  • Satish PVV, Sunita K (2017) Antimalarial efficacy of Pongamia pinnata (L) Pierre against Plasmodium falciparum (3D7 strain) and Plasmodium berghei (ANKA). BMC Complement Altern Med 17:458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Joshi A, Sharma AK, Dwivedi KN (2013a) Phytochemical and pharmacogostical studty of Karnaja (Pongamia pinnata Linn.) Seed. Int J Pharm Res Sci 2:323–332

    Google Scholar 

  • Sharma S, Verma M, Sharma A (2013b) Utilization of non edible oil seed cakes as substrate for growth of Paecilomyces lilacinus and as biopesticide against termites. Waste Biomass Valoris 4(2):325–330

    CAS  Google Scholar 

  • Sharma A, Sharma S, Mittal A, Naik SN (2014a) Statistical optimization of growth media for Paecilomyces lilacinus 6029 using non-edible oil cakes. Ann Microbiol 64(2):515–520

    CAS  Google Scholar 

  • Sharma A, Sharma S, Yadav S, Naik SN (2014b) Role of Karanja deoiled cake based medium in production of protease and fatty acids by Paecilomyces lilacinus 6029. J Biosci Bioeng 118(3):270–271

    CAS  PubMed  Google Scholar 

  • Sharmada N, Punja A, Shetty SS, Shet VB, Goveas LC, Rao CV (2016) Optimization of pre-treatment of de-oiled oil seed cake for release of reducing sugars by response surface methodology. Bioethanol 2(1):94–102

    Google Scholar 

  • Sikarwar MS, Patil MB (2010) Antidiabetic activity of Pongamia pinnata leaf extracts in alloxan-induced diabetic rats. Int J Ayurveda Res 1:199–204

    PubMed  PubMed Central  Google Scholar 

  • Singh R (2007) Insecticidal potential of Pongamia pinnata seed fractions of methanol extract against Earias vitella (Lepidoptera: Noctuidae). Entomol Gen 30:51–62

    Google Scholar 

  • Singh R, Kumar A, Tomer A (2015) De-oiled cakes of Neem, Jatropha, Mahua and Karanja: a new substrate for mass multiplication of T. harzianum. J Plant Pathol Microb 6(288):2

    Google Scholar 

  • Sivaramakrishnan S, Gangadharan D (2009) Edible oil cakes.In: Singh-Nee Nigam P, Pandey A (eds) Biotechnology for agro-industrial residues utilisation. Springer, Dordrecht, pp 253–271

    Google Scholar 

  • Song XD, Xue XY, Chen DZ, He PJ, Dai XH (2014) Application of biochar from sewage sludge to plant cultivation: influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Chemosphere 109:213–220

    CAS  PubMed  Google Scholar 

  • Soongprasit K, Sricharoenchaikul V, Atong D (2017) Catalytic fast pyrolysis of Millettia (Pongamia) pinnata waste using zeolite Y. J Anal App Pyrolysis 124:696–703

    CAS  Google Scholar 

  • Soren NM, Sastry VRB (2009) Replacement of soybean meal with processed karanj (Pongamia glabra) cake on the balances of karanjin and nutrients, as well as microbial protein synthesis in growing lamb. Anim Feed Sci Technol 149:16–29

    CAS  Google Scholar 

  • Soren NM, Sharma AK, Sastry R (2017) Biochemical and histopathological changes in sheep fed different detoxified karanj (Pongamia glabra) seed cake as partial protein supplements. Anim Nutri 3(2):164–170

    Google Scholar 

  • Swamy HMV, Patel NL, Gadad PC, Koti BC, Patel UM, Thippeswamy AHM, Manjula DV (2013) Neuroprotective activity of Pongamia pinnata in monosodium glutamate-induced neurotoxicity in rats. Indian J Pharm Sci 75(6):657–663

    PubMed  PubMed Central  Google Scholar 

  • Takase M, Zhao T, Zhang M, Chen Y, Liu H, Yang L, Wu X (2015) An expatriate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties. Renew Sustain Energy Rev 43:495–520

    CAS  Google Scholar 

  • Tamrakar AK, Yadav PP, Tiwari P, Maurya R, Srivastava AK (2008) Identification of pongamol and karanjin as lead compounds with antihyperglycemic activity from Pongamia pinnata fruits. J Ethnopharmacol 118(3):435–439

    CAS  PubMed  Google Scholar 

  • Tripathi V, Edrisi SA, Abhilash PC (2016) Towards the coupling of phytoremediation with bioenergy production. Renew Sustain Energy Rev 57:1386–1389

    CAS  Google Scholar 

  • Vadivel V, Biesalski HK (2011) Contribution of phenolic compounds to antioxidant potential and type II diabetes related enzyme inhibition properties of Pongamia pinnata L. Pierre seeds. Process Biochem 46:1973–1980

    CAS  Google Scholar 

  • Verma M, Pradhan S, Sharma S, Naik SN, Prasad R (2011) Efficacy of karanjin and phorbol ester fraction against termites (Odontotermes obesus). Int Biodeterior Biodegrad 65:877–882

    CAS  Google Scholar 

  • Vinay BJ, Kanya TS (2008) Effect of detoxification on the functional and nutritional quality of proteins of karanja seed meal. Food Chem 106:77–84

    CAS  Google Scholar 

  • Vinodhini J, Malaikozhundan B (2011) Efficacy of neem and pungam based botanical pesticides on sucking pests of cotton. Indian J Agric Res 45:341–345

    Google Scholar 

  • Vismaya, Belagihally SM, Rajashekhar S, Jayaram VB, Dharmesh SM, Thirumakudalu SKC (2011) Gastroprotective properties of karanjin from karanja (Pongamia pinnata) seeds; Role as antioxidant and H+, K+-ATPase inhibitor. Evid Based Complement Alternat Med 2011:1–10

    Google Scholar 

  • Walia S, Saha S, Tripathi V, Sharma KK (2017) Phytochemical biopesticides: some recent developments. Phytochem Rev 16(5):989–1007

    CAS  Google Scholar 

  • Wen R, Lv HN, Jiang Y, Tu PF (2018) Anti-inflammatory flavone and chalcone derivatives from the roots of Pongamia pinnata (L.) Pierre. Phytochemistry 149:56–63

    CAS  PubMed  Google Scholar 

  • Yadav RD, Jain SK, Alok S, Prajapati SK, Verma A (2011) Pongamia pinnata: an overview. Int J Pharm Sci Res 2(3):494

    Google Scholar 

  • Yu X, Li Y, Li Y, Xu C, Cui Y, Xiang Q, Gu Y, Zhao K, Zhang X, Penttinen P, Chen Q (2017) Pongamia pinnata inoculated with Bradyrhizobium liaoningense PZHK1 shows potential for phytoremediation of mine tailings. Appl Microbiol Biotech 101(4):1739–1751

    CAS  Google Scholar 

  • Zhu L, Lei H, Zhang Y, Zhang X, Bu Q, Wei Y (2018) A review of biochar derived from pyrolysis and its application in biofuel production. SF J Mater Chem Eng 1:1007

    Google Scholar 

Download references

Acknowledgements

The corresponding author greatly acknowledges the Department of Biotechnology (DBT), Government of India, for financial support (Grant No. BT/PR17530/NDB/39/552/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nutan Kaushik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Kaushik, N. & Rathore, H. Karanja (Milletia pinnata (L.) Panigrahi): a tropical tree with varied applications. Phytochem Rev 19, 643–658 (2020). https://doi.org/10.1007/s11101-020-09670-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-020-09670-z

Keywords

Navigation