Skip to main content
Log in

Plant secondary metabolites against arthropods of medical importance

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Natural compounds of botanical origin are increasingly being investigated for the development of novel biocides. Intensive use of synthetic biocides and the confined array of chemical classes in use has led to the buildup of unwanted residues and to parasites’ adaptive responses and resistance. Meanwhile, the geographic and host ranges of arthropod vectors and vector-borne diseases are broadening. In an effort to develop “friendly” biocidal compounds for the environment and human health, plant secondary metabolites originating in a number of botanical families could be engaged. This mini-review compiles the recently available knowledge on plant secondary metabolites exhibiting biocidal properties and provides a brief overview on their activity against arthropods with a focus on toxic and repellent properties. The selected examples show that it is valuable to consider plants as a promising source for new products development to support the fight against arthropods related to human health. Finally, we outline the biocides regulatory framework in the European Union (EU) and pinpoint some issues of concern regarding the development of low risk biocides.

Graphic abstract

Plant secondary metabolites acting against arthropods of medical importance

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Addesso KM, Oliver JB, O’Neal PA, Youssef N (2017) Efficacy of nootka oil as a biopesticide for management of imported fire ants (Hymenoptera: Formicidae). J Econ Entomol 110:1547–1555

    Article  CAS  PubMed  Google Scholar 

  • Adenubi OT, Ahmed AS, Fasina FO, McGaw LJ, Eloff JN, Naidoo V (2018) Pesticidal plants as a possible alternative to synthetic acaricides in tick control: a systematic review and meta-analysis. Ind Crops Prod 123:779–806

    Article  CAS  Google Scholar 

  • Ali A, Cantrell CL, Khan IA (2017) A new in vitro bioassay system for the discovery and quantitative evaluation of mosquito repellents. J Med Entomol 54:1328–1336

    Article  CAS  PubMed  Google Scholar 

  • Alvarez Montes de Oca DM, de la Fuente JL, Montes Villarrubia, de Oca OL, de San Menéndez, Pedro JC, Losada EO (1996) The biological activity of Ricinus communis on the housefly (Musca domestica). Rev Cubana Med Trop 48:192–194

    CAS  PubMed  Google Scholar 

  • Balabanidou V, Kampouraki A, Maclean M, Blomquist GJ, Tittiger C, Juárez MP, Mijailovsky SJ, Chalepakis G, Anthousi A, Lynd A, Antoine S, Hemingway J, Ranson H, Lycett GJ, Vontas J (2016) Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc Natl Acad Sci USA 113:9268–9273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldacchino F, Tramut C, Salem A, Liénard E, Delétré E, Franc M, Martin T, Duvallet G, Jay-Robert P (2013) The repellency of lemongrass oil against stable flies, tested using video tracking. Parasite 20:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker N, Petrić D, Zgomba M, Boase C, Madon M, Dahl C, Kaiser A (2010) Mosquitoes and their control. Springer, Heidelberg

    Book  Google Scholar 

  • Bell William J, Adiyodi KG (1981) American Cockroach. Springer. p. 4. ISBN 978-0-412-16140-7

  • Benelli G (2015) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805

    Article  PubMed  Google Scholar 

  • Benelli G, Pavela R (2018) Beyond mosquitoes-Essential oil toxicity and repellency against bloodsucking insects. Ind Crops Prod 117:382–392

    Article  CAS  Google Scholar 

  • Benelli G, Pavela R, Canale A, Mehlhorn H (2016) Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases? Parasitol Res 115:2545–2560

    Article  PubMed  Google Scholar 

  • Benelli G, Pavela R, Petrelli R, Cappellacci L, Canale A, Senthil-Nathan S, Maggi F (2018a) Not just popular spices! Essential oils from Cuminum cyminum and Pimpinella anisum are toxic to insect pests and vectors without affecting non-target invertebrates. Ind Crop Prod 124:236–243

    Article  CAS  Google Scholar 

  • Benelli G, Pavela R, Petrelli R, Cappellacci L, Santini G, Fiorini D, Sut S, Dall’Acqua S, Canale A, Maggi F (2018b) The essential oil from industrial hemp (Cannabis sativa L.) by-products as an effective tool for insect pest management in organic crops. Ind Crop Prod 122:308–315

    Article  CAS  Google Scholar 

  • Bernton HS, Brown H (1964) Insect Allergy Preliminary Studies of the Cockroach. J Allergy 35:506–513

    Article  CAS  PubMed  Google Scholar 

  • Bisseleua HBD, Gbewonyo SWK, Obeng-Ofori D (2008) Toxicity, growth regulatory and repellent activities of medicinal plant extracts on Musca domestica L. (Diptera: Muscidea). Afr J Biotechnol 7:4635–4642

    CAS  Google Scholar 

  • Brack W, Klamer HJC, de Ada ML, Barcelo D (2007) Effect-directed analysis of key toxicants in European river basins—a review. Environ Sci Pollut Control Ser 14:30–38

    CAS  Google Scholar 

  • Bukhari T, Takken W, Githeko AK, Koenraadt CJM (2011) Efficacy of Aquatain, a monomolecular film, for the control of malaria vectors in rice paddies. PLoS ONE 6:e21713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capinera JL, Sanchez-Arroyo H (2017) House fly, Musca domestica Linnaeus (Insecta: Diptera: Muscidae). EENY-048, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. Original publication date August 1998. Revised June 2014 and April 2017

  • Chellappandian M, Vasantha-Srinivasan P, Senthil-Nathan S, Karthi S, Thanigaivel A, Ponsankar A, Kalaivani K, Hunter WB (2018) Botanical essential oils and uses as mosquitocides and repellents against dengue. Environ Int 113:214–230

    Article  CAS  PubMed  Google Scholar 

  • Chen J (2009) Repellency of an over-the-counter essential oil product in China against workers of red imported fire ants. J Agric Food Chem 57:618–622

    Article  CAS  PubMed  Google Scholar 

  • Coles TB, Dryden MW (2014) Insecticide/acaricide resistance in fleas and ticks infesting dogs and cats. Parasit Vectors 7:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David JP, Rey D, Pautou MP, Meyran JC (2000) Differential toxicity of leaf litter to dipteran larvae of mosquito developmental sites. J Invertebr Pathol 75:9–18

    Article  CAS  PubMed  Google Scholar 

  • De Batista LCSO, Cid YP, De Almeida AP, Prudêncio ER, Riger CJ, De Souza MAA, Coumendouros K, Chaves DSA (2016) In vitro efficacy of essential oils and extracts of Schinus molle L. against Ctenocephalides felis felis. Parasitology 143:627–638

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira PR, Anholeto LA, Rodrigues RAF, Bechara GH, de Carvalho Castro KN, Camargo Mathias MI (2018) The potential of Acmella oleracea (Jambu) extract in the control of semi-engorged Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) female ticks. Int J Acarol 44:192–197

    Article  Google Scholar 

  • Dinesh DS, Kumari S, Kumar V, Das P (2014) The potentiality of botanicals and their products as an alternative to chemical insecticides to sandflies (Diptera: psychodidae): a review. J Vector Borne Dis 51:1–7

    CAS  PubMed  Google Scholar 

  • El Zayyat EA, Soliman MI, Elleboudy NA, Ofaa SE (2015) Musca domestica laboratory susceptibility to three ethnobotanical culinary plants. Environ Sci Pollut R 22:15844–15852

    Article  CAS  Google Scholar 

  • Elgderi RM, Ghenghesh KS, Berbash N (2006) Carriage by the German cockroach (Blattella germanica) of multiple-antibiotic-resistant bacteria that are potentially pathogenic to humans, in hospitals and households in Tripoli, Libya. Ann Trop Med Parasitol 100:55–62

    Article  CAS  PubMed  Google Scholar 

  • Eller FJ, Meer RKV, Behle RW, Flor-Weiler LB, Palmquist DE (2014) Bioactivity of cedarwood oil and cedrol against arthropod pests. Environ Entomol 43:762–766

    Article  CAS  PubMed  Google Scholar 

  • Enan E (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol C: Toxicol Pharmacol 130:325–337

    CAS  Google Scholar 

  • Evergetis E, Michaelakis A, Papachristos DP, Badieritakis E, Kapsaski-Kanelli VN, Haroutounian SA (2016) Seasonal variation and bioactivity of the essential oils of two Juniperus species against Aedes (Stegomyia) albopictus (Skuse, 1894). Parasitol Res 115:2175–2183

    Article  CAS  PubMed  Google Scholar 

  • Fallatah SA, Khater EI (2010) Potential of medicinal plants in mosquito control. J Egypt Soc Parasitol 40:1–26

    PubMed  Google Scholar 

  • Fischer A, Ayasse M, Andrade MCB (2018) Natural compounds as spider repellents: fact or myth? J Econ Entomol 111:314–318

    Article  PubMed  Google Scholar 

  • Fu JT, Tang L, Li WS, Wang K, Cheng DM, Zhang ZX (2015) Fumigant toxicity and repellence activity of camphor essential oil from Cinnamonum camphora siebold against Solenopsis invicta workers (Hymenoptera: Formicidae). J Insect Sci 15:129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George DR, Finn RD, Graham KM, Sparagano OAE (2014) Present and future potential of plant-derived products to control arthropods of veterinary and medical significance. Parasites Vectors 710

  • Ghavami MB, Poorrastgoo F, Taghiloo B, Mohammadi J (2017) Repellency effect of essential oils of some native plants and synthetic repellents against human flea, Pulex irritans (Siphonaptera: Pulicidae). J Arthropod-Borne Di 11:105–115

    Google Scholar 

  • Ghayempour S, Montazer M (2016) Micro/nanoencapsulation of essential oils and fragrances: focus on perfumed, antimicrobial, mosquito-repellent and medical textiles. J Microencaps 33:497–510

    Article  CAS  Google Scholar 

  • Giatropoulos A, Papachristos DP, Kimbaris A, Koliopoulos G, Polissiou MG, Emmanouel N, Michaelakis A (2012) Evaluation of bioefficacy of three Citrus essential oils against the dengue vector Aedes albopictus (Diptera: Culicidae) in correlation to their components enantiomeric distribution. Parasitol Res 111:2253–2263

    Article  PubMed  Google Scholar 

  • Giatropoulos A, Pitarokili D, Papaioannou F, Papachristos DP, Koliopoulos G, Emmanouel N, Tzakou O, Michaelakis A (2013) Essential oil composition, adult repellency and larvicidal activity of eight Cupressaceae species from Greece against Aedes albopictus (Diptera: Culicidae). Parasitol Res 112:1113–1123

    Article  PubMed  Google Scholar 

  • Giatropoulos A, Kimbaris A, Michaelakis Α, Papachristos DP, Polissiou MG, Emmanouel N (2018) Chemical composition and assessment of larvicidal and repellent capacity of 14 Lamiaceae essential oils against Aedes albopictus. Parasitol Res 117:1953–1964

    Article  PubMed  Google Scholar 

  • Goode P, Ellse L, Wall R (2018) Preventing tick attachment to dogs using essential oils. Ticks Tick-borne Dis 9:921–926

    Article  PubMed  Google Scholar 

  • Hailesillassie T, Bisrat D, Asres K (2018) Larvicidal effect of the leaf latex of Aloe yavellana Reynolds and its major compounds against Amblyomma variegatum (Ixodidae). Vet Parasitol 263:23–26

    Article  CAS  PubMed  Google Scholar 

  • Haselton AT, Acevedo A, Kuruvilla J, Werner E, Kiernan J, Dhar P (2015) Repellency of α-pinene against the house fly, Musca domestica. Phytochemistry 117:469–475

    Article  CAS  PubMed  Google Scholar 

  • Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Ann Rev Entomol 45:371–391

    Article  CAS  Google Scholar 

  • Hemingway J, Field L, Vontas J (2002) An overview of insecticide resistance. Science 298:96–97

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Zhang N, Chen H, Zhong B, Yang A, Kuang F, Ouyang Z, Chun J (2017) Fumigant activity of sweet orange essential oil fractions against red imported fire ants (Hymenoptera: Formicidae). J Econ Entomol 110:1556–1562

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Zhang Z, Li Y, Li Y, Xu H (2010) Anti-insect activity of the Methanol extracts of fern and gymnosperm. Agric Sci China 9:249–256

    Article  Google Scholar 

  • Insecticide Resistance Action Committee (IRAC) Database. http://www.irac-online.org. Accessed 12 April 2019

  • Isman M (2000) Plant essential oils for pest and disease management. Crop Prot 19:603–608

    Article  CAS  Google Scholar 

  • Isman M (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  CAS  PubMed  Google Scholar 

  • Isman MB, Miresmailli S, Machial C (2011) Commercial opportunities for pesticides based on essential oils in agriculture, industry and consumer products. Phytochem Rev 10:197–204

    Article  CAS  Google Scholar 

  • Issakul K, Kongtrakoon W, Dheeranupatana S, Jangsutthivorawat S, Jatisatienr A (2004) Insecticidal effectiveness of compounds from Mammea siamensis Kost. Against Musca domestica Linn. Acta Hortic 629:103–107

    Article  CAS  Google Scholar 

  • Jankowska M, Rogalska J, Wyszkowska J, Stankiewicz M (2017) Molecular targets for components of essential oils. Molecules. https://doi.org/10.3390/molecules23010034

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia M, He Q, Wang W, Dai J, Zhu L (2018) Chemical composition and acaricidal activity of Arisaema anurans essential oil and its major constituents against Rhipicephalus microplus (Acari: Ixodidae). Vet Parasitol 261:59–66

    Article  CAS  PubMed  Google Scholar 

  • Kapsaski-Kanelli VN, Evergetis E, Michaelakis A, Papachristos DP, Myrtsi ED, Koulocheri SD, Haroutounian SA (2017) “gold” pressed essential oil: an essay on the volatile fragment from citrus juice industry by-products chemistry and bioactivity. BioMed Res Intern Article number 2761461

  • Karchesy JJ, Kelsey RG, González-Hernández MP (2018) Yellow-cedar Callitropsis (Chamaecyparis) nootkatensis, secondary metabolites, biological activities, and chemical ecology. J Chem Ecol 44:510–524

    Article  CAS  PubMed  Google Scholar 

  • Karmegam N, Sakthivadivel M, Anuradha V, Thilagavathy D (1997) Indigenous-plant extracts as larvicidal agents against Culex quinquefasciatus Say. Bioresour Technol 59:137–140

    Article  CAS  Google Scholar 

  • Karunamoorthi K, Sabesan S (2013) Insecticide resistance in insect vectors of disease with special reference to mosquitoes: a potential threat to global public health. J Health Sco 2:4–18

    Article  Google Scholar 

  • Kedia A, Prakash B, Mishra PK, Singh P, Dubey NK (2015) Botanicals as ecofriendly biorational alternatives of synthetic pesticides against Callosobruchus spp. (Coleoptera: bruchidae)—a review. J Food Sci Technol Mysore 52:1239–1257

    Article  CAS  Google Scholar 

  • Khan I, Qamar A, Mehdi SH, Shahid M (2011) Histopathological effects of Datura alba leaf extract on the midgut of Periplaneta americana. J Biol Med 3:260–264

    Google Scholar 

  • Khan HAA, Akram W, Shad SA (2013) Resistance to conventional insecticides in Pakistani populations of Musca domestica L. (Diptera: Muscidae): a potential ectoparasite of dairy animals. Ecotoxicology 22:522–527

    Article  CAS  PubMed  Google Scholar 

  • Khanna S, Chakraborty JN (2018) Mosquito repellent activity of cotton functionalized with inclusion complexes of β-cyclodextrin citrate and essential oils. J Fash Textiles 5:9

    Article  Google Scholar 

  • Khatter NA (2012) Morphogenetic abnormalities of Musca domestica vicina induced by glycosidic groups from Calotropis procera plant. Life Sci J 9:781–788

    Google Scholar 

  • Koliopoulos G, Pitarokili D, Kioulos E, Michaelakis A, Tzakou O (2010) Chemical composition and larvicidal evaluation of Mentha, Salvia and Melissa essential oils against the West Nile virus mosquito Culex pipiens. Parasitol Res 107:327–335

    Article  PubMed  Google Scholar 

  • Kostyukovsky M, Rafaeli A, Gileadi C, Demchenko N, Shaaya E (2002) Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag Sci 58:1101–1106

    Article  CAS  PubMed  Google Scholar 

  • Kuo PM, Chu FH, Chang ST, Hsiao WF, Wang SY (2007) Insecticidal activity of essential oil from Chamaecyparis formosensis Matsum. Holzforschung 61:595–599

    Article  CAS  Google Scholar 

  • Kutrup B (2003) Cockroach infestation in some hospitals in Trabzon, Turkey. Turk J Zool 27:73–77

    Google Scholar 

  • Lachance S, Shiell J, Guerin MT, Scott-Dupree C (2017) Effectiveness of naturally occurring substances added to duck litter in reducing emergence and landing of adult Musca domestica (Diptera: Muscidae). J Econ Entomol 110:288–297

    CAS  PubMed  Google Scholar 

  • Lee S-H, Do H-S, Min K-J (2015) Effects of essential oil from Hinoki cypress, Chamaecyparis obtusa, on physiology and behavior of flies. PLoS ONE. 10, Article number e0143450

  • Leyva M, Tacoronte JE, Marquetti MDC (2007) Chemical composition and lethal effect of essential oil from Pimenta racemosa (Myrtales: Myrtaceae) on Blattella germanica (Dictyoptera: Blattellidae). Rev Cubana Med Trop 59:154–158

    PubMed  Google Scholar 

  • Lima de Souza JR, Remedio RN, Arnosti A, de Abreu RMM, Camargo-Mathias MI (2017) The effects of neem oil (Azadirachta indica A. JUSS) enriched with different concentrations of azadirachtin on the integument of semi-engorged Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) females. Microsc Res Techniq 80:838–844

    Article  CAS  Google Scholar 

  • Lima de Souza JR, Oliveira PRD, Anholeto LA, Arnosti A, Daemon E, Remedio RN, Camargo-Mathias MI (2019) Effects of carvacrol on oocyte development in semi-engorged Rhipicephalus sanguineus sensu lato females ticks (Acari: Ixodidae). Micron 116:66–72

    Article  CAS  PubMed  Google Scholar 

  • Llana-Ruiz-Cabello M, Pichardo S, Maisanaba S, Puerto M, Prieto AI, Gutiérrez-Praena D, Jos A, Cameán AM (2015) In vitro toxicological evaluation of essential oils and their main compounds used in active food packaging: a review. Food Chem Toxicol 81:9–27

    Article  CAS  PubMed  Google Scholar 

  • Mansour SA, Mohamed RI (2012) Biochemical and toxicological studies on the adults of Musca domestica L. Using conventional insecticides and botanical extracts. Biopest Inter 8:1–17

    Google Scholar 

  • Mansour SA, Mohamed RI (2013) Insecticidal properties and chemical composition of Conyza aegyptiaca (L.) oil: studies on two dipterous insect pests. Open Tox J 5:1–7

    Article  CAS  Google Scholar 

  • Mansour SA, Bakr RFA, Mohamed RI, Hasaneen NM (2011) Larvicidal activity of some botanical extracts, commercial insecticides and their binary mixtures against the housefly, Musca Domestica L. The Open Tox J 4:1–13

    Google Scholar 

  • Marchand AP (2015) Basic Substances: an opportunity for approval of low concern substances under EU pesticide regulation. Pest Manag Sci 71:1197–1200

    Article  CAS  PubMed  Google Scholar 

  • Marchand AP (2016) Basic substances under EC 1107/2009 phytochemical regulation: experience with non-biocide and food products as biorationals. J Plant Prot Res 3:312–318

    Article  Google Scholar 

  • Marchand AP (2017) Basic and low-risk substances under European Union pesticide regulations: a new choice for biorational portfolios of small and medium-sized enterprises. J Plant Prot Res 57:433–440

    CAS  Google Scholar 

  • Masetti A (2016) The potential use of essential oils against mosquito larvae: a short review. Bull Insectol 69:307–310

    Google Scholar 

  • Mavridis K, Wipf N, Müller P, Traoré MM, Muller G, Vontas J (2018) Detection and monitoring of insecticide resistance mutations in anopheles gambiae: individual vs pooled specimens. Genes 9:1–10

    Article  CAS  Google Scholar 

  • Mehmood F, Khan Z-UD, Manzoor F, Jamil M (2016) Analysis of insect toxicity and repellent activity of phytochemicals from Skimmia laureola, Nair against black garden ant, Lasius niger of Pakistan. Pak J Pharm Sci 29:789–793

    PubMed  Google Scholar 

  • Mengoni SL, Alzogaray RA (2018) Deltamethrin-resistant German cockroaches are less sensitive to the insect repellents DEET and IR3535 than non-resistant individuals. J Econ Entomol 111:836–843

    Article  CAS  PubMed  Google Scholar 

  • Mills C, Cleary BJ, Gilmer JF, Walsh JJ (2004) Inhibition of acetylcholinesterase by tea tree oil. J Pharm Pharmacol 56:375–379

    Article  CAS  PubMed  Google Scholar 

  • Moreira MD, Picanço MC, Barbosa LCA, Guedes RNC, Barros EC, Campos MR (2007) Compounds from Ageratum conyzoides: isolation, structural elucidation and insecticidal activity. Pest Manag Sci 63:615–621

    Article  CAS  PubMed  Google Scholar 

  • Morey RA, Khandagle AJ (2012) Bioefficacy of essential oils of medicinal plants against housefly, Musca domestica L. Parasitol Res 111:1799–1805

    Article  PubMed  Google Scholar 

  • Mossa ATH (2016) Green pesticides: essential oils as biopesticides in insect-pest management. J Environ Sci Tech 9:354–378

    Article  CAS  Google Scholar 

  • Muhaimin M, Yusnaidar Y, Syahri W, Latief M, Utami A, Bemis R, Amanda H, Heriyanti Chaerunisaa AY (2018) Screening and potential analysis of methanolic leaf extract of mangrove plants at east coast sumatera as repellent against Aedes aegypti. J Pharm Sci Res 10:2228–2231

    CAS  Google Scholar 

  • Noutcha MEA, Edwin-Wosu NI, Ogali RE, Okiwelu SN (2016) The Role of plant essential oils in mosquito (Diptera: Culicidae) control. Ann Res Rev Biol. 10:1–9

    Article  Google Scholar 

  • Novato T, Gomes GA, Zeringóta V, Franco CT, de Oliveira DR, Melo D, de Carvalho MG, Daemon E, de Oliveira Monteiro CM (2018) In vitro assessment of the acaricidal activity of carvacrol, thymol, eugenol and their acetylated derivatives on Rhipicephalus microplus (Acari: Ixodidae). Vet Parasitol 260:1–4

    Article  CAS  PubMed  Google Scholar 

  • Olaleye T, Muse W, Adekanbi S, Isang D, Alabi I, Imeh-Nathaniel A, Nathaniel T (2017) Powdered leaf extracts of Harungana madagascariensis, Margaritaria discoidea, and Antigonon leptopus disrupt larva and pupa stages of a tropical disease vector. Asian Pac J Trop Med. 7:778–782

    Article  Google Scholar 

  • Patience GS, Karirekinyana G, Galli F, Patience N, Kubwabo C, Collin G, Bizimana JC, Boffito DC (2018) Sustainable manufacture of insect repellents derived from Nepeta cataria. Sci Rep 8:2235. https://doi.org/10.1038/s41598-017-18141-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavela R (2005) Insecticidal activity of some essential oils against larvae of Spodoptera littoralis. Fitoterapia 76:691–696

    Article  CAS  PubMed  Google Scholar 

  • Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crops Prod 76:174–187

    Article  CAS  Google Scholar 

  • Pavela R (2016) Encapsulation—a convenient way to extend the persistence of the effect of eco-friendly mosquito larvicides. Curr Org Chem 20:2674–2680

    Article  CAS  Google Scholar 

  • Pavela R, Benelli G (2016) Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci 21:1000–1007

    Article  CAS  PubMed  Google Scholar 

  • Pavlidi N, Vontas J, Van Leeuwen T (2018) The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Curr Opin Insect Sci 27:97–102

    Article  PubMed  Google Scholar 

  • Pluess B, Tanser FC, Lengeler C, Sharp BL (2010) Indoor residual spraying for preventing malaria. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD006657.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  • Prodhan ZH, Biswas M, Rahman M, Islam N, Golam F (2012) Effects of plant extracts on salivary gland chromosomes of house fly (Musca domestica L.). Life Sci J 9:1930–1935

    Google Scholar 

  • Rathnasagar K, Thiyagaraj A (2018) Larvicidal activity of Lantana indica and Vitex negundo on Culex quinquefasciatus. Asian J Pharm Clin Res 11:414–418

    Google Scholar 

  • Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: low-risk products in a highstakes world. Ann Rev Entomol 57:405–424

    Article  CAS  Google Scholar 

  • Regulation (EU) No 528/2012 of the European Parlament and of the council of 22 May 2012 concerning the making available on the market and use of biocidal products (OJ L 167, 27.6.2012, p. 1)

  • Rey D, Pautou MP, Meyran JC (1999) Histopathological effects of tannic acid on the midgut epithelium of some aquatic Diptera larvae. J Invertebr Pathol 73:173–181

    Article  CAS  PubMed  Google Scholar 

  • Rey JR, Walton WE, Wolfe RJ, Connelly CR, O’Connell SM, Berg J, Sakolsky-Hoopes GE, Laderman AD (2012) North American wetlands and mosquito control. Int J Environ Res Public Health 9:4537–4605

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivault C, Cloarec A, Le Guyader A (1993) Bacterial load of cockroaches in relation to urban environment. Epidemiol Infect 110:317–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson W (2005) Urban insects and arachnids: a handbook of urban entomology. Cambridge University Press, Cambridge, p 480

    Book  Google Scholar 

  • Rust MK (2016) Insecticide resistance in fleas. Insects 7(1):10. https://doi.org/10.3390/insects7010010

    Article  PubMed Central  Google Scholar 

  • Scott JG (2017) Evolution of resistance to pyrethroid insecticides in Musca domestica. Pest Manag Sci 73:716–722

    Article  CAS  PubMed  Google Scholar 

  • Shaalan EA, Canyon D, Younes MW, Abdel-Wahab H, Mansour AH (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int 31:1149–1166

    Article  CAS  PubMed  Google Scholar 

  • Shao HN, Zhang YL (2017) Non-target effects on soil microbial parameters of the synthetic pesticide carbendazim with the biopesticides cantharidin and norcantharidin. Sci Rep 7:5521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Goel A (2018) Development of insect repellent finish by a simple coacervation microencapsulation technique. Int J Cloth Sci Tech 30:152–158

    Article  Google Scholar 

  • Sims SR, Appel AG (2012) Efficacy of commercial baits and new active ingredients against firebrats and silverfish (zygentoma: Lepismatidae). J Econ Entomol 105:1385–1391

    Article  CAS  PubMed  Google Scholar 

  • Smith EH, Whitman RC (2007) NPMA field guide to structural pests. NPMA 2nd edn

  • Stephen R (2019) Tick-borne encephalitis (TBE) in children in Europe: epidemiology, clinical outcome and comparison of vaccination recommendations. Ticks Tick Borne Dis 10:100–110

    Article  Google Scholar 

  • Su LC, Huang CG, Chang ST, Yang SH, Hsu SH, Wu WJ, Huang RN (2014) An improved bioassay facilitates the screening of repellents against cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). Pest Manag Sci 70:264–270

    Article  CAS  PubMed  Google Scholar 

  • Sukumar K, Perich MJ, Boobar LR (1991) Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc 7:210–237

    CAS  PubMed  Google Scholar 

  • Tabari MA, Youssefi MR, Maggi F, Benelli G (2017) Toxic and repellent activity of selected monoterpenoids (thymol, carvacrol and linalool) against the castor bean tick, Ixodes ricinus (Acari: Ixodidae). Vet Parasitol 245:86–91

    Article  CAS  PubMed  Google Scholar 

  • Tahir HM, Khizar F, Naseem S, Yaqoob R, Samiullah K (2016) Insecticide resistance in the ground spider, Pardosa sumatrana (Thorel, 1890; Araneae: Lycosidae). Arch Insect Biochem Physiol 93:55–64

    Article  CAS  PubMed  Google Scholar 

  • Tisgratog R, Sukkanon C, Grieco JP, Sanguanpong U, Chauhan KR, Coats JR, Chareonviriyaphap T (2018) Evaluation of the constituents of vetiver oil against Anopheles minimus (Diptera: Culicidae), a malaria vector in Thailand. J Med Entomol 55:193–199

    Article  PubMed  Google Scholar 

  • Turek C, Stintzing FC (2013) Stability of essential oils: a review. Compr Rev Food Sci Food Saf. https://doi.org/10.1111/1541-4337.12006

    Article  Google Scholar 

  • Unsworth NB, Stenos J, Graves SR, Faa AG, Cox E, Dyer JR, Boutlis CS, Lane AM, Shaw MD, Robson J, Nissen MD (2007) Flinders Island spotted fever rickettsioses caused by ‘marmionii’ strain of Rickettsia honei, Eastern Australia. Emerg Infect Dis 13:566–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urzúa A, Santander R, Echeverría J, Villalobos C, Palacios SM, Rossi Y (2010) Insecticidal properties of Peumus boldus Mol. essential oil on the house fly, Musca domestica L. B Latinoam Caribe PL J 9:465–469

    Google Scholar 

  • Urzúa A, Modak B, Santander R, Heit C, Echeverría J (2013) Insecticidal properties of Heliotropium stenophyllum essential oil on the house fly, Musca domestica L. Bol latinoam Caribe Plantas Medic Aroma 12:196–200

    Google Scholar 

  • Vargas MV (2012) An update on published literature (period 1992-2010) and botanical categories on plant essential oils with effects on mosquitoes (Diptera: Culicidae). B Malariol Sasul Amb 52:143–193

    Google Scholar 

  • Vasconcelos VO, Costa EGL, Moreira VR, Morais-Costa F, Duarte ER (2018) Efficacy of plants extracts from the Cerrado against adult female of Dermacentor nitens (Acari: Ixodidae). Exp App Acarol 75:419–427

    Article  CAS  Google Scholar 

  • Wang S-Y, Lai W-C, Chu F-H, Lin C-T, Shen S-Y, Chang S-T (2006) Essential oil from the leaves of Cryptomeria japonica acts as a silverfish (Lepisma saccharina) repellent and insecticide. J Wood Sci 52:522–526

    Article  CAS  Google Scholar 

  • Wang XG, Li Q, Jiang SR, Li P, Yang JZ (2017) Chemical composition and insecticidal property of Myrsine stolonifera (Koidz.) walker (Family: Myrsinaceae) on Musca domestica (Diptera: Muscidae). Acta Trop 170:70–78

    Article  CAS  PubMed  Google Scholar 

  • Wanzala W, Hassanali A, Mukabana WR, Takken W (2018) The effect of essential oils of Tagetes minuta and Tithonia diversifolia on on-host behaviour of the brown ear tick Rhipicephalus appendiculatus. Livest Res Rural Dev. 30: Article #106. http://www.lrrd.org/lrrd30/6/sound30106.html

  • Wen Y, Ma T, Chen X, Liu Z, Zhu C, Zhang Y, Strecker R, Henderson G, Hooper-Bùi LM, Chen X, Sun Z, Wen X, Wang C (2016) Essential balm: a strong repellent against foraging and defending red imported fire ants (Hymenoptera: Formicidae). J Econ Entomol 109:1827–1833

    Article  PubMed  Google Scholar 

  • Werdin González JO, Stefanazzi N, Murray AP, Ferrero AA, Fernández Band B (2015) Novel nano-insecticides based on essential oils to control the German cockroach. J Pest Sci 88:393–404

    Article  Google Scholar 

  • WHO (2006) Pesticides and their application: for the control of vectors and pests of public health importance. World Health Organization, 6th ed

  • WHO, 2015 Indoor Residual Spraying. An operational manual for indoor residual spraying (IRS) for malaria transmission control and elimination, 2nd ed

  • Arnason JT, Sims SR, Scott IM. Natural products from plants as insecticides. Phytochem and Pharmacog ©Encyclopedia of Life Support Systems (EOLSS)

  • Yilmaz YB, Tunaz H (2013) Fumigant toxicity of some plant essential oils and their selected monoterpenoid components against adult American cockroach, Periplaneta americana (Dictyoptera: Blattidae). Turkiye Entomoloji Dergisi 37:319–328

    Google Scholar 

  • Yoon C, Kang SH, Yang JO, Noh DJ, Indiragandhi P, Kim GH (2009) Repellent activity of citrus oils against the cockroaches Blattella germanica, Periplaneta americana and P. fuliginosa. J Pest Sci 34:77–88

    Article  CAS  Google Scholar 

  • Yusufoglu HS, Tabanca N, Bernier UR, Li AY, Salkini MA, Alqasoumi SI, Demirci B (2018) Mosquito and tick repellency of two Anthemis essential oils from Saudi Arabia. Saudi Pharm J 26:860–864

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu JJ, Cermak SC, Kenar JA, Brewer G, Haynes KF, Boxler D, Baker PD, Wang D, Wang C, Li AY, Xue RD, Shen Y, Wang F, Agramonte NM, Bernier UR, de Oliveira Filho JG, Borges LMF, Friesen K, Taylor DB (2018) Better than DEET repellent compounds derived from coconut oil. Sci Rep 8: Article number 14053

Download references

Acknowledgements

We gratefully acknowledge Dr. Keith Matthiews, Of Counsel at Wiley Rein LLP, Washington, District Of Columbia and former Director of the Biopesticides and Pollution Prevention Division (BPPD) in the U.S. Environmental Protection Agency’s (EPA) Office of Pesticide Programs (OPP) for extensively performing language editing in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikoletta Ntalli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntalli, N., Koliopoulos, G., Giatropoulos, A. et al. Plant secondary metabolites against arthropods of medical importance. Phytochem Rev 18, 1255–1275 (2019). https://doi.org/10.1007/s11101-019-09647-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-019-09647-7

Keywords

Navigation