Skip to main content

Advertisement

Log in

The combinatory effects of natural products and chemotherapy drugs and their mechanisms in breast cancer treatment

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Breast cancer is the leading cause of cancer-related death among females. The global morbidity and mortality associated with breast cancer have recently been increasing. Surgery, radiation therapy, chemotherapy, endocrine therapy and biotargeted therapy, alone or in combination, are commonly used for breast cancer treatment. However, diverse side effects can be caused by the current treatments. Natural products derived from plants have almost no toxicity and side effects, with many functions and therapeutic activities. Many preclinical studies have reported the potential of natural products to enhance the effects of chemotherapy drugs in breast cancer treatment. The combined effects of these treatments in breast cancer are summarized in this review, as well as the in vivo and in vitro mechanisms. Natural products enhanced anti-cancer effects and apoptosis via the EGFR, PI3K-Akt, Wnt and other pathways. The toxicity, side effects, and drug resistance were reduced with the combination therapies. The combination of chemotherapy drugs and natural products could be a promising and effective strategy to treat breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABC transporters:

ATP-binding cassette transporters

Akt:

Protein kinase B

AMPK:

Adenosine 5′-monophosphate-activated protein kinase

APBI:

Accelerated partial-breast irradiation

Bax:

Bcl-2-like protein 4

Bcl-2:

B-cell lymphoma 2

BCRP:

Breast cancer resistance protein

BCSCs:

Breast cancer stem cells

CDK2:

Cyclin-dependent kinase 2

CDK4:

Cyclin-dependent kinase 4

CI:

Combination index

EGFR:

Epidermal growth factor receptor

ER:

Estrogen receptor

ERK1/2:

Extracellular regulated protein kinase 1/2

ERα:

Estrogen receptor alpha

ERβ2:

Estrogen receptor beta 2

FAK:

Focal adhesion kinase

Fas:

Fas receptor

GST:

Glutathione-S-transferase

HER-2:

Human epidermal growth factor receptor-2

HER-2+:

Human epidermal growth factor receptor-2-positive

HIF-1:

Alpha hypoxia-inducible factor-1

iPLA2 :

Independent phospholipase A2

IκBα:

Inhibitor of NF-κB alpha

MMP-9:

Matrix metalloproteinase-9

MRP1:

Multidrug resistance-associated protein 1

mTOR:

Mammalian target of rapamycin

NCCN:

National comprehensive cancer network

NF-κB:

Nuclear factor-κB

PARP-1:

Poly ADP-ribose polymerase

P-gp:

P-glycoprotein

PI3k:

Phosphoinositide 3 kinase

PR:

Progesterone receptor

Rb:

Retinoblastoma

ROS:

Reactive oxygen species

STAT3:

Signal transducer and activator of transcription 3

TNBC:

Triple-negative breast cancer

Twist1:

Twist-related protein 1

WBI:

Whole-breast irradiation

Wnt:

Wingless/integrated

p-ERK1/2:

Phosphorylated extracellular signal-regulated kinase 1/2

p-AKT:

Phosphorylated protein kinase B

AIF:

Apoptosis-inducing factor

ABCG2:

ATP-binding cassette super-family G member 2

EZH2:

Enhancer of zeste homolog 2

References

  • Abdulkareem IH (2013) Aetio-pathogenesis of breast cancer. Niger Med J NLM 54(6):371–375

    Article  Google Scholar 

  • Abe O, Abe R, Enomoto K et al (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366(9503):2087–2106

    Article  Google Scholar 

  • Allegra A, Innao V, Russo S et al (2017) Anticancer activity of curcumin and its analogues: preclinical and clinical studies. Cancer Invest 35(1):1–22

    Article  CAS  PubMed  Google Scholar 

  • Ba Z, Zheng Y, Zhang H et al (2009) Potential anti-cancer activity of furanodiene. Chin J Cancer Res 21(2):154–158

    Article  CAS  Google Scholar 

  • Baena Ruiz R, Salinas Hernandez P (2014) Diet and cancer: risk factors and epidemiological evidence. Maturitas 77(3):202–208

    Article  CAS  PubMed  Google Scholar 

  • Banik U, Parasuraman S, Adhikary AK et al (2017) Curcumin: the spicy modulator of breast carcinogenesis. J Exp Clin Cancer Res 36:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baudino TA (2015) Targeted cancer therapy: the next generation of cancer treatment. Curr Drug Disc Technol 12(1):3–20

    Article  CAS  Google Scholar 

  • Bayet Robert M, Kwiatkowski F, Leheurteur M et al (2010) Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biol Ther 9(1):8–14

    Article  CAS  PubMed  Google Scholar 

  • Becker S (2015) A historic and scientific review of breast cancer: the next global healthcare challenge. Int J Gynecol Obstet 131:S36–S39

    Article  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  • Calaf GM, Ponce-Cusi R, Carrion F (2018) Curcumin and paclitaxel induce cell death in breast cancer cell lines. Oncol Rep 40(4):2381–2388

    CAS  PubMed  Google Scholar 

  • Chen W, Zheng R, Baade PD et al (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66(2):115–132

    Article  PubMed  Google Scholar 

  • Chen X, Leung GPH, Zhang Z et al (2017) Proanthocyanidins from uncaria rhynchophylla induced apoptosis in MDA-MB-231 breast cancer cells while enhancing cytotoxic effects of 5-fluorouracil. Food Chem Toxicol 107:248–260

    Article  CAS  PubMed  Google Scholar 

  • Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70(2):440–446

    Article  CAS  PubMed  Google Scholar 

  • Ci Y, Qiao J, Han M (2016) Molecular mechanisms and metabolomics of natural polyphenols interfering with breast cancer metastasis. Molecules 21(12):1634

    Article  PubMed Central  CAS  Google Scholar 

  • Cook MT (2018) Mechanism of metastasis suppression by luteolin in breast cancer. Breast Cancer Targets Ther 10:89–100

    Article  CAS  Google Scholar 

  • Darband SG, Kaviani M, Yousefi B et al (2018) Quercetin: a functional dietary flavonoid with potential chemo-preventive properties in colorectal cancer. J Cell Physiol 233(9):6544–6560

    Article  CAS  PubMed  Google Scholar 

  • Du G, Lin H, Yang Y et al (2010) Dietary quercetin combining intratumoral doxorubicin injection synergistically induces rejection of established breast cancer in mice. Int Immunopharmacol 10(7):819–826

    Article  CAS  PubMed  Google Scholar 

  • Ferguson JE, Orlando RA (2015) Curcumin reduces cytotoxicity of 5-fluorouracil treatment in human breast cancer cells. J Med Food 18(4):497–502

    Article  CAS  PubMed  Google Scholar 

  • Gilbert ER, Liu D (2013) Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic beta-cell function. Food Funct 4(2):200–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gold Smith F, Fernandez A, Bishop K (2016) Mangiferin and cancer: mechanisms of action. Nutrients 8(7):396

    Article  PubMed Central  CAS  Google Scholar 

  • Gradishar WJ, Anderson BO, Balassanian R et al (2015) NCCN clinical practice guidelines in oncology: breast cancer. Version 2. 2015. J Natl Compr Cancer Netw 13(4):448–475

    Article  CAS  Google Scholar 

  • Guo Y, Bruno RS (2015) Endogenous and exogenous mediators of quercetin bioavailability. J Nutr Biochem 26(3):201–210

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Yin S, Dong Y et al (2013) Enhanced apoptotic effects by the combination of curcumin and methylseleninic acid: potential role of Mcl-1 and FAK. Mol Carcinog 52(11):879–889

    Article  CAS  PubMed  Google Scholar 

  • Hassan MSU, Ansari J, Spooner D et al (2010) Chemotherapy for breast cancer (review). Oncol Rep 24(5):1121–1131

    Article  CAS  PubMed  Google Scholar 

  • Hong Z, Jundong Z, Mantian M et al (2006) Effects of genistein and chemotherapeutic agents on proliferation of human breast cancer cell line MDA-MB-453. Acta Academiae Medicinae Militaris Tertiae 28(7):710–713

    Google Scholar 

  • Hu H, Wei W, Yi X et al (2017) A retrospective analysis of clinical utility of AJCC 8th edition cancer staging system for breast cancer. World J Oncol 8(3):71–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang CY, Ju DT, Chang CF et al (2017) A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomed Taiwan 7(4):12–23

    Article  Google Scholar 

  • Ibraheem A, Stankowski-Drengler TJ, Gbolahan OB et al (2016) Chemotherapy-induced cardiotoxicity in breast cancer patients. Breast Cancer Manag 5(1):31–41

    Article  CAS  Google Scholar 

  • Imran M, Arshad MS, Butt MS et al (2017) Mangiferin: a natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis 16:84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeon YW, Suh YJ (2013) Synergistic apoptotic effect of celecoxib and luteolin on breast cancer cells. Oncol Rep 29(2):819–825

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Huang O, Zhang X et al (2013) Curcumin induces cell death and restores tamoxifen sensitivity in the antiestrogen-resistant breast cancer cell lines MCF-7/LCC2 and MCF-7/LCC9. Molecules 18(1):701–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang C, Sun T, Xiang D et al (2018) Anticancer activity and mechanism of xanthohumol: a prenylated flavonoid from hops (Humulus lupulus L.). Front Pharmacol 9:530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ju YH, Doerge DR, Allred KF et al (2002) Dietary genistein negates the inhibitory effect of tamoxifen on growth of estrogen-dependent human breast cancer (MCF-7) cells implanted in athymic mice. Cancer Res 62(9):2474–2477

    CAS  PubMed  Google Scholar 

  • Kang HJ, Lee SH, Price JE et al (2009) Curcumin suppresses the paclitaxel-induced nuclear factor-kappa B in breast cancer cells and potentiates the growth inhibitory effect of paclitaxel in a breast cancer nude mice model. Breast J 15(3):223–229

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Park MA, Heo SW et al (2013) The radio-sensitizing effect of xanthohumol is mediated by STAT3 and EGFR suppression in doxorubicin-resistant MCF-7 human breast cancer cells. BBA-GEN Subj 1830(3):2638–2648

    Article  CAS  Google Scholar 

  • Kapinova A, Stefanicka P, Kubatka P et al (2017) Are plant-based functional foods better choice against cancer than single phytochemicals? A critical review of current breast cancer research. Biomed Pharmacother 96:1465–1477

    Article  CAS  PubMed  Google Scholar 

  • Kapoor S (2013) Luteolin and its inhibitory effect on tumor growth in systemic malignancies. Exp Cell Res 319(6):777–778

    Article  CAS  PubMed  Google Scholar 

  • Kaushik S, Shyam H, Sharma R et al (2016) Genistein synergizes centchroman action in human breast cancer cells. Indian J Pharmacol 48(6):637–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khurana RK, Kaur R, Lohan S et al (2016) Mangiferin: a promising anticancer bioactive. Pharm Pat Anal 5(3):169–181

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Kim CW, Jeon SY et al (2014) Chemopreventive and chemotherapeutic effects of genistein, a soy isoflavone, upon cancer development and progression in preclinical animal models. Lab Anim Res 30(4):143–150

    Article  PubMed  PubMed Central  Google Scholar 

  • Koh Y-C, Pan M-H (2018) Review on discovery and development of novel phytochemicals which can be used in functional foods. Curr Res Nutr Food Sci 6(2):241–262

    Article  Google Scholar 

  • Krishnamurthy A, Soundara V, Ramshankar V (2016) Preventive and risk reduction strategies for women at high risk of developing breast cancer: a review. Asian Pac J Cancer Prev 17(3):895–904

    Article  PubMed  Google Scholar 

  • Kumar P, Kadakol A, Shasthrula PK et al (2015) Curcumin as an adjuvant to breast cancer treatment. Anticancer Agents Med Chem 15(5):647–656

    Article  CAS  PubMed  Google Scholar 

  • Kwon Y (2017) Luteolin as a potential preventive and therapeutic candidate for Alzheimer’s disease. Exp Gerontol 95:39–43

    Article  CAS  PubMed  Google Scholar 

  • Lattrich C, Lubig J, Springwald A et al (2011) Additive effects of trastuzumab and genistein on human breast cancer cells. Anticancer Drugs 22(3):253–261

    Article  CAS  PubMed  Google Scholar 

  • Lester J (2015) Local treatment of breast cancer. Semin Oncol Nurs 31(2):122–133

    Article  PubMed  Google Scholar 

  • Li YW, Ahmed F, Ali S et al (2005) Inactivation of nuclear factor kappa B by soy isoflavone genistein contributes to increased apoptosis mduced by chemotherapeutic agents in human cancer cells. Cancer Res 65(15):6934–6942

    Article  CAS  PubMed  Google Scholar 

  • Li S, Li K, Zhang J et al (2013) The effect of quercetin on doxorubicin dytotoxicity in human breast cancer cells. Anticancer Agents Med Chem 13(2):352–355

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yang L, Zhao Q et al (2014) Clinical significance of BRCA1/2 mutations testing in triple-negative breast cancer patients. Chin J Cancer Prev Treat 21(22):1812–1815

    CAS  Google Scholar 

  • Li Q, Chen J, Li T et al (2015) Impact of in vitro simulated digestion on the potential health benefits of proanthocyanidins from Choerospondias axillaris peels. Food Res Int 78:378–387

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yao J, Han C et al (2016) Quercetin, inflammation and immunity. Nutrients 8(3):167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li S, Yuan S, Zhao Q et al (2018) Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomed Pharmacother 100:441–447

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Ho PC-L, Wong FC et al (2015a) Garcinol: current status of its anti-oxidative, anti-inflammatory and anti-cancer effects. Cancer Lett 362(1):8–14

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Hansen PE, Wang G et al (2015b) Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (humulus lupulus). Molecules 20(1):754–779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu M, Yin H, Qian X et al (2017) Xanthohumol, a prenylated chalcone from hops, inhibits the viability and stemness of doxorubicin-resistant MCF-7/ADR cells. Molecules 22(1):36

    Article  CAS  Google Scholar 

  • Lotha R, Sivasubramanian A (2018) Flavonoids nutraceuticals in prevention and treatment of cancer: a review. Asian J Pharm Clin Res 11:42–47

    Article  CAS  Google Scholar 

  • Louisa M, Soediro TM, Suyatna FD (2014) In vitro modulation of P-glycoprotein, MRP-1 and BCRP expression by mangiferin in doxorubicin-treated MCF-7 cells. Asian Pac J Cancer Prev 15(4):1639–1642

    Article  PubMed  Google Scholar 

  • Lu J, Dang Y, Huang M et al (2012) Anti-cancer properties of terpenoids isolated from Rhizoma Curcumae—a review. J Ethnopharmacol 143(2):406–411

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Shang P, Li D (2017) Luteolin: a flavonoid that has multiple cardio-protective effects and its molecular mechanisms. Front Pharmacol 8:692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mai Z, Blackburn GL, Zhou J (2007) Genistein sensitizes inhibitory effect of tamoxifen on the growth of estrogen receptor-positive and HER2-overexpressing human breast cancer cells. Mol Carcinog 46(7):534–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meiyanto E, Hermawan A, Anindyajati A (2012) Natural products for cancer-targeted therapy: citrus flavonoids as potent chemopreventive agents. Asian Pac J Cancer Prev 13(2):427–436

    Article  PubMed  Google Scholar 

  • Metri K, Bhargav H, Chowdhury P et al (2013) Ayurveda for chemo-radiotherapy induced side effects in cancer patients. J Stem Cell 8(2):115–129

    Google Scholar 

  • Mitra AK, Agrahari V, Mandal A et al (2015) Novel delivery approaches for cancer therapeutics. J Control Release 219:248–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mlcek J, Jurikova T, Skrovankova S et al (2016) Quercetin and its anti-allergic immune response. Molecules 21(5):623

    Article  PubMed Central  CAS  Google Scholar 

  • Moga MA, Dimienescu OG, Arvatescu CA et al (2016) The role of natural polyphenols in the prevention and treatment of cervical cancer—an overview. Molecules 21(8):1055

    Article  PubMed Central  CAS  Google Scholar 

  • Mohan A, Narayanan S, Sethuraman S et al (2013) Combinations of plant polyphenols and anti-cancer molecules: a novel treatment strategy for cancer chemotherapy. Anticancer Agents Med Chem 13(2):281–295

    Article  CAS  PubMed  Google Scholar 

  • Na HK, Oliynyk S (2011) Effects of physical activity on cancer prevention. Ann N Y Acad Sci 1229(1):176–183

    Article  CAS  PubMed  Google Scholar 

  • Nabavi SF, Braidy N, Gortzi O et al (2015) Luteolin as an anti-inflammatory and neuroprotective agent: a brief review. Brain Res Bull 119:1–11

    Article  CAS  PubMed  Google Scholar 

  • Nagini S (2017) Breast cancer: current molecular therapeutic targets and new players. Anticancer Agents Med Chem 17(2):152–163

    Article  CAS  PubMed  Google Scholar 

  • Nobert GS, Kraak MM, Crawford S (2006) Estrogen dependent growth inhibitory effects of tamoxifen but not genistein in solid tumors derived from estrogen receptor positive (ER+) primary breast carcinoma MCF7: single agent and novel combined treatment approaches. Bull Cancer 93(7):E59–E66

    PubMed  Google Scholar 

  • Nunes MA, Pimentel F, Costa ASG et al (2016) Cardioprotective properties of grape seed proanthocyanidins: an update. Trends Food Sci Technol 57:31–39

    Article  CAS  Google Scholar 

  • Pierre JF, Heneghan AF, Feliciano RP et al (2014) Cranberry proanthocyanidins improve intestinal sIgA during elemental enteral nutrition. J Parenter Enternal Nutr 38(1):107–114

    Article  CAS  Google Scholar 

  • Quispe Soto ET, Calaf GM (2016) Effect of curcumin and paclitaxel on breast carcinogenesis. Int J Oncol 49(6):2569–2577

    Article  CAS  PubMed  Google Scholar 

  • Rauf A, Imran M, Khan IA et al (2018) Anticancer potential of quercetin: a comprehensive review. Phytother Res 32(11):2109–2130

    Article  CAS  PubMed  Google Scholar 

  • Redondo-Blanco S, Fernandez J, Gutierrez-del-Rio I et al (2017) New insights toward colorectal cancer chemotherapy using natural bioactive compounds. Front Pharmacol 8:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rejhova A, Opattova A, Cumova A et al (2018) Natural compounds and combination therapy in colorectal cancer treatment. Eur J Med Chem 144:582–594

    Article  CAS  PubMed  Google Scholar 

  • Riscuta G, Dumitrescu RG (2012) Nutrigenomics: implications for breast and colon cancer prevention. Methods Mol Biol 863:343–358

    Article  CAS  PubMed  Google Scholar 

  • Saadat N, Gupta SV (2012) Potential role of garcinol as an anticancer agent. J Oncol 2012:647206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sahu AK, Verma VK, Mutneja E et al (2019) Mangiferin attenuates cisplatin-induced acute kidney injury in rats mediating modulation of MAPK pathway. Mol Cell Biochem 452(1):141–152

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Sreenivasan Y, Ramesh GT et al (2004) Beta-d-glucoside suppresses tumor necrosis factor-induced activation of nuclear transcription factor kappa B but potentiates apoptosis. J Biol Chem 279(32):33768–33781

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Sasaki N, Saito M et al (2015) Luteolin attenuates doxorubicin-induced cytotoxicity to MCF-7 human breast cancer cells. Biol Pharm Bull 38(5):703–709

    Article  CAS  PubMed  Google Scholar 

  • Satoh H, Nishikawa K, Suzuki K et al (2003) Genistein, a soy isoflavone, enhances necrotic-like cell death in a breast cancer cell treated with a chemotherapeutic agent. Res Commun Mol Pathol Pharmacol 113–114:149–158

    PubMed  Google Scholar 

  • Seelinger G, Merfort I, Woelfle U et al (2008) Anti-carcinogenic effects of the flavonoid luteolin. Molecules 13(10):2628–2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selles AJN, Daglia M, Rastrelli L (2016) The potential role of mangiferin in cancer treatment through its immunomodulatory, anti-angiogenic, apoptopic, and gene regulatory effects. BioFactors 42(5):475–491

    Article  CAS  Google Scholar 

  • Shang W, Lu W, Han M et al (2014) The interactions of anticancer agents with tea catechins: current evidence from preclinical studies. Anticancer Agents Med Chem 14(10):1343–1350

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam MK, Rane G, Kanchi MM et al (2015) The multifaceted role of curcumin in cancer prevention and treatment. Molecules 20(2):2728–2769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shanmugam M, Arfuso F, Sng JC et al (2018) Epigenetic effects of curcumin in cancer prevention. In: Anupam B, Deepak B (eds) Epigenetics of Cancer Prevention, vol 8. Academic Press, pp 107–128. https://doi.org/10.1016/B978-0-12-812494-9.00005-6

  • Shi G, Li Y, Cao Q et al (2019) In vitro and in vivo evidence that quercetin protects against diabetes and its complications: a systematic review of the literature. Biomed Pharmacother 109:1085–1099

    Article  CAS  PubMed  Google Scholar 

  • Singh CK, Siddiqui IA, El-Abd S et al (2016) Combination chemoprevention with grape antioxidants. Mol Nutr Food Res 60(6):1406–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivas NR (2015) Recent trends in preclinical drug–drug interaction studies of flavonoids—review of case studies, issues and perspectives. Phytother Res 29(11):1679–1691

    Article  CAS  PubMed  Google Scholar 

  • Staedler D, Idrizi E, Kenzaoui BH et al (2011) Drug combinations with quercetin: doxorubicin plus quercetin in human breast cancer cells. Cancer Chemother Pharmacol 68(5):1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Telli ML, Sledge GW (2015) The future of breast cancer systemic therapy: the next 10 years. J Mol Med 93(2):119–125

    Article  CAS  PubMed  Google Scholar 

  • Tu SH, Chiou YS, Kalyanam N et al (2017) Garcinol sensitizes breast cancer cells to Taxol through the suppression of caspase-3/iPLA(2) and NF-kappa B/Twist1 signaling pathways in a mouse 4T1 breast tumor model. Food Funct 8(3):1067–1079

    Article  CAS  PubMed  Google Scholar 

  • Walker GA, Kaidar-Person O, Kuten A et al (2012) Radiotherapy as sole adjuvant treatment for older patients with low-risk breast cancer. Breast 21(5):629–634

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Quan K, Jiang Y et al (2010) Effect of luteolin and its combination with chemotherapeutic drugs on cytotoxicity of cancer cells. Zhejiang Da Xue Xue Bao Yi Xue Ban 39(1):30–36

    PubMed  Google Scholar 

  • Wang X, Li X, Yang L et al (2013) Advance on isolation and purification of xanthohumol from hops (Humulus lupulus L.). Food Ferment Ind 39(9):143–149

    CAS  Google Scholar 

  • Wang Y, Yu J, Cui R et al (2016) Curcumin in treating breast cancer: a review. Jala 21(6):723–731

    CAS  PubMed  Google Scholar 

  • Williams MT, Hord NG (2005) The role of dietary factors in cancer prevention: beyond fruits and vegetables. Nutr Clin Pract 20(4):451–459

    Article  PubMed  Google Scholar 

  • Xue J, Wang G, Zhao Z et al (2014) Synergistic cytotoxic effect of genistein and doxorubicin on drug-resistant human breast cancer MCF-7/Adr cells. Oncol Rep 32(4):1647–1653

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Chan CB (2017) Proposed mechanisms of the effects of proanthocyanidins on glucose homeostasis. Nutr Rev 75(8):642–657

    Article  PubMed  Google Scholar 

  • Yang MY, Wang CJ, Chen NF et al (2014) Luteolin enhances paclitaxel-induced apoptosis in human breast cancer MDA-MB-231 cells by blocking STAT3. Chem Biol Interact 213:60–68

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Gao J, Cheng X et al (2017) Grape seed proanthocyanidins inhibit the proliferation, migration and invasion of tongue squamous cell carcinoma cells through suppressing the protein kinase B/nuclear factor-kappa B signaling pathway. Int J Mol Med 40(6):1881–1888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Bai W, Gao L et al (2018) Mangiferin alleviates hypertension induced by hyperuricemia via increasing nitric oxide releases. J Pharmacol Sci 137(2):154–161

    Article  CAS  PubMed  Google Scholar 

  • Yoo YB, Park KS, Kim JB et al (2014) Xanthohumol inhibits cellular proliferation in a breast cancer cell line (MDA-MB231) through an intrinsic mitochondrial-dependent pathway. Indian J Cancer 51(4):518–U401

    Article  CAS  PubMed  Google Scholar 

  • Zhan Y, Chen Y, Liu R et al (2014) Potentiation of paclitaxel activity by curcumin in human breast cancer cell by modulating apoptosis and inhibiting EGFR signaling. Arch Pharmacal Res 37(8):1086–1095

    Article  CAS  Google Scholar 

  • Zhong Z, Dang Y, Yuan X et al (2012a) Furanodiene, a natural product, inhibits breast cancer growth both in vitro and in vivo. Cell Physiol Biochem 30(3):778–790

    Article  CAS  PubMed  Google Scholar 

  • Zhong Z, Li Y, Wang S et al (2012b) Furanodiene enhances tamoxifen-induced growth inhibitory activity of ERa-positive breast cancer cells in a PPAR gamma independent manner. J Cell Biochem 113(8):2643–2651

    Article  CAS  PubMed  Google Scholar 

  • Zhong Z, Tan W, Chen X et al (2014) Furanodiene, a natural small molecule suppresses metastatic breast cancer cell migration and invasion in vitro. Eur J Pharmacol 737:1–10

    Article  CAS  PubMed  Google Scholar 

  • Zhong Z, Qiang W, Wang C et al (2016a) Furanodiene enhances the anti-cancer effects of doxorubicin on ER alpha-negative breast cancer cells in vitro. Eur J Pharmacol 774:10–19

    Article  CAS  PubMed  Google Scholar 

  • Zhong Z, Tan W, Qiang WW et al (2016b) Furanodiene alters mitochondrial function in doxorubicin-resistant MCF-7 human breast cancer cells in an AMPK-dependent manner. Mol BioSyst 12(5):1626–1637

    Article  CAS  PubMed  Google Scholar 

  • Zhong Z, Tan W, Tian K et al (2017a) Combined effects of furanodiene and doxorubicin on the migration and invasion of MDA-MB-231 breast cancer cells in vitro. Oncol Rep 37(4):2016–2024

    Article  CAS  PubMed  Google Scholar 

  • Zhong Z, Yu H, Wang C et al (2017b) Furanodiene induces extrinsic and intrinsic apoptosis in doxorubicin-resistant MCF-7 breast cancer cells via NF-kappa B-independent mechanism. Front Pharmacol 8:648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhong Z, Yu H, Wang S et al (2018) Anti-cancer effects of Rhizoma Curcumae against doxorubicin-resistant breast cancer cells. Chin Med 13:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Q, Wang X, Liu X et al (2011) Curcumin enhanced antiproliferative effect of mitomycin C in human breast cancer MCF-7 cells in vitro and in vivo. Acta Pharmacol Sin 32(11):1402–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Ye M, Lu Y et al (2015) Curcumin improves the tumoricidal effect of mitomycin C by suppressing ABCG2 expression in stem cell-like breast cancer cells. PLoS ONE 10(8):e0136694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Q, Sun Y, Lu Y et al (2017) Curcumin reduces mitomycin C resistance in breast cancer stem cells by regulating Bcl-2 family-mediated apoptosis. Cancer Cell Int 17:84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Asia–Pacific Cancer Research Foundation and the National Key Research and Development Program of China (2017YFC0113305).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinping Qiao or Mei Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, H., Zhang, J. et al. The combinatory effects of natural products and chemotherapy drugs and their mechanisms in breast cancer treatment. Phytochem Rev 19, 1179–1197 (2020). https://doi.org/10.1007/s11101-019-09628-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-019-09628-w

Keywords

Navigation