Advertisement

Metabolons in plant primary and secondary metabolism

  • Toshihiro ObataEmail author
Article
  • 353 Downloads

Abstract

Metabolons are multi-enzyme protein complexes composed of enzymes catalyzing sequential reactions in a metabolic pathway. Metabolons mediate substrate channeling between the enzyme catalytic cores to enhance the pathway reactions, to achieve containment of reactive intermediates, and to prevent access of competing enzymes to the intermediates. These provide unique advantages in metabolic regulation. The discovery of plant metabolons has been accelerated by the recent technical developments and a considerable number of metabolons involved in both primary and secondary metabolism have been indicated in the last decade. These findings related with plant metabolons are comprehensively reviewed in this review, indicating metabolome-wide engagement of metabolons. However, there are still unexplored frontiers remaining for further discovery of metabolons in plant metabolism. Pathways with high potential of novel metabolon and technical issues to be solved for the future discovery will also be discussed.

Keywords

Metabolon Metabolite channeling Substrate channeling Multi-enzyme complex Protein–protein interaction 

Abbreviations

TCA

Tricarboxylic acid

F16BP

Fructose-1,6-bisposphate

F6P

Fructose-6-phosphate

DHAP

Dihydroxyacetone phosphate

VDAC

Voltage dependent anion channel

GAPDH

Glyceraldehyde-3-phosphate dehydrogenase

PEPC

Phosphoenolpyruvate carboxylase

AP-MS

Affinity purification mass spectrometry

MDH

Malate dehydrogenase

IDH

Isocitrate dehydrogenase

SDH

Succinate dehydrogenase

CS

Citrate synthase

SBE

Starch branching enzyme

Pho

Starch phosphorylase

SS

Starch synthase

DBE

Starch debranching enzyme

DPE

Disproportionating enzyme

IAA

Indole-3-acetic acid

ER

Endoplasmic reticulum

SMALP

Styrene maleic acid lipid particle

FLIM

Fluorescence-lifetime imaging microscopy

FRET

Fluorescent resonance energy transfer

PAL

Phenylalanine ammonia lyase

C4H

Cinnamate 4-hydroxylase

CHS

Chalcone synthase

CHI

Chalcone isomerase

F3H

Flavanone 3-hydroxylase

DFR

Dihydroflavonol 4-reductase

ANS

Anthocyanidin synthase

FLS

Flavonol synthase

F3′H

Flavonoid 3′-hydroxylase

C4′GT

Chalcone 4′-glucosyltransferase

FNS

Flavone synthase

LAR

Leucoanthocyanidin reductase

IFS

Isoflavone synthase

ADT

Arogenate dehydratase

CHR

Chalcone reductase

HCT

Hydroxycinnamoyl transferase

C3′H

p-Coumaroyl shikimate 3′-hydroxylase

CCoAOMT

Caffeoyl CoA O-methyltransferase

COMT

Caffeic acid O-methyltransferase

F5H

Ferulate 5-hydroxylase

CAD

Cinnamyl alcohol dehydrogenase

CCR

Cinnamoyl CoA reductase

4CL

4-Coumaroyl-CoA ligase

MSBP

Membrane steroid-binding protein

PT

Prenyltransferase

CHIL

Chalcone isomerase like

GGPP

Geranylgeranyl diphosphate

GGPS

Geranylgeranyl diphosphate synthase

PSY

Phytoene synthase

BiFC

Bimolecular fluorescent complementation

ACOS5

Acetyl-CoA synthetase

PKS

Polyketide synthase

TKPR

Tetraketide α-pyrone reductase

OPPP

Oxidative pentose phosphate pathway

Notes

Acknowledgements

This study was supported by National Science Foundation CAREER Award (Award # 1845451) and University of Nebraska-Lincoln Faculty Startup Grant to T.O.

References

  1. Abernathy MH, He L, Tang YJ (2017) Channeling in native microbial pathways: implications and challenges for metabolic engineering. Biotechnol Adv 35:805–814.  https://doi.org/10.1016/j.biotechadv.2017.06.004 CrossRefPubMedGoogle Scholar
  2. Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of l-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16:3098–3109.  https://doi.org/10.1105/tpc.104.024406 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ahmed Z, Tetlow IJ, Ahmed R et al (2015) Protein–protein interactions among enzymes of starch biosynthesis in high-amylose barley genotypes reveal differential roles of heteromeric enzyme complexes in the synthesis of A and B granules. Plant Sci 233:95–106.  https://doi.org/10.1016/J.PLANTSCI.2014.12.016 CrossRefPubMedGoogle Scholar
  4. Akazawa T, Miljanich P, Conn EE (1960) Studies on cyanogenic glycoside of Sorghum vulgare. Plant Physiol 35:535–538CrossRefPubMedPubMedCentralGoogle Scholar
  5. An S, Kumar R, Sheets ED, Benkovic SJ (2008) Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science 320:103–106.  https://doi.org/10.1126/science.1152241 CrossRefPubMedGoogle Scholar
  6. An S, Kyoung M, Allen JJ et al (2010) Dynamic regulation of a metabolic multi-enzyme complex by protein kinase CK2. J Biol Chem 285:11093–11099.  https://doi.org/10.1074/jbc.M110.101139 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bagga S, Rochford J, Klaene Z et al (1997) Putrescine aminopropyltransferase is responsible for biosynthesis of spermidine, spermine, and multiple uncommon polyamines in osmotic stress-tolerant alfalfa. Plant Physiol 114:445–454.  https://doi.org/10.1104/pp.114.2.445 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ban Z, Qin H, Mitchell AJ et al (2018) Noncatalytic chalcone isomerase-fold proteins in Humulus lupulus are auxiliary components in prenylated flavonoid biosynthesis. Proc Natl Acad Sci 115:E5223–E5232.  https://doi.org/10.1073/pnas.1802223115 CrossRefPubMedGoogle Scholar
  9. Bassard JE, Halkier BA (2018) How to prove the existence of metabolons? Phytochem Rev 17:211–227.  https://doi.org/10.1007/s11101-017-9509-1 CrossRefPubMedGoogle Scholar
  10. Bassard J-E, Richert L, Geerinck J et al (2012) Protein–protein and protein–membrane associations in the lignin pathway. Plant Cell 24:4465–4482.  https://doi.org/10.1105/tpc.112.102566 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bassard J-E, Møller BL, Laursen T (2017) Assembly of dynamic P450-mediated metabolons—order versus chaos. Curr Mol Biol Rep 3:37–51.  https://doi.org/10.1007/s40610-017-0053-y CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bomati EK, Austin MB, Bowman ME et al (2005) Structural elucidation of chalcone reductase and implications for deoxychalcone biosynthesis. J Biol Chem 280:30496–30503.  https://doi.org/10.1074/jbc.M502239200 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Burbulis IE, Winkel-Shirley B (1999) Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc Natl Acad Sci 96:12929–12934.  https://doi.org/10.1073/pnas.96.22.12929 CrossRefPubMedGoogle Scholar
  14. Camagna M, Grundmann A, Bär C et al (2018) Enzyme fusion removes competition for geranylgeranyl diphosphate in carotenogenesis. Plant Physiol.  https://doi.org/10.1104/pp.18.01026 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cervantes-Cervantes M, Gallagher CE, Zhu C, Wurtzel ET (2006) Maize cDNAs expressed in endosperm encode functional farnesyl diphosphate synthase with geranylgeranyl diphosphate synthase activity. Plant Physiol 141:220–231.  https://doi.org/10.1104/pp.106.077008 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chezem WR, Clay NK (2016) Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs. Phytochemistry 131:26–43.  https://doi.org/10.1016/j.phytochem.2016.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Crofts N, Abe N, Oitome NF et al (2015) Amylopectin biosynthetic enzymes from developing rice seed form enzymatically active protein complexes. J Exp Bot 66:4469–4482.  https://doi.org/10.1093/jxb/erv212 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Crosby KC, Pietraszewska-Bogiel A, Gadella TWJ, Winkel BSJ (2011) Förster resonance energy transfer demonstrates a flavonoid metabolon in living plant cells that displays competitive interactions between enzymes. FEBS Lett 585:2193–2198.  https://doi.org/10.1016/j.febslet.2011.05.066 CrossRefPubMedGoogle Scholar
  19. D’Souza SF, Srere PA (1983a) Binding of citrate synthase to mitochondrial inner membranes. J Biol Chem 258:4706–4709PubMedGoogle Scholar
  20. D’Souza SF, Srere PA (1983b) Cross-linking of mitochondrial matrix proteins in situ. Biochim Biophys Acta 724:40–51CrossRefPubMedGoogle Scholar
  21. Dastmalchi M, Bernards MA, Dhaubhadel S (2016) Twin anchors of the soybean isoflavonoid metabolon: evidence for tethering of the complex to the endoplasmic reticulum by IFS and C4H. Plant J 85:689–706.  https://doi.org/10.1111/tpj.13137 CrossRefPubMedGoogle Scholar
  22. de Cima S, Gil-Ortiz F, Crabeel M et al (2012) Insight on an arginine synthesis metabolon from the tetrameric structure of yeast acetylglutamate kinase. PLoS ONE 7:e34734.  https://doi.org/10.1371/journal.pone.0034734 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Debnam PM, Shearer G, Blackwood L, Kohl DH (1997) Evidence for channeling of intermediates in the oxidative pentose phosphate pathway by soybean and pea nodule extracts, yeast extracts, and purified yeast enzymes. Eur J Biochem 246:283–290.  https://doi.org/10.1111/j.1432-1033.1997.00283.x CrossRefPubMedGoogle Scholar
  24. Diharce J, Golebiowski J, Fiorucci S, Antonczak S (2016) Fine-tuning of microsolvation and hydrogen bond interaction regulates substrate channelling in the course of flavonoid biosynthesis. Phys Chem Chem Phys 18:10337–10345.  https://doi.org/10.1039/C5CP05059F CrossRefPubMedGoogle Scholar
  25. Douce R, Bourguignon J, Neuburger M, Rébeillé F (2001) The glycine decarboxylase system: a fascinating complex. Trends Plant Sci 6:167–176.  https://doi.org/10.1016/S1360-1385(01)01892-1 CrossRefPubMedGoogle Scholar
  26. Du H, Huang Y, Tang Y (2010) Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotechnol 86:1293–1312.  https://doi.org/10.1007/s00253-010-2512-8 CrossRefPubMedGoogle Scholar
  27. Du J, Zhang Y, Zhao Q (2018) New components of the lignin biosynthetic metabolon. Trends Plant Sci 23:557–559.  https://doi.org/10.1016/j.tplants.2018.05.007 CrossRefPubMedGoogle Scholar
  28. Dueber JE, Wu GC, Malmirchegini GR et al (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759.  https://doi.org/10.1038/nbt.1557 CrossRefPubMedGoogle Scholar
  29. Facchini PJ (2016) Plant metabolons assembled on demand. Science 354:829–830.  https://doi.org/10.1126/science.aal2948 CrossRefPubMedGoogle Scholar
  30. Fan J, Papadopoulos V (2013) Evolutionary origin of the mitochondrial cholesterol transport machinery reveals a universal mechanism of steroid hormone biosynthesis in animals. PLoS ONE 8:1–20.  https://doi.org/10.1371/journal.pone.0076701 CrossRefGoogle Scholar
  31. Fernie AR, Zhang Y, Sweetlove LJ (2018) Passing the baton: substrate channelling in respiratory metabolism. Research 2018:1–16.  https://doi.org/10.1155/2018/1539325 CrossRefGoogle Scholar
  32. French JB, Jones SA, Deng H et al (2016) Spatial colocalization and functional link of purinosomes with mitochondria. Science 351:733–737.  https://doi.org/10.1126/science.aac6054 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fujino N, Tenma N, Waki T et al (2018) Physical interactions among flavonoid enzymes in snapdragon and torenia reveal the diversity in the flavonoid metabolon organization of different plant species. Plant J 94:372–392.  https://doi.org/10.1111/tpj.13864 CrossRefPubMedGoogle Scholar
  34. Ghosh AK, Saini S, Das S et al (2017) Glucose-6-phosphate dehydrogenase and Trypanothione reductase interaction protects Leishmania donovani from metalloid mediated oxidative stress. Free Radic Biol Med 106:10–23.  https://doi.org/10.1016/j.freeradbiomed.2017.02.008 CrossRefPubMedGoogle Scholar
  35. Giegé P, Heazlewood JL, Roessner-Tunali U et al (2003) Enzymes of glycolysis are functionally associated with the mitochondrion in Arabidopsis cells. Plant Cell 15:2140–2151CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gillevet PM, Dakshinamurti K (1982) Rat-liver fatty-acid-synthesizing complex. Biosci Rep 2:841–848CrossRefPubMedGoogle Scholar
  37. Gleadow RM, Møller BL (2014) Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annu Rev Plant Biol 65:155–185.  https://doi.org/10.1146/annurev-arplant-050213-040027 CrossRefPubMedGoogle Scholar
  38. Gontero B, Cárdenas ML, Ricard J (1988) A functional five-enzyme complex of chloroplasts involved in the Calvin cycle. Eur J Biochem 173:437–443.  https://doi.org/10.1111/j.1432-1033.1988.tb14018.x CrossRefPubMedGoogle Scholar
  39. Gou M, Ran X, Martin DW, Liu C (2018) The scaffold proteins of lignin biosynthetic cytochrome P450 enzymes. Nat Plants 4:299–310.  https://doi.org/10.1038/s41477-018-0142-9 CrossRefPubMedGoogle Scholar
  40. Graham JWA, Williams TCR, Morgan M et al (2007) Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling. Plant Cell 19:3723–3738.  https://doi.org/10.1105/tpc.107.053371 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100.  https://doi.org/10.1016/j.tplants.2005.12.006 CrossRefPubMedGoogle Scholar
  42. Guirimand G, Courdavault V, Lanoue A et al (2010) Strictosidine activation in Apocynaceae: towards a “nuclear time bomb”? BMC Plant Biol 10:182.  https://doi.org/10.1186/1471-2229-10-182 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hayashi M, Crofts N, Oitome NF, Fujita N (2018) Analyses of starch biosynthetic protein complexes and starch properties from developing mutant rice seeds with minimal starch synthase activities. BMC Plant Biol 18:1–15.  https://doi.org/10.1186/s12870-018-1270-0 CrossRefGoogle Scholar
  44. He X-Z, Dixon RA (2000) Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4′-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell 12:1689–1702.  https://doi.org/10.1105/tpc.12.9.1689 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hemm MR, Ruegger MO, Chapple C (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15:179–194.  https://doi.org/10.1105/tpc.006544.et CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hennen-Bierwagen TA, Liu F, Marsh RS et al (2008) Starch biosynthetic enzymes from developing maize endosperm associate in multisubunit complexes. Plant Physiol 146:1892–1908.  https://doi.org/10.1104/pp.108.116285 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hennen-Bierwagen TA, Lin Q, Grimaud F et al (2009) Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. Plant Physiol 149:1541–1559.  https://doi.org/10.1104/pp.109.135293 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Henriques de Jesus MPR, Zygadlo Nielsen A, Busck Mellor S et al (2017) Tat proteins as novel thylakoid membrane anchors organize a biosynthetic pathway in chloroplasts and increase product yield 5-fold. Metab Eng 44:108–116.  https://doi.org/10.1016/j.ymben.2017.09.014 CrossRefPubMedGoogle Scholar
  49. Hildebrandt T, Knuesting J, Berndt C et al (2015) Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub? Biol Chem 396:523–537.  https://doi.org/10.1515/hsz-2014-0295 CrossRefPubMedGoogle Scholar
  50. Holtgrawe D, Scholz A, Altmann B, Scheibe R (2005) Cytoskeleton-associated, carbohydrate-metabolizing enzymes in maize identified by yeast two-hybrid screening. Physiol Plant 125:141–156.  https://doi.org/10.1111/j.1399-3054.2005.00548.x CrossRefGoogle Scholar
  51. Hwang SK, Koper K, Satoh H, Okita TW (2016) Rice endosperm starch phosphorylase (Pho1) assembles with disproportionating enzyme (Dpe1) to form a protein complex that enhances synthesis of malto-oligosaccharides. J Biol Chem 291:19994–20007.  https://doi.org/10.1074/jbc.M116.735449 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Ishikawa T, Watanabe N, Nagano M et al (2011) Bax inhibitor-1: a highly conserved endoplasmic reticulum-resident cell death suppressor. Cell Death Differ 18:1271–1278.  https://doi.org/10.1038/cdd.2011.59 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Islam MM, Wallin R, Wynn RM et al (2007) A novel branched-chain amino acid metabolon. Protein–protein interactions in a supramolecular complex. J Biol Chem 282:11893–11903.  https://doi.org/10.1074/jbc.M700198200 CrossRefPubMedGoogle Scholar
  54. Jansen SM, Groener JEM, Bax W et al (2001) Biosynthesis of phosphatidylcholine from a phosphocholine precursor pool derived from the late endosomal/lysosomal degradation of sphingomyelin. J Biol Chem 276:18722–18727.  https://doi.org/10.1074/jbc.M101817200 CrossRefPubMedGoogle Scholar
  55. Jensen K, Osmani SA, Hamann T et al (2011) Homology modeling of the three membrane proteins of the dhurrin metabolon: catalytic sites, membrane surface association and protein–protein interactions. Phytochemistry 72:2113–2123.  https://doi.org/10.1016/j.phytochem.2011.05.001 CrossRefPubMedGoogle Scholar
  56. Jørgensen K, Rasmussen AV, Morant M et al (2005) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr Opin Plant Biol 8:280–291.  https://doi.org/10.1016/j.pbi.2005.03.014 CrossRefPubMedGoogle Scholar
  57. Kastritis PL, O’Reilly FJ, Bock T et al (2017) Capturing protein communities by structural proteomics in a thermophilic eukaryote. Mol Syst Biol 13:936.  https://doi.org/10.15252/msb.20167412 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ke G, Liu M, Jiang S et al (2016) Directional regulation of enzyme pathways through the control of substrate channeling on a DNA origami scaffold. Angew Chemie Int Ed 55:7483–7486.  https://doi.org/10.1002/anie.201603183 CrossRefGoogle Scholar
  59. Knudsen C, Gallage NJ, Hansen CC et al (2018) Dynamic metabolic solutions to the sessile life style of plants. Nat Prod Rep 30:1140–1155.  https://doi.org/10.1039/c8np00037a CrossRefGoogle Scholar
  60. Kriechbaumer V, Park WJ, Gierl A, Glawischnig E (2006) Auxin biosynthesis in maize. Plant Biol 8:334–339.  https://doi.org/10.1055/s-2006-923883 CrossRefPubMedGoogle Scholar
  61. Kriechbaumer V, Botchway SW, Hawes C (2017) Localization and interactions between Arabidopsis auxin biosynthetic enzymes in the TAA/YUC-dependent pathway. J Exp Bot 68:4195–4207.  https://doi.org/10.1093/jxb/erw195 CrossRefGoogle Scholar
  62. Kudla J, Bock R (2016) Lighting the way to protein–protein interactions: recommendations on best practices for bimolecular fluorescence complementation analyses. Plant Cell 28:1002–1008.  https://doi.org/10.1105/tpc.16.00043 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Kunze M, Hartig A (2013) Permeability of the peroxisomal membrane: lessons from the glyoxylate cycle. Front Physiol 4:204.  https://doi.org/10.3389/fphys.2013.00204 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kwiatkowska M, Polit JT, Stępiński D et al (2014) Lipotubuloids in ovary epidermis of Ornithogalum umbellatum act as metabolons: suggestion of the name “lipotubuloid metabolon”. J Exp Bot 66:1157–1163.  https://doi.org/10.1093/jxb/eru469 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kwiatkowska M, Polit JT, Stepinski D et al (2015) Lipotubuloids in ovary epidermis of Ornithogalum umbellatum act as metabolons: suggestion of the name “lipotubuloid metabolon”. J Exp Bot 66:1157–1163.  https://doi.org/10.1093/jxb/eru469 CrossRefPubMedGoogle Scholar
  66. Lallemand B, Erhardt M, Heitz T, Legrand M (2013) Sporopollenin biosynthetic enzymes interact and constitute a metabolon localized to the endoplasmic reticulum of tapetum cells. Plant Physiol 162:616–625.  https://doi.org/10.1104/pp.112.213124 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Lange I, Poirier BC, Herron BK, Lange BM (2015) Comprehensive assessment of transcriptional regulation facilitates metabolic engineering of isoprenoid accumulation in Arabidopsis. Plant Physiol 169:1595–1606.  https://doi.org/10.1104/pp.15.00573 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Laursen T, Møller BL, Bassard JE (2015) Plasticity of specialized metabolism as mediated by dynamic metabolons. Trends Plant Sci 20:20–32.  https://doi.org/10.1016/j.tplants.2014.11.002 CrossRefPubMedGoogle Scholar
  69. Laursen T, Borch J, Knudsen C et al (2016) Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum. Science 354:890–893.  https://doi.org/10.1126/science.aag2347 CrossRefPubMedGoogle Scholar
  70. Lee Y, Escamilla-Treviño L, Dixon RA, Voit EO (2012) Functional analysis of metabolic channeling and regulation in lignin biosynthesis: a computational approach. PLoS Comput Biol 8:e1002769.  https://doi.org/10.1371/journal.pcbi.1002769 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Li H, Ban Z, Qin H et al (2015) A heteromeric membrane-bound prenyltransferase complex from hop catalyzes three sequential aromatic prenylations in the bitter acid pathway. Plant Physiol 167:650–659.  https://doi.org/10.1104/pp.114.253682 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Li S, Li Y, Smolke CD (2018) Strategies for microbial synthesis of high-value phytochemicals. Nat Chem 10:395–404.  https://doi.org/10.1038/s41557-018-0013-z CrossRefPubMedGoogle Scholar
  73. Lin JL, Zhu J, Wheeldon I (2017a) Synthetic protein scaffolds for biosynthetic pathway colocalization on lipid droplet membranes. ACS Synth Biol 6:1534–1544.  https://doi.org/10.1021/acssynbio.7b00041 CrossRefPubMedGoogle Scholar
  74. Lin Y-C, Chang S-C, Juang R-H (2017b) Plastidial α-glucan phosphorylase 1 complexes with disproportionating enzyme 1 in Ipomoea batatas storage roots for elevating malto-oligosaccharide metabolism. PLoS ONE 12:e0177115.  https://doi.org/10.1111/j.1461-0248.2012.01779.x CrossRefPubMedPubMedCentralGoogle Scholar
  75. Liu F, Makhmoudova A, Lee EA et al (2009) The amylose extender mutant of maize conditions novel protein–protein interactions between starch biosynthetic enzymes in amyloplasts. J Exp Bot 60:4423–4440.  https://doi.org/10.1093/jxb/erp297 CrossRefPubMedGoogle Scholar
  76. Liu Y, Tikunov Y, Schouten RE et al (2018) Anthocyanin biosynthesis and degradation mechanisms in solanaceous vegetables: a review. Front Chem 6:2895–2905.  https://doi.org/10.3389/fchem.2018.00052 CrossRefGoogle Scholar
  77. Luu W, Hart-Smith G, Sharpe LJ, Brown AJ (2015) The terminal enzymes of cholesterol synthesis, DHCR76 and DHCR76, interact physically and functionally. J Lipid Res 56:888–897.  https://doi.org/10.1194/jlr.M056986 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Makhmoudova A, Williams D, Brewer D et al (2014) Identification of multiple phosphorylation sites on maize endosperm starch branching enzyme IIb, a key enzyme in amylopectin biosynthesis. J Biol Chem 289:9233–9246.  https://doi.org/10.1074/jbc.M114.551093 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Mameda R, Waki T, Kawai Y et al (2018) Involvement of chalcone reductase in the soybean isoflavone metabolon: identification of GmCHR5, which interacts with 2-hydroxyisoflavanone synthase. Plant J 96:56–74.  https://doi.org/10.1111/tpj.14014 CrossRefPubMedGoogle Scholar
  80. McKenna MC (2011) Glutamate dehydrogenase in brain mitochondria: do lipid modifications and transient metabolon formation influence enzyme activity? Neurochem Int 59:525–533.  https://doi.org/10.1016/j.neuint.2011.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  81. McKenna MC, Ferreira GC (2016) Enzyme complexes important for the glutamate–glutamine cycle. In: Schousboe A, Sonnewald U (eds) The glutamate/GABA-glutamine cycle. Advances in Neurobiology, vol 13. Springer, Cham, pp 59–98CrossRefGoogle Scholar
  82. McKenna MC, Hopkins IB, Lindauer SL, Bamford P (2006) Aspartate aminotransferase in synaptic and nonsynaptic mitochondria: differential effect of compounds that influence transient hetero-enzyme complex (metabolon) formation. Neurochem Int 48:629–636.  https://doi.org/10.1016/j.neuint.2005.11.018 CrossRefPubMedGoogle Scholar
  83. McMurtrie HL, Cleary HJ, Alvarez BV et al (2004) The bicarbonate transport metabolon. J Enzyme Inhib Med Chem 19:231–236.  https://doi.org/10.1080/14756360410001704443 CrossRefPubMedGoogle Scholar
  84. Mellor SB, Vavitsas K, Nielsen AZ, Jensen PE (2017) Photosynthetic fuel for heterologous enzymes: the role of electron carrier proteins. Photosynth Res 134:329–342.  https://doi.org/10.1007/s11120-017-0364-0 CrossRefPubMedGoogle Scholar
  85. Meyer FM, Gerwig J, Hammer E et al (2011) Physical interactions between tricarboxylic acid cycle enzymes in Bacillus subtilis: evidence for a metabolon. Metab Eng 13:18–27.  https://doi.org/10.1016/j.ymben.2010.10.001 CrossRefPubMedGoogle Scholar
  86. Møller BL (2010) Dynamic metabolons. Science 330:1328–1329.  https://doi.org/10.1126/science.1194971 CrossRefPubMedGoogle Scholar
  87. Møller BL, Conn EE (1980) The biosynthesis of cyanogenic glucosides in higher plants. Channeling of intermediates in dhurrin biosynthesis by a microsomal system from Sorghum bicolor (linn) Moench. J Biol Chem 255:3049–3056PubMedGoogle Scholar
  88. Moore GE, Gadol SM, Robinson JB, Srere PA (1984) Binding of citrate synthase and malate dehydrogenase to mitochondrial inner membranes: tissue distribution and metabolite effects. Biochem Biophys Res Commun 121:612–618CrossRefPubMedGoogle Scholar
  89. Morgunov I, Srere PA (1998) Interaction between citrate synthase and malate dehydrogenase: substrate channeling of oxaloacetate. J Biol Chem 273:29540–29544.  https://doi.org/10.1074/jbc.273.45.29540 CrossRefPubMedGoogle Scholar
  90. Müller A, Weiler EW (2000) IAA-synthase, an enzyme complex from Arabidopsis thaliana catalyzing the formation of indole-3-acetic acid from (S)-Tryptophan. Biol Chem 381:679–686.  https://doi.org/10.1515/BC.2000.088 CrossRefPubMedGoogle Scholar
  91. Nakamura Y (ed) (2015) Biosynthesis of reserve starch. In: Starch. Springer, Tokyo, pp 161–209CrossRefGoogle Scholar
  92. Nielsen KA, Tattersall DB, Jones PR, Møller BL (2008) Metabolon formation in dhurrin biosynthesis. Phytochemistry 69:88–98.  https://doi.org/10.1016/j.phytochem.2007.06.033 CrossRefPubMedGoogle Scholar
  93. Nielsen AZ, Ziersen B, Jensen K et al (2013) Redirecting photosynthetic reducing power toward bioactive natural product synthesis. ACS Synth Biol 2:308–315.  https://doi.org/10.1021/sb300128r CrossRefPubMedGoogle Scholar
  94. Noor E, Bar-Even A, Flamholz A et al (2014) Pathway thermodynamics highlights kinetic obstacles in central metabolism. PLoS Comput Biol 10:e1003483.  https://doi.org/10.1371/journal.pcbi.1003483 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Obata T, Matthes A, Koszior S et al (2011) Alteration of mitochondrial protein complexes in relation to metabolic regulation under short-term oxidative stress in Arabidopsis seedlings. Phytochemistry 72:1081–1091.  https://doi.org/10.1016/j.phytochem.2010.11.003 CrossRefPubMedGoogle Scholar
  96. Obata T, Florian A, Timm S et al (2016) On the metabolic interactions of (photo)respiration. J Exp Bot 67:3003–3014.  https://doi.org/10.1093/jxb/erw128 CrossRefPubMedGoogle Scholar
  97. Oliver DJ, Neuburger M, Bourguignon J, Douce R (1990) Interaction between the component enzymes of the glycine decarboxylase multienzyme complex. Plant Physiol 94:833–839CrossRefPubMedPubMedCentralGoogle Scholar
  98. Owens DK, Alerding AB, Crosby KC et al (2008) Functional Analysis of a Predicted Flavonol Synthase Gene Family in Arabidopsis. Plant Physiol 147:1046–1061.  https://doi.org/10.1104/pp.108.117457 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Panicot M, Minguet EG, Ferrando A et al (2002) A polyamine metabolon involving aminopropyl transferase complexes in Arabidopsis. Plant Cell 14:2539–2551.  https://doi.org/10.1105/tpc.004077.2540 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Park J, Khuu N, Howard ASM et al (2012) Bacterial- and plant-type phosphoenolpyruvate carboxylase isozymes from developing castor oil seeds interact in vivo and associate with the surface of mitochondria. Plant J 71:251–262.  https://doi.org/10.1111/j.1365-313X.2012.04985.x CrossRefPubMedGoogle Scholar
  101. Patra B, Schluttenhofer C, Wu Y et al (2013) Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochim Biophys Acta Gene Regul Mech 1829:1236–1247.  https://doi.org/10.1016/j.bbagrm.2013.09.006 CrossRefGoogle Scholar
  102. Pedley AM, Benkovic SJ (2017) A new view into the regulation of purine metabolism: the purinosome. Trends Biochem Sci 42:141–154.  https://doi.org/10.1016/j.tibs.2016.09.009 CrossRefPubMedGoogle Scholar
  103. Pollmann S, Düchting P, Weiler EW (2009) Tryptophan-dependent indole-3-acetic acid biosynthesis by “IAA-synthase” proceeds via indole-3-acetamide. Phytochemistry 70:523–531.  https://doi.org/10.1016/j.phytochem.2009.01.021 CrossRefPubMedGoogle Scholar
  104. Pronk JT, van der Linden-Beuman A, Verduyn C et al (1994) Propionate metabolism in Saccharomyces cerevisiae: implications for the metabolon hypothesis. Microbiology 140:717–722.  https://doi.org/10.1099/00221287-140-4-717 CrossRefPubMedGoogle Scholar
  105. Qin M, Tian T, Xia S et al (2016) Heterodimer formation of BnPKSA or BnPKSB with BnACOS5 constitutes a multienzyme complex in tapetal cells and is involved in male reproductive development in brassica napus. Plant Cell Physiol 57:1643–1656.  https://doi.org/10.1093/pcp/pcw092 CrossRefPubMedGoogle Scholar
  106. Quilichini TD, Grienenberger E, Douglas CJ (2015) The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry 113:170–182.  https://doi.org/10.1016/j.phytochem.2014.05.002 CrossRefPubMedGoogle Scholar
  107. Ralston L, Yu O (2006) Metabolons involving plant cytochrome P450s. Phytochem Rev 5:459–472.  https://doi.org/10.1007/s11101-006-9014-4 CrossRefGoogle Scholar
  108. Rasmussen S, Dixon RA (1999) Transgene-mediated and elicitor-induced perturbation of metabolic channeling at the entry point into the phenylpropanoid pathway. Plant Cell 11:1537–1552.  https://doi.org/10.1105/tpc.11.8.1537 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Rebeille F, Neuburger M, Douce R (1994) Interaction between glycine decarboxylase, serine hydroxymethyltransferase and tetrahydrofolate polyglutamates in pea leaf mitochondria. Biochem J 302:223–228.  https://doi.org/10.1042/bj3020223 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Robinson JB, Inman L, Sumegi B, Srere PA (1987) Further characterization of the Krebs tricarboxylic acid cycle metabolon. J Biol Chem 262:1786–1790PubMedGoogle Scholar
  111. Sakurada K, Ikegaya H, Ohta H et al (2009) Effects of oximes on mitochondrial oxidase activity. Toxicol Lett 189:110–114.  https://doi.org/10.1016/j.toxlet.2009.05.007 CrossRefPubMedGoogle Scholar
  112. Sanyal N, Arentson BW, Luo M et al (2015) First evidence for substrate channeling between proline catabolic enzymes: a validation of domain fusion analysis for predicting protein–protein interactions. J Biol Chem 290:2225–2234.  https://doi.org/10.1074/jbc.M114.625483 CrossRefPubMedGoogle Scholar
  113. Schluttenhofer C, Yuan L (2015) Regulation of specialized metabolism by WRKY transcription factors. Plant Physiol 167:295–306.  https://doi.org/10.1104/pp.114.251769 CrossRefPubMedGoogle Scholar
  114. Schneider M, Knuesting J, Birkholz O et al (2018) Cytosolic GAPDH as a redox-dependent regulator of energy metabolism. BMC Plant Biol 18:184.  https://doi.org/10.1186/s12870-018-1390-6 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Shatalin K, Lebreton S, Rault-Leonardon M et al (1999) Electrostatic channeling of oxaloacetate in a fusion protein of porcine citrate synthase and porcine mitochondrial malate dehydrogenase. Biochemistry 38:881–889.  https://doi.org/10.1021/bi982195h CrossRefPubMedGoogle Scholar
  116. Sheu KF, Blass JP (1999) The alpha-ketoglutarate dehydrogenase complex. Ann N Y Acad Sci 893:61–78.  https://doi.org/10.1111/j.1749-6632.1999.tb07818.x CrossRefPubMedGoogle Scholar
  117. Shmelev VK, Serebrenikova TP (1997) A study of supramolecular organization of glycogenolytic enzymes in vertebrate muscle tissue. Biochem Mol Biol Int 43:867–872PubMedGoogle Scholar
  118. Shoji T, Hashimoto T (2015) Polyamine-derived alkaloids in plants: molecular elucidation of biosynthesis. In: Kusano T, Suzuki H (eds) Polyamines. Springer, Tokyo, pp 189–200Google Scholar
  119. Shuib S, Ibrahim I, Mackeen MM et al (2018) First evidence for a multienzyme complex of lipid biosynthesis pathway enzymes in Cunninghamella bainieri. Sci Rep 8:3077.  https://doi.org/10.1038/s41598-018-21452-4 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Siu KH, Chen RP, Sun Q et al (2015) Synthetic scaffolds for pathway enhancement. Curr Opin Biotechnol 36:98–106.  https://doi.org/10.1016/j.copbio.2015.08.009 CrossRefPubMedGoogle Scholar
  121. Smirnoff N (2019) Engineering of metabolic pathways using synthetic enzyme complexes. Plant Physiol 179:918–928.  https://doi.org/10.1104/pp.18.01280 CrossRefPubMedGoogle Scholar
  122. Sowah D, Casey JR (2011) An intramolecular transport metabolon: fusion of carbonic anhydrase II to the COOH terminus of the Cl/HCO formula exchanger, AE1. AJP Cell Physiol 301:C336–C346.  https://doi.org/10.1152/ajpcell.00005.2011 CrossRefGoogle Scholar
  123. Spivey HO, Merz JM (1989) Metabolic compartmentation. BioEssays 10:127–130.  https://doi.org/10.1002/bies.950100409 CrossRefPubMedGoogle Scholar
  124. Spivey HO, Ovádi J (1999) Substrate channeling. Methods 19:306–321.  https://doi.org/10.1006/meth.1999.0858 CrossRefPubMedGoogle Scholar
  125. Srere PA (1985) The metabolon. Trends Biochem Sci 10:109–110.  https://doi.org/10.1016/0968-0004(85)90266-X CrossRefGoogle Scholar
  126. Srere PA (2000) Macromolecular interactions: tracing the roots. Trends Biochem Sci 25:150–153CrossRefPubMedGoogle Scholar
  127. Stafford HA (1974) Possible multienzyme complexes regulating the formation of C6–C3 phenolic compounds and lignins in higher plants. Recent Adv Phytochem 8:53–79.  https://doi.org/10.1016/B978-0-12-612408-8.50009-3 CrossRefGoogle Scholar
  128. Stavrinides A, Tatsis EC, Foureau E et al (2015) Unlocking the diversity of alkaloids in Catharanthus roseus: nuclear localization suggests metabolic channeling in secondary metabolism. Chem Biol 22:336–341.  https://doi.org/10.1016/j.chembiol.2015.02.006 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Stępiński D, Kwiatkowska M, Wojtczak A et al (2017) Cutinsomes as building-blocks of Arabidopsis thaliana embryo cuticle. Physiol Plant 161:560–567.  https://doi.org/10.1111/ppl.12610 CrossRefPubMedGoogle Scholar
  130. Sugumaran M, Nellaiappan K, Amaratunga C et al (2000) Insect melanogenesis. III. Metabolon formation in the melanogenic pathway—regulation of phenoloxidase activity by endogenous dopachrome isomerase (decarboxylating) from Manduca sexta. Arch Biochem Biophys 378:393–403.  https://doi.org/10.1006/abbi.2000.1848 CrossRefPubMedGoogle Scholar
  131. Sumegi B, Sherry AD, Malloy CR, Srere PA (1993) Evidence for orientation-conserved transfer in the TCA cycle in Saccharomyces cerevisiae: carbon-13 NMR studies. Biochemistry 32:12725–12729.  https://doi.org/10.1021/bi00210a022 CrossRefPubMedGoogle Scholar
  132. Sweetlove LJ, Fernie AR (2013) The spatial organization of metabolism within the plant cell. Annu Rev Plant Biol 64:723–746.  https://doi.org/10.1146/annurev-arplant-050312-120233 CrossRefPubMedGoogle Scholar
  133. Sweetlove LJ, Fernie AR (2018) The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. Nat Commun 9:2036.  https://doi.org/10.1038/s41467-018-04543-8 CrossRefGoogle Scholar
  134. Tetlow IJ, Wait R, Lu Z et al (2004) Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein–protein interactions. Plant Cell 16:694–708.  https://doi.org/10.1105/tpc.017400 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Tetlow IJ, Beisel KG, Cameron S et al (2008) Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiol 146:1878–1891.  https://doi.org/10.1104/pp.108.116244 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Tresguerres M, Katoh F, Orr E et al (2006) Chloride uptake and base secretion in freshwater fish: a transepithelial ion-transport metabolon? Physiol Biochem Zool 79:981–996.  https://doi.org/10.1086/507658 CrossRefPubMedGoogle Scholar
  137. Van Cleemput M, Cattoor K, De Bosscher K et al (2009) Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds. J Nat Prod 72:1220–1230.  https://doi.org/10.1021/np800740m CrossRefPubMedGoogle Scholar
  138. Vanholme R, Demedts B, Morreel K et al (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905.  https://doi.org/10.1104/pp.110.155119 CrossRefPubMedPubMedCentralGoogle Scholar
  139. Vélot C, Mixon MB, Teige M, Srere PA (1997) Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon. Biochemistry 36:14271–14276.  https://doi.org/10.1021/bi972011j CrossRefPubMedGoogle Scholar
  140. Waki T, Yoo DC, Fujino N et al (2016) Identification of protein–protein interactions of isoflavonoid biosynthetic enzymes with 2-hydroxyisoflavanone synthase in soybean (Glycine max (L.) Merr.). Biochem Biophys Res Commun 469:546–551.  https://doi.org/10.1016/j.bbrc.2015.12.038 CrossRefPubMedGoogle Scholar
  141. Wang N, McCammon JA (2015) Substrate channeling between the human dihydrofolate reductase and thymidylate synthase. Protein Sci 25:79–84.  https://doi.org/10.1002/pro.2720 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Weis C, Pfeilmeier S, Glawischnig E et al (2013) Co-immunoprecipitation-based identification of putative BAX INHIBITOR-1-interacting proteins involved in cell death regulation and plant-powdery mildew interactions. Mol Plant Pathol 14:791–802.  https://doi.org/10.1111/mpp.12050 CrossRefPubMedGoogle Scholar
  143. Weis C, Hildebrandt U, Hoffmann T et al (2014) CYP83A1 is required for metabolic compatibility of Arabidopsis with the adapted powdery mildew fungus Erysiphe cruciferarum. New Phytol 202:1310–1319.  https://doi.org/10.1111/nph.12759 CrossRefPubMedGoogle Scholar
  144. Wheeldon I, Minteer SD, Banta S et al (2016) Substrate channelling as an approach to cascade reactions. Nat Chem 8:299–309.  https://doi.org/10.1038/nchem.2459 CrossRefPubMedGoogle Scholar
  145. Winkel BSJ (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85–107.  https://doi.org/10.1146/annurev.arplant.55.031903.141714 CrossRefPubMedGoogle Scholar
  146. Winkel BSJ (2009) Metabolite channeling and multi-enzyme complexes. In: Osbourn AE, Lanzotti V (eds) Plant-derived natural products. Springer, New York, pp 195–208CrossRefGoogle Scholar
  147. Winzer T, Kern M, King AJ et al (2015) Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein. Science 349:309–312.  https://doi.org/10.1126/science.aab1852 CrossRefPubMedGoogle Scholar
  148. Xing S, Wallmeroth N, Berendzen KW, Grefen C (2016) Techniques for the analysis of protein–protein interactions in vivo. Plant Physiol 171:727–758.  https://doi.org/10.1104/pp.16.00470 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Yanatori I, Richardson DR, Toyokuni S, Kishi F (2017) The iron chaperone poly(rC)-binding protein 2 forms a metabolon with the heme oxygenase 1/cytochrome P450 reductase complex for heme catabolism and iron transfer. J Biol Chem 292:13205–13229.  https://doi.org/10.1074/jbc.M117.776021 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Zhang Y, Beard KFM, Swart C et al (2017) Protein–protein interactions and metabolite channelling in the plant tricarboxylic acid cycle. Nat Commun 8:15212.  https://doi.org/10.1038/ncomms15212 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Zhang Y, Swart C, Alseekh S et al (2018) The extra-pathway interactome of the TCA cycle: expected and unexpected metabolic interactions. Plant Physiol 177:966–979.  https://doi.org/10.1104/pp.17.01687 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5:334–338.  https://doi.org/10.1093/mp/ssr104 CrossRefPubMedGoogle Scholar
  153. Zhao A, Tsechansky M, Ellington AD, Marcotte EM (2014) Revisiting and revising the purinosome. Mol BioSyst 10:369–374.  https://doi.org/10.1039/c3mb70397e CrossRefPubMedPubMedCentralGoogle Scholar
  154. Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–769.  https://doi.org/10.1146/annurev.arplant.59.032607.092730 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biochemistry, Center for Plant Science InnovationUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations