Skip to main content

Advertisement

Log in

Preparative separation and bioactivity of oligomeric proanthocyanidins

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Oligomeric proanthocyanidins are among the most widely distributed polyphenols in the plant kingdom, being endowed with antioxidant, anti-inflammatory, antimicrobial, immunomodulatory, antitumor and cardioprotective activities. Since oligomeric proanthocyanidins are found in limited amounts in plants and plant-derived products, there is a great need for efficient separation methodologies that can supply analytical quality standards or sufficient material for further bioassays. By efficiently providing a good molar mass distribution of oligomeric proanthocyanidins according to their degree of polymerization, Sephadex LH is the most used sorbent in column chromatography, together with other size exclusion polymers, such as Toyopearl, Diaion, MCI gel CHP or Amberlite. Combination of normal and reversed-phase high pressure liquid chromatography can significantly reduce the total number of chromatographic steps required to obtain high purity oligomeric proanthocyanidins, whereas hydrophilic interaction liquid chromatography on Diol phases can yield proanthocyanidins with a higher degree of polymerization. By lacking a solid support, countercurrent separations can solve issues related to irreversible adsorption, giving higher recoveries, low sample denaturation and a facile scale-up from analytical to industrial production. By taking advantage of the complementarity of all these chromatographic techniques, high-purity oligomeric proanthocyanidin fractions or individual compounds can be obtained on a large scale in a reduced number of separation steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABTS:

2-2′-Azino-di-(3-ethylbenzthiazoline sulfonic acid)

BHA:

Butylhydroxyanisole

CC:

Column chromatography

CCS:

Countercurrent separation

CPC:

Centrifugal partition chromatography

DP:

Degree of polymerization

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

EC50 :

Efficient concentration 50%

FRAP:

Ferric reducing antioxidant power

HILIC:

Hydrophilic interaction liquid chromatography

HPLC:

High-pressure liquid chromatography

HSCCC:

High-speed countercurrent chromatography

IFN:

Interferon

IL:

Interleukin

LPLC:

Low-pressure liquid chromatography

LPS:

Lipopolysaccharide

LSRCCC:

Low-speed rotary countercurrent chromatography

MIP:

Macrophage inflammatory protein

MLCCC:

Multi-layer countercurrent chromatography

MMP:

Metalloproteinase

MPLC:

Medium-pressure liquid chromatography

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate

NBT:

Nitroblue tetrazolium

NK:

Natural killer

NO:

Nitric oxide

NP:

Normal-phase

PA:

Proanthocyanidin

PC:

Procyanidin

PD:

Prodelphinidin

PMN:

Polymorphonuclear

RP:

Reversed-phase

TEAC:

Trolox equivalent antioxidant capacity

Th:

T helper

TLC:

Thin-layer chromatography

TNF-α:

Tumor necrosis factor alpha

References

  • Adamson GE, Lazarus SA, Mitchell AE et al (1999) HPLC method for the quantification of procyanidins in cocoa and chocolate samples and correlation to total antioxidant capacity. J Agric Food Chem 47:4184–4188

    CAS  PubMed  Google Scholar 

  • Ahmad A, Siddique JA, Laskar MA et al (2015) New generation Amberlite XAD resin for the removal of metal ions: a review. J Environ Sci 31:104–123

    CAS  Google Scholar 

  • Antal DS, Schwaiger S, Ellmerer-Muller EP, Stuppner H (2010) Cotinus coggygria wood novel flavanone dimer and development of an HPLC/UV/MS method for the simultaneous determination of fourteen phenolic constituents. Planta Med 76:1765–1772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Appeldoorn MM, Sanders M, Vincken JP et al (2009) Efficient isolation of major procyanidin A-type dimers from peanut skins and B-type dimers from grape seeds. Food Chem 117:713–720

    CAS  Google Scholar 

  • Aron PM, Kennedy JA (2008) Flavan-3-ols: nature, occurrence and biological activity. Mol Nutr Food Res 52:79–104

    CAS  PubMed  Google Scholar 

  • Bae YS, Burger JFW, Steynberg JP et al (1994) Flavan procyanidin glycosides from the bark of blackjack oak. Phytochemistry 35:473–478

    CAS  PubMed  Google Scholar 

  • Barreiros ALBS, David JP, de Queiroz LP, David JM (2000) A-type proanthocyanidin antioxidant from Dioclea lasiophylla. Phytochemistry 55:805–808

    CAS  PubMed  Google Scholar 

  • Beecher GR (2004) Proanthocyanidins: biological activities associated with human health. Pharm Biol 42:2–20

    CAS  Google Scholar 

  • Bicker J, Petereit F, Hensel A (2009) Proanthocyanidins and phloroglucinol derivative from Rumex acetosa L. Fitoterapia 80:483–495

    CAS  PubMed  Google Scholar 

  • Brown RH, Mueller-Harvey I, Zeller WE et al (2017) Facile purification of milligram to gram quantities of condensed tannins according to mean degree of polymerization and flavan-3-ol subunit composition. J Agric Food Chem 65:8072–8082

    CAS  PubMed  Google Scholar 

  • Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Acta 402:231–247

    CAS  Google Scholar 

  • Caligiuri MA (2008) Human natural killer cells. Blood 112:461–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cos P, De Bruyne T, Hermans N et al (2004) Proanthocyanidins in health care: current and new trends. Curr Med Chem 11:1345–1359

    CAS  PubMed  Google Scholar 

  • Cui CB, Tezuka Y, Yamashita H et al (1993) Constituents of a fern, Davallia mariesii Moore. V. Isolation and structures of Davallin, a new tetrameric proanthocyanidin and two new phenolic glycosides. Chem Pharm Bull 41:1491–1497

    CAS  Google Scholar 

  • Czerwinska ME, Dudek MK, Pawłowska KA et al (2018) The influence of procyanidins isolated from small-leaved lime flowers (Tilia cordata Mill.) on human neutrophils. Fitoterapia 127:115–122

    CAS  PubMed  Google Scholar 

  • da Silva JMR, Rigaud J, Cheynier V et al (1991) Procyanidin dimers and trimers from grape seeds. Phytochemistry 30:1259–1264

    Google Scholar 

  • de Mello JCP, Petereit F, Nahrsdtedt A (1996a) Flavan-3-ols and prodelphinidins from Stryphnodendron adstringens. Phytochemistry 41:807–813

    Google Scholar 

  • de Mello JCP, Petereit F, Nahrsdtedt A (1996b) Flavan-3-ols and prodelphinidins from Stryphnodendron adstringens. Phytochemistry 42:857–862

    Google Scholar 

  • de Mello JCP, Petereit F, Nahrstedt A (1999) Prorobinetinidins from Stryphnodendron adstringens. Phytochemistry 51:1105–1107

    Google Scholar 

  • Degenhardt A, Engelhardt UH, Lakenbrink C, Winterhalter P (2000) Preparative separation of polyphenols from tea by high-speed countercurrent chromatography. J Agric Food Chem 48:3425–3430

    CAS  PubMed  Google Scholar 

  • Derdelinckx G, Jerumanis J (1984) Separation of malt and hop proanthocyanidins on Fractogel TSK HW-40 (S). J Chromatogr A 285:231–234

    CAS  Google Scholar 

  • Diaz-de-Cerio E, Pasini F, Verardo V et al (2017) Psidium guajava L. leaves as source of proanthocyanidins: optimization of the extraction method by RSM and study of the degree of polymerization by NP–HPLC–FLD–ESI–MS. J Pharm Biomed Anal 133:1–7

    CAS  PubMed  Google Scholar 

  • Dixon RA, Xie DY, Sharma SB (2004) Proanthocyanidins—a final frontier in flavonoid research? New Phytol 165:9–28

    Google Scholar 

  • Dudek MK, Glinski VB, Davey MH et al (2017) Trimeric and tetrameric A-type procyanidins from peanut skins. J Nat Prod 80:415–426

    CAS  PubMed  Google Scholar 

  • Esatbeyoglu T, Wray V, Winterhalter P (2015) Isolation of dimeric, trimeric, tetrameric and pentameric procyanidins from unroasted cocoa beans (Theobroma cacao L.) using countercurrent chromatography. Food Chem 179:278–289

    CAS  PubMed  Google Scholar 

  • Ezaki-Furuichi E, Nonaka GI, Nishioka I, Hayashi K (1986) Isolation and structures of procyanidins (condensed tannins) from Rhaphiolepis umbellata. Agric Biol Chem 50:2061–2067

    CAS  Google Scholar 

  • Fan J, Ding X, Gu W (2007) Radical-scavenging proanthocyanidins from sea buckthorn seed. Food Chem 102:168–177

    CAS  Google Scholar 

  • Ferreira D, Marais JPJ, Coleman CM, Slade D (2010) Proanthocyanidins: chemistry and biology. In: Mander L, Liu HB (eds) Comprehensive natural products II. Elsevier Science, London, pp 605–661

    Google Scholar 

  • Fine AM (2000) Oligomeric proanthocyanidin complexes: history, structure, and phytopharmaceutical applications. Altern Med Rev 5:144–151

    CAS  PubMed  Google Scholar 

  • Foo LY, Lu Y (1999) Isolation and identification of procyanidins in apple pomace. Food Chem 64:511–588

    CAS  Google Scholar 

  • Foo LY, Lu Y, McNabb WC et al (1997) Proanthocyanidins from Lotus pedunculatus. Phytochemistry 45:1689–1696

    CAS  Google Scholar 

  • Friesen JB, McAlpine JB, Chen SN, Pauli GF (2015) Countercurrent separation of natural products: an update. J Nat Prod 78:1765–1796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Qiao L, Cao Y et al (2014) Structural elucidation and antioxidant activities of proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves. PLoS ONE 9(5):e96162

    PubMed  PubMed Central  Google Scholar 

  • Fu Y, Ye X, Lee M et al (2017) Prodelphinidins isolated from Chinese bayberry leaves induces apoptosis via the p53-dependent signaling pathways in OVCAR-3 human ovarian cancer cells. Oncol Lett 13:3210–3218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimaki T, Mori S, Horikawa M, Fukui Y (2018) Isolation of proanthocyanidins from red wine, and their inhibitory effects on melanin synthesis in vitro. Food Chem 248:61–69

    CAS  PubMed  Google Scholar 

  • Gong Y, Fang F, Zhang X et al (2018) B type and complex A/B type epicatechin trimers isolated from Litchi pericarp aqueous extract show high antioxidant and anticancer activity. Int J Mol Sci 19:301

    PubMed Central  Google Scholar 

  • Grace MH, Warlick CW, Neff SA, Lila MA (2014) Efficient preparative isolation and identification of walnut bioactive components using high-speed counter-current chromatography and LC–ESI–IT–TOF–MS. Food Chem 158:229–238

    CAS  PubMed  Google Scholar 

  • Gu L, Kelm M, Hammerstone JF et al (2002) Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normal-phase HPLC–MS fluorescent detection method. J Agric Food Chem 50:4852–4860

    CAS  PubMed  Google Scholar 

  • Gu L, Kelm MA, Hammerstone JF et al (2003) Screening of foods containing proanthocyanidins and their structural characterization using LC–MS/MS and thiolytic degradation. J Agric Food Chem 51:7513–7521

    CAS  PubMed  Google Scholar 

  • Hashimoto F, Nonaka GI, Nishioka I (1989) Tannins and related compounds. XC. 8-C-Ascorbyl (–)-epigallocatechin 3-O-gallate and novel dimeric flavan-3-ols, oolonghomobisflavans A and B, from oolong tea. Chem Pharm Bull 37:3255–3263

    CAS  Google Scholar 

  • Haslam E (1998) Practical polyphenolics: from structure to molecular recognition and physiological action. Cambridge University Press, New York

    Google Scholar 

  • Hatano T, Miyatake H, Natsume M et al (2002) Proanthocyanidin glycosides and related polyphenols from cacao liquor and their antioxidant effects. Phytochemistry 59:749–758

    CAS  PubMed  Google Scholar 

  • Hellenbrand N, Sendker J, Lechtenberg M et al (2015) Isolation and quantification of oligomeric and polymeric procyanidins in leaves and flowers of Hawthorn (Crataegus spp.). Fitoterapia 104:14–22

    CAS  PubMed  Google Scholar 

  • Hellstrom J, Sinkkonen J, Karonen M, Mattila P (2007) Isolation and structure elucidation of procyanidin oligomers from Saskatoon Berries (Amelanchier alnifolia). J Agric Food Chem 55:157–164

    PubMed  Google Scholar 

  • Hsu FL, Nonaka GI, Nishioka I (1985a) Tannins and related compounds. XXXI. Isolation and characterization of proanthocyanidins in Kandelia candel (L.) Druce. Chem Pharm Bull 22:3142–3152

    Google Scholar 

  • Hsu FL, Nonaka GI, Nishioka I (1985b) Tannins and related compounds. XXXIII. Isolation and characterization of procyanidins in Dioscorea cirrhosa Lour. Chem Pharm Bull 33:3293–3298

    CAS  Google Scholar 

  • Idowu TO, Ogundaini AO, Salau AO et al (2010) Doubly linked, A-type proanthocyanidin trimer and other constituents of Ixora coccinea leaves and their antioxidant and antibacterial properties. Phytochemistry 71:2092–2098

    CAS  PubMed  Google Scholar 

  • Ito C, Oki T, Yoshida T et al (2013) Characterization of proanthocyanidins from black soybeans: isolation and characterization of proanthocyanidin oligomers from black soy bean seed coats. Food Chem 141:2507–2512

    CAS  PubMed  Google Scholar 

  • Jeong DE, Cho JY, Lee YG et al (2017) Isolation of five proanthocyanidins from pear (Pyrus pyrifolia Nakai) fruit peels. Food Sci Technol 26:1209–1215

    CAS  Google Scholar 

  • Jiang G, Du F, Fang G (2014) Two new proanthocyanidins from the leaves of Garcinia multiflora. Nat Prod Res 28:449–453

    CAS  PubMed  Google Scholar 

  • Jin S, Eerdunbayaer, Doi A et al (2012) Polyphenolic constituents of Cynomorium songaricum Rupr. and antibacterial effect of polymeric proanthocyanidin on methicillin-resistant Staphylococcus aureus. J Agric Food Chem 60:7297–7305

    CAS  PubMed  Google Scholar 

  • Karioti A, Bilia AR, Gabbiani C et al (2009) Proanthocyanidin glycosides from the leaves of Quercus ilex L. (Fagaceae). Tetrahedron Lett 50:1771–1776

    CAS  Google Scholar 

  • Kashiwada Y, Nonaka GI, Nishioka I (1986) Tannins and related compounds. XLVIII. Rhubarb (7). Isolation and characterization of new dimeric and trimeric procyanidins. Pharm Chem Bull 34:4083–4091

    CAS  Google Scholar 

  • Kashiwada Y, Iizuka H, Yoshioka K et al (1990) Tannins and related compounds. XCIII. Occurrence of enantiomeric proanthocyanidins in the Leguminosae plants, Cassia fistula L. and C. javanica L. Chem Pharm Bull 38:888–893

    CAS  Google Scholar 

  • Kelm MA, Johnson JC, Robbins RJ et al (2006) High-performance liquid chromatography separation and purification of cacao (Theobroma cacao L.) procyanidins according to degree of polymerization using diol stationary phase. J Agric Food Chem 54:1571–1576

    CAS  PubMed  Google Scholar 

  • Kohler N, Wray V, Winterhalter P (2008) Preparative isolation of procyanidins from grape seed extracts by high-speed counter-current chromatography. J Chromatogr A 1177:114–125

    CAS  PubMed  Google Scholar 

  • Kylli P, Nohynek L, Puupponen-Pimia R et al (2011) Lingonberry (Vaccinium vitis-idaea) and European cranberry (Vaccinium microcarpon) proanthocyanidins: isolation, identification, and bioactivities. J Agric Food Chem 59:3373–3384

    CAS  PubMed  Google Scholar 

  • Lea AGH (1979) High performance liquid chromatography of cider procyanidins. J Sci Food Agric 30:833–838

    CAS  Google Scholar 

  • Leppa MM, Karonen M, Tahtinen P et al (2018) Isolation of chemically well-defined semipreparative liquid chromatography fractions from complex mixtures of proanthocyanidin oligomers and polymers. J Chromatogr A 1576:67–79

    CAS  PubMed  Google Scholar 

  • Li L, Zhang S, Cui Y et al (2016) Preparative separation of cacao bean procyanidins by high-speed counter-current chromatography. J Chromatogr B 1036–1037:10–19

    Google Scholar 

  • Li Y, Li L, Cui Y et al (2017) Separation and purification of polyphenols from red wine extracts using high speed counter current chromatography. J Chromatogr B 1054:105–113

    CAS  Google Scholar 

  • Liu YZ, Cao YG, Ye JQ et al (2010) Immunomodulatory effects of proanthocyanidin A-1 derived in vitro from Rhododendron spiciferum. Fitoterapia 81:108–114

    CAS  PubMed  Google Scholar 

  • Lo Faro ML, Fox B, Whatmore JL et al (2014) Hydrogen sulfide and nitric oxide interactions in inflammation. Nitric Oxide 41:38–47

    CAS  PubMed  Google Scholar 

  • Lou H, Yamazaki Y, Sasaki T et al (1999) A-type proanthocyanidins from peanut skins. Phytochemistry 51:297–308

    CAS  Google Scholar 

  • Luca SV, Glowniak K, Skalicka-Wozniak K (2018) Coumarins: analytical and preparative techniques. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Hoboken, pp 1–45. https://doi.org/10.1002/9780470027318.a9925.pub2

    Chapter  Google Scholar 

  • Luca SV, Macovei I, Bujor A et al (2019) Bioactivity of dietary polyphenols: the role of metabolites. Crit Rev Food Sci Nutr 7:1–34. https://doi.org/10.1080/10408398.2018.1546669

    Article  CAS  Google Scholar 

  • Lv H, Yuan Z, Wang X et al (2015) Rapid separation of three proanthocyanidin dimers from Iris lactea Pall. var. chinensis (Fisch.) Koidz by high-speed counter-current chromatography with continuous sample load and double-pump balancing mode. Phytochem Anal 26:444–453

    CAS  PubMed  Google Scholar 

  • Ma W, Waffo-Teguo P, Jourdes M et al (2016) Chemical affinity between tannin size and salivary protein binding abilities: implications for wine astringency. PLoS ONE 11:e0161095

    PubMed  PubMed Central  Google Scholar 

  • McMurrough I, Baert T (1994) Identification of proanthocyanidins in beer and their direct measurement with a dual electrode electrochemical detector. J Inst Brew 100:409–416

    CAS  Google Scholar 

  • McMurrough I, Madigan D (1996) Semipreparative chromatographic procedure for the isolation of dimeric and trimeric proanthocyanidins from barley. J Agric Food Chem 44:1731–1735

    CAS  Google Scholar 

  • Moldoveanu SC, David V (2013) Essentials in modern HPLC separations. Academic Press, Oxford, pp 145–190

    Google Scholar 

  • Monagas M, Quintanilla-Lopez JE, Gomez-Cordoves C et al (2010) MALDI-TOF MS analysis of plant proanthocyanidins. J Pharm Biomed Anal 51:358–372

    CAS  PubMed  Google Scholar 

  • Morimoto S, Nonaka GI, Nishioka I (1985) Tannins and related compounds. XXXV. Proanthocyanidins with a doubly linked unit from the root bark of Cinnamomum sieboldii Meisner. Chem Pharm Bull 33:4338–4345

    CAS  Google Scholar 

  • Morimoto S, Nonaka GI, Nishioka I (1986) Tannins and related compounds. XXXVIII. Isolation and characterization of flavanol-3-ol glucosides and procyanidin oligomers from cassia bark (Cinnamomum cassia Blume). Chem Pharm Bull 34:633–642

    CAS  Google Scholar 

  • Morimoto S, Nonaka GI, Nishioka I (1987) Tannins and related compounds. LIX. Aesculitannins, novel proanthocyanidins with doubly-bonded structures from Aesculus hippocastanum L. Chem Pharm Bull 35:4717–4729

    CAS  Google Scholar 

  • Morimoto S, Nonaka GI, Nishioka I (1988) Tannins and related compounds. LX. Isolation and characterization of proanthocyanidins with a doubly-linked unit from Vaccinium vitis-idaea L. Chem Pharm Bull 36:33–38

    CAS  Google Scholar 

  • Natsume M, Osakabe N, Yamagishi M et al (2000) Analyses of polyphenols in cacao liquor, cocoa, and chocolate by normal-phase and reversed-phase HPLC. Biosci Biotechnol Biochem 64:2581–2587

    CAS  PubMed  Google Scholar 

  • Neilson AP, O’Keefe SF, Bolling BW (2016) High-molecular-weight proanthocyanidins in foods: overcoming analytical challenges in pursuit of novel dietary bioactive components. Annu Rev Food Sci Technol 7:43–64

    CAS  PubMed  Google Scholar 

  • Newton AC (1995) Protein kinase C: structure, function, and regulation. J Biol Chem 270:28495–28498

    CAS  PubMed  Google Scholar 

  • Nile SH, Park SW (2014) Edible berries: bioactive components and their effect on human health. Nutrition 30:134–144

    CAS  PubMed  Google Scholar 

  • Nonaka GI, Kawahar O, Nishioka I (1982) Tannins and related compounds. VIII. A new type of proanthocyanidin, cinchonains IIa and IIb from Cinchona succirubra. Chem Pharm Bull 30:4277–4282

    CAS  Google Scholar 

  • Nonaka GI, Kawahara O, Nishioka I (1983a) Tannins and related compounds. XV. A new class of dimeric flavan-3-ol gallates, theasinensins A and B, and proanthocyanidin gallates from green tea leaf. Chem Pharm Bull 31:3906–3914

    CAS  Google Scholar 

  • Nonaka GI, Morimoto S, Nishioka I (1983b) Tannins and related compounds. Part 13. Isolation and structures of trimeric, tetrameric, and pentameric proanthocyanidins from cinnamon. J Chem Soc Perkin Trans 1:2139–2145

    Google Scholar 

  • Nonaka GI, Goto Y, Kinjo JE et al (1987) Tannins and related compounds. LII. Studies on the constituents of the leaves of Thujopsis dolabrata Sieb. et Zucc. Chem Pharm Bull 35:1105–1108

    CAS  Google Scholar 

  • Nonaka GI, Aiko Y, Aritake K, Nishioka I (1992) Tannins and related compounds. CXIX. Samarangenins A and B, novel proanthocyanidins with doubly bond structures, from Syzygium samarangens and S. aqueum. Chem Pharm Bull 40:2671–2673

    CAS  Google Scholar 

  • Nyemeck MN, Bikobo DSN, Zintchem AAA et al (2017) A new procyanidin B from Campylospermum zenkeri (Ochnaceae) and antiplasmodial activity of two derivatives of (±)-serotobenine. Nat Prod Res 31:2875–2884

    Google Scholar 

  • Oldoni TLC, Melo PS, Massarioli AP et al (2016) Bioassay-guided isolation of proanthocyanidins with antioxidant activity from peanut (Arachis hypogaea) skin by combination of chromatography techniques. Food Chem 192:306–312

    CAS  PubMed  Google Scholar 

  • Ou K, Gu L (2014) Absorption and metabolism of proanthocyanidins. J Funct Foods 7:43–53

    CAS  Google Scholar 

  • Park KH, Kim SK, Choi SE et al (2010) Three new stereoisomers of condensed tannins from the roots of Rosa multiflora. Chem Pharm Bull 58:1227–1231

    CAS  Google Scholar 

  • Payne SE, Flematti GR, Reeder A et al (2018) Procyanidin A2 in the Australian plant Alectryon oleifolius has anthelmintic activity against equine cyathostomins in vitro. Vet Parasitol 249:63–69

    CAS  PubMed  Google Scholar 

  • Pedan V, Fischer N, Rohn S (2016) Extraction of cocoa proanthocyanidins and their fractionation by sequential centrifugal partition chromatography and gel permeation chromatography. Anal Bioanal Chem 408:5905–5914

    CAS  PubMed  Google Scholar 

  • Phansalkar RS, Nam JW, Chen SN et al (2015) A galloylated dimeric proanthocyanidin from grape seed exhibits dentin biomodification potential. Fitoterapia 101:169–178

    CAS  PubMed  Google Scholar 

  • Phansalkar RS, Nam JW, Chen SN et al (2018) Centrifugal partition chromatography enables selective enrichment of trimeric and tetrameric proanthocyanidins for biomaterial development. J Chromatogr A 1535:55–62

    CAS  PubMed  Google Scholar 

  • Poole CF (2003) The essence of chromatography. Elsevier Science BV, Amsterdam

    Google Scholar 

  • Porter LJ (1988) Flavans and proanthocyanidins. In: Harborne JB (ed) The flavonoids. Chapman & Hall, London

    Google Scholar 

  • Prasad D (2000) Two A-type proanthocyanidins from Prunus armeniaca roots. Fitoterapia 71:245–253

    CAS  PubMed  Google Scholar 

  • Rigaud J, Escribano-Bailon MT, Prieur C et al (1993) Normal-phase high-performance liquid chromatographic separation of procyanidins from cacao beans and grape seeds. J Chromatogr A 654:255–260

    CAS  Google Scholar 

  • Savitri Kumar N, Wijekoon WMAMB, Kumar V et al (2009) Separation of proanthocyanidins isolated from tea leaves using high-speed counter-current chromatography. J Chromatogr A 1216:4295–4302

    CAS  PubMed  Google Scholar 

  • Savitri Kumar N, Ratnayake Bandara BM, Hettihewa SK (2015) Isolation of a tetrameric A-type proanthocyanidin containing fraction from fresh tea (Camellia sinensis) leaves using high-speed counter-current chromatography. J Liq Chromatogr Rel Technol 38:1571–1575

    Google Scholar 

  • Shen Z, Haslam E, Falshaw C, Begley M (1986) Procyanidins and polyphenols of Larix gmelini bark. Phytochemistry 25:2629–2635

    CAS  Google Scholar 

  • Shibusawa Y, Yanagida A, Ito A et al (2000) High-speed counter-current chromatography of apple procyanidins. J Chromatogr A 886:65–73

    CAS  PubMed  Google Scholar 

  • Shibusawa Y, Yanagida A, Isozaki M et al (2001) Separation of apple procyanidins into different degrees of polymerization by high-speed counter-current chromatography. J Chromatogr A 915:253–257

    CAS  Google Scholar 

  • Shoji T, Mutsuga M, Nakamura T et al (2003) Isolation and structural elucidation of some procyanidins from apple by low-temperature nuclear magnetic resonance. J Agric Food Chem 51:3806–3813

    CAS  PubMed  Google Scholar 

  • Shoji T, Masumoto S, Moriichi N et al (2006) Apple (Malus pumila) procyanidins fractionated according to the degree of polymerization using normal-phase chromatography and characterized by HPLC–ESI/Ms and MALDI–TOF–MS. J Chromatogr A 1102:206–213

    CAS  PubMed  Google Scholar 

  • Sieniawska E (2015) Activities of tannins-from in vitro studies to clinical trials. Nat Prod Commun 10:1877–1884

    PubMed  Google Scholar 

  • Skalicka-Wozniak K, Garrard I (2015) A comprehensive classification of solvent systems used for natural product purifications in countercurrent and centrifugal partition chromatography. Nat Prod Rep 32:1556–1561

    CAS  PubMed  Google Scholar 

  • Smeriglio A, Barreca D, Bellocco E et al (2017) Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br J Pharmacol 174:1244–1262

    CAS  PubMed  Google Scholar 

  • Spiegler V, Sendker J, Petereit F et al (2015) Bioassay-guided fractionation of a leaf extract from Combretum mucronatum with anthelmintic activity: oligomeric procyanidins as the active principle. Molecules 20:14810–14832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stern R, Jedrzejas MJ (2006) Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev 106:818–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun D, Wong H, Foo LY (1987) Proanthocyanidin dimers and polymers from Quercus dentata. Phytochemistry 26:1825–1829

    CAS  Google Scholar 

  • Wiesneth S, Petereit F, Jurgenliemk G (2015) Salix daphnoides: a screening for oligomeric and polymeric proanthocyanidins. Molecules 20:13764–13779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams VM, Porter LJ, Hemingway RW (1983) Molecular weight profiles of proanthocyanidins polymers. Phytochemistry 22:569–572

    CAS  Google Scholar 

  • Wood P, Ignatova S, Janaway L et al (2007) Counter-current chromatography separation scaled up from an analytical column to a production column. J Chromatogr A 1151:25–30

    CAS  PubMed  Google Scholar 

  • Xie DY, Dixon RA (2005) Proanthocyanidin biosynthesis—still more questions than answers? Phytochemistry 66:2127–2144

    CAS  PubMed  Google Scholar 

  • Xiong J, Grace MH, Esposito D et al (2017) Polyphenols isolated from Acacia mearnsii bark with anti-inflammatory and carbolytic enzyme inhibitory activities. Chin J Nat Med 15:816–824

    PubMed  Google Scholar 

  • Yanagida A, Kanda T, Shoji T et al (1999) Fractionation of apple procyanidins by size-exclusion chromatography. J Chromatogr A 855:181–190

    CAS  PubMed  Google Scholar 

  • Yanagida A, Kanda T, Takahashi T et al (2000) Fractionation of apple procyanidins according to their degree of polymerization by normal-phase high-performance liquid chromatography. J Chromatogr A 890:251–259

    CAS  PubMed  Google Scholar 

  • Yang L, Xian D, Xiong X et al (2018) Proanthocyanidins against oxidative stress: from molecular mechanisms to clinical applications. Biomed Res Int. https://doi.org/10.1155/2018/8584136

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu RJ, Liu HB, Yu Y et al (2016) Anticancer activities of proanthocyanidins from the plant Urceola huaitingii and their synergistic effects in combination with chemotherapeutics. Fitoterapia 112:175–182

    CAS  PubMed  Google Scholar 

  • Zhang N, Bevan MJ (2011) CD8 + T cells: foot soldiers of the immune system. Immunity 35:161–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Li L, Cui Y et al (2017) Preparative high-speed counter-current chromatography separation of grape seed proanthocyanidins according to degree of polymerization. Food Chem 219:399–407

    CAS  PubMed  Google Scholar 

  • Zhong H, Xue Y, Lu X et al (2018) The effects of different degrees of procyanidin polymerization on the nutrient absorption and digestive enzyme activity in mice. Molecules 23:2916

    PubMed Central  Google Scholar 

  • Zumdick S, Petereit F, Luftmann H, Hensel A (2009) Preparative isolation of oligomeric procyanidins from Hawthorn (Crataegus spp.). Pharmazie 64:286–288

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anca Miron or Krystyna Skalicka-Woźniak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luca, S.V., Bujor, A., Miron, A. et al. Preparative separation and bioactivity of oligomeric proanthocyanidins. Phytochem Rev 19, 1093–1140 (2020). https://doi.org/10.1007/s11101-019-09611-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-019-09611-5

Keywords

Navigation