Skip to main content
Log in

Recent approaches on the genomic analysis of the phytopathogenic fungus Colletotrichum spp.

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

A Correction to this article was published on 17 October 2020

This article has been updated

Abstract

The genus Colletotrichum is considered one of the most relevant plant pathogens insofar as it is capable of causing damage to a wide variety of herbaceous and woody plants. The genome of 25 species of Colletotrichum, including 28 different strains, has recently been published; 15 of these strains are still at the annotation stage and thirteen are now at the ‘Fungal Standard Draft’ stage. This has enabled us to conduct a search of the gene sequences involved in the enzyme synthesis of the secondary metabolism of these fungi. Hence, the aim of this review is to provide an overview of the recent advances that have been achieved in the genome of Colletotrichum species and that serve as a source of information for future works which focusing on the correlation between the genetic sequences and the mechanisms of synthesis of the enzymes specific to the secondary metabolism of these filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 17 October 2020

    The authors wish to make it known that we mistakenly used some unpublished data from the Joint Genome Institute (JGI) database in some parts of this article in a way that violates the JGI usage agreement. We apologize to the principal investigators of the JGI Community Sequencing Projects (below) for this error.

Abbreviations

ACT:

Actin

AMP:

Adenosine monophosphate

CHS-1:

Chitin synthase 1

DMATS:

Dimethyl allyl tryptophan synthases

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

HIS3:

Histone 3

ITS:

Internal transcribed spacer

JGI:

Joint Genome Institute

NRPS:

Non-ribosomal peptide synthases

PKS:

Polyketide synthases

PKS–NRPS:

Hybrid polyketide synthases–non ribosomal peptide synthetases

SDR:

Short-chain dehydrogenase/reductase

SMURF:

Secondary Metabolite Unique Regions Finder

TS:

Terpene synthases

TUB2:

β-Tubulin

References

  • Bailey JA, Jeger MJ (1992) Colletotrichum: biology, pathology and control. CAB International, Wallingford

    Google Scholar 

  • Baroncelli R, Sanz-Martín JM et al (2014a) Draft genome sequence of Colletotrichum sublineola, a destructive pathogen of cultivated sorghum. Genome Announc 12:e00540-14

    Google Scholar 

  • Baroncelli R, Sreenivasaprasad S et al (2014b) Draft genome sequence of Colletotrichum acutatum sensu lato (Colletotrichum fioriniae). Genome Announc 2:e00112–e00114

    PubMed  PubMed Central  Google Scholar 

  • Baroncelli R, Zapparata A et al (2015) Molecular diversity of anthracnose pathogen populations associated with uk strawberry production suggests multiple introductions of three different Colletotrichum species. PLoS ONE 10:e0129140

    PubMed  PubMed Central  Google Scholar 

  • Baroncelli R, Amby DB et al (2016) Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum. BMC Genom 17:555

    Google Scholar 

  • Bergmann S, Schümann J et al (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217

    CAS  PubMed  Google Scholar 

  • Boettger D, Hertweck C (2013) Molecular diversity sculpted by fungal PKS-NRPS hybrids. ChemBioChem 14:28–42

    CAS  PubMed  Google Scholar 

  • Bragança CAD, Damm U et al (2016) Spacies of the Colletotrichum acutatum complex associated with anthracnose diseases of fruit in Brazil. Fungal Biol 120:547–561

    PubMed  Google Scholar 

  • Buiate EAS, Xavier KV et al (2017) A comparative genomic analysis of putative pathogenicity genes in the host-specific sibling species Colletotrichum graminicola and Colletotrichum sublineola. BMC Genom 18:67

    CAS  Google Scholar 

  • Cannon PF, Bridge PD, Monte E (2000) Linking the past, present and future of Colletotrichum systematics. In: Prusky D, Freeman S, Dickman MB (eds) Colletotrichum: host specificity, pathology, and host-pathogen interaction. APS Press, St. Paul

    Google Scholar 

  • Cannon PF, Damm U et al (2012) Colletotrichum: current status and future directions. Stud Mycol 73:181–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collemare J, Billard A et al (2008) Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthe grisea: the role of hybrid PKS-NRPS in pathogenicity. Mycol Res 112:207–215

    CAS  PubMed  Google Scholar 

  • Crouch JA (2014) Colletotrichum caudatum s.l. is a species complex. IMA Fungus 5:17–30

    PubMed  PubMed Central  Google Scholar 

  • Crouch JA, Tomaso-Peterson M (2012) Anthracnose disease of centipedegrass turf caused by Colletotrichum eremochloae, a new fungal species closely related to Colletotrichum sublineola. Mycologia 104:1085–1096

    PubMed  Google Scholar 

  • Crouch JA, Glasheen BM et al (2008a) The evolution of transposon repeat-induced point mutation in the genome of Colletotrichum cereale: reconciling sex, recombination and homoplasy in an “asexual” pathogen. Fungal Genet Biol 45:190–206

    CAS  PubMed  Google Scholar 

  • Crouch JA, Tredway LP et al (2008b) Phylogenetic and population genetic diverdence correspond with habitat for the pathogen Colletotrichum cereale and allied taxa across diverse grass communities. Mol Ecol 18:123–135

    PubMed  Google Scholar 

  • Crouch JA, Beirn LA et al (2009) Anthracnose disease of switchgrass caused by the novel fungal species Colletotrichum navitas. Mycol Res 113:1411–1421

    CAS  PubMed  Google Scholar 

  • Damm U, Cannon PF et al (2012) The Colletotrichum acutatum species complex. Stud Mycol 73:37–113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dean R, Van Kan JAL et al (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    PubMed  PubMed Central  Google Scholar 

  • Demers JE, Liu M (2017) Rust fungi on Panicum. Mycologia 109:1–17

    CAS  PubMed  Google Scholar 

  • Freeman S, Horowitz S, Sharon A (2001) Pathogenic and nonpathogenic lifestyles in Colletotrichum acutatum from strawberry and other plants. Phytopathology 91:986–992

    CAS  PubMed  Google Scholar 

  • Gan P, Ikeda K et al (2013) Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol 197:1236–1249

    CAS  PubMed  Google Scholar 

  • Gan P, Narusaka M et al (2016) Genus-wide comparative genome analyses of Colletotrichum species reveal specific gene family losses and gains during adaptation to specific infection lifestyles. Genome Biol Evol 8:1467–1481

    PubMed  PubMed Central  Google Scholar 

  • Gan P, Narusaka M et al (2017) Draft genome assembly of Colletotrichum chlorophyti, a pathogen of herbaceous plants. Genome Announc 5:e01733-16

    PubMed  PubMed Central  Google Scholar 

  • Garrido C, Carbú M et al (2009) Phylogenetic relationships and genome organisation of Colletotrichum acutatum causing anthracnose in strawberry Eur. J Plant Pathol 125:397–411

    CAS  Google Scholar 

  • Grigoriev IV, Cullen D et al (2011) Fueling the future with fungal genomics. Mycology 2:192–209

    Google Scholar 

  • Grigoriev IV, Nikitin R et al (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:699–704

    Google Scholar 

  • Guerber JC, Liu B et al (2003) Characterization of diversity in Colletotrichum acutatum sensu lato by sequence analysis of two gene introns, mtDNA and intron RFLPs, and mating compatibility. Mycologia 95:872–895

    CAS  PubMed  Google Scholar 

  • Hacquard S, Kracher B et al (2016) Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nat Commun 7:11362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han JH, Chon JK et al (2016) Whole genome sequence and genome annotation of Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea. Genom Data 8:45–46

    PubMed  PubMed Central  Google Scholar 

  • Hyde KD, Cai L, Cannon PF et al (2009) Colletotrichum-names in current use. Fungal Divers 9:147–183

    Google Scholar 

  • Joshi R (2018) A review on Colletotrichum spp. virulence mechanism against host plant defensive factors. J Med Plants Stud 6:64–67

    Google Scholar 

  • Keller NP, Hohn TM (1997) Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 21:17–29

    CAS  PubMed  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism: from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    CAS  PubMed  Google Scholar 

  • Kersey PJ, Allen JE et al (2016) Ensembl genomes 2016: more genomes, more complexity. Nucleic Acids Res 44:D574–D580

    CAS  PubMed  Google Scholar 

  • Lenné JM (2002) Some major plant diseases. In: Waller JM, Lenné JM, Waller SJ (eds) Plant pathologist’s pocketbook. CABI, Wallingford, pp 4–18

    Google Scholar 

  • Liu L, Zhang Z et al. (2015) Bioinformatical analysis of the sequences, structures and functions of fungal polyketide synthase product template domains. Sci Rep. 5:1–12

    Google Scholar 

  • Mills PR (2001) Colletotrichum: host specificity, pathology, and host-pathogen interaction. In: Prusky D, Freeman S, Dickman MB (eds) Plant pathology, vol 50. American Phytopathological Society Press, St. Paul, pp 645–650

    Google Scholar 

  • Munch S, Lingner U et al (2008) The hemibiotrophic lifestyle of Colletotrichum species. J Plant Physiol 165:41–51

    PubMed  Google Scholar 

  • Nakamura M, Fujikawa T et al (2018) Draft genome sequence of Colletotrichum sansevieriae Sa-1–2, the anthracnose pathogen of Sansevieriatrifasciata. Data Brief 18:691–695

    PubMed  PubMed Central  Google Scholar 

  • Nirenberg HI, Feiler U, Hagedorn G (2002) Description of Colletotrichum lupini comb. nov. in modern terms. Mycologia 94:307–320

    PubMed  Google Scholar 

  • O’Connell RJ, Thon MR et al (2012) Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 44:1060–1065

    PubMed  Google Scholar 

  • Perfect SE, Hughes HB et al (1999) Colletotrichum: a model genus for studies on pathology and fungal-plant interactions. Fungal Genet Biol 27:186–198

    CAS  PubMed  Google Scholar 

  • Reimer JM, Aloise MN (2016) Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase. Nature 529:239–242

    CAS  PubMed  Google Scholar 

  • Shen S, Goodwin P, Hsiang T (2001) Infection of Nicotiana species by the anthracnose fungus, Colletotrichum orbiculare. Eur J Plant Pathol 107:767–773

    Google Scholar 

  • Shivas RG, Tan YP (2009) A taxonomic re-assessment of Colletotrichum acutatum, introducing C. fioriniae comb. et stat. nov. and C. simmondsii sp. nov. Fungal Divers 39:111–122

    Google Scholar 

  • Sreenivasaprasad S, Talhinhas P (2005) Genotypic and phenotypic diversity in Colletotrichum acutatum, a cosmopolitan pathogen causing anthracnose on a wide range of hosts. Mol Plant Pathol 6:361–378

    CAS  PubMed  Google Scholar 

  • Talhinhas P, Sreenivasaprasad S et al (2005) Molecular and phenotypic analyses reveal association of diverse Colletotrichum acutatum groups and a low level of C. gloeosporioides with olive anthracnose. Appl Environ Microbiol 71:2987–2998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villa-Rivera MG, Conejo-Saucedo U et al (2017) The role of virulence factors in the pathogenicity of Colletotrichum spp. Protein Pept Sci 18:1005–1018

    CAS  Google Scholar 

  • Viswanathan R, Prasanth CN et al (2016) Draft genome sequence of Colletotrichum falcatum: a prelude on screening of red rot pathogen in sugarcane. J Genomics 4:1–3

    PubMed  PubMed Central  Google Scholar 

  • Waller JM, Lenné JM, Waller SJ (2002) Plant pathologists’s pocketbook. CABI, Pallingford

    Google Scholar 

  • Wang H, Fewer DP et al (2014) Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proc Natl Acad Sci USAs 111:9259–9264

    CAS  Google Scholar 

  • Wharton PS, Julian AM, O’Connell RJ (2001) Ultrastructure of the infection os Sorghum bicolor by Colletotrichum sublineolum. Phytopathology 91:149–158

    CAS  PubMed  Google Scholar 

  • Willis KJ, Bachman S (2016) State of the world’s plants 2016. Report. Royal Botanic Gardens Kew, London

    Google Scholar 

  • Zampounis A, Pigné S et al (2016) Genome sequence and annotation of Colletotrichum higginsianum, a causal agent of crucifer anthracnose disease. Genome Announc 4:e00821-16

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isidro G. Collado or Carlos Garrido.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carbú, M., Moraga, J., Cantoral, J.M. et al. Recent approaches on the genomic analysis of the phytopathogenic fungus Colletotrichum spp.. Phytochem Rev 19, 589–601 (2020). https://doi.org/10.1007/s11101-019-09608-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-019-09608-0

Keywords

Navigation