Skip to main content

Advertisement

Log in

Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Botrytis cinerea is the most widely studied necrotrophic phytopathogenic fungus. It causes economic losses that are difficult to calculate due to the large number of hosts. While there are a wide array of fungicides on the market to control this phytopathogen, they are not considered sustainable in terms of the environment and human health. The search for new alternatives to control this phytopathogen has led to the use of endophytic microorganisms as biological control agents. Endophytic bacteria and endophytic fungi have been isolated from different plant species and some have proven effective in inhibiting B. cinerea. Furthermore, a significant number of fungistatic or fungicidal metabolites which could be used as alternative complementary chemical controls have been isolated from these fungi and bacteria. In this review, in addition to the metabolites which have shown fungicide activity against this phytopathogen, the different genera and species of endophytic bacteria and fungi are also considered. These have been isolated from various plant species and have displayed antagonistic activity against B. cinerea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BCAs:

Biological control agents

CFU:

Colony forming unit

EC50:

Half maximal effective concentration

IC50:

Half maximal inhibitory concentration

ISR:

Inducing systemic resistance

MIC:

Minimal inhibitory concentration

SAR:

Systemic acquired resistance

VOCs:

Volatile organic compounds

References

  • Abdel-rahim IR, Abo-elyousr K (2017) Using of endophytic Saccharomycopsis fibuligera and thyme oil for management of gray mold rot of guava fruits. Biol Control 10:124–131

    Google Scholar 

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16

    Google Scholar 

  • Andreolli M, Lampis S, Zapparoli G et al (2015) Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control. Microbiol Res 183:42–52

    PubMed  Google Scholar 

  • Bardin M, Ajouz S, Comby M et al (2015) Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Front Plant Sci 6:1–14

    Google Scholar 

  • Barka E, Gognies S, Nowak J et al (2002) Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24:135–142

    Google Scholar 

  • Boubakri H, Schmitt C (2015) Biocontrol potential of chenodeoxycholic acid (CDCA) and endophytic Bacillus subtilis strains against the most destructive grapevine pathogens. N Z J Crop Hortic Sci 43:261–274

    CAS  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S et al (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    CAS  PubMed  Google Scholar 

  • Busby P, Ridout M, Newcombe G (2016) Fungal endophytes: modifiers of plant disease. Plant Mol Biol 90:645–655

    CAS  PubMed  Google Scholar 

  • Carbú M, González-Rodríguez V, Garrido C et al (2016) New biocontrol strategies for strawberry fungal pathogens. In: Husaini A, Neri D (eds) Strawberry: growth, development and diseases. CABI, Boston

    Google Scholar 

  • Card S, Johnson L, Teasdale S, Caradus J (2016) Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 92:1–20

    Google Scholar 

  • Chebotar VK, Malfanova NV, Shcherbakov V et al (2015) Endophytic bacteria in microbial preparations that improve plant development (review). Appl Biochem Microbiol 51:271–277

    CAS  Google Scholar 

  • Cocq K, Gurr S, Hirsch P, Mauchline T (2017) Exploitation of endophytes for sustainable agricultural intensification. Mol Plant Pathol 8:469–473

    Google Scholar 

  • Combés A, Ndoye I, Bance C et al (2012) Chemical communication between the endophytic fungus Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum. PLoS ONE 7:1–11

    Google Scholar 

  • Compant S, Duffy B, Nowak J et al (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras M, Loeza PD, Villegas J et al (2016) A glimpse of the endophytic bacterial diversity in roots of blackberry plants (Rubus fruticosus). Genet Mol Res 15:1–10

    Google Scholar 

  • Cosoveanu A, Cabrera Y, Hernandez G, Cabrera R (2014) Endophytic fungi from grapevine cultivars in Canary Islands and their activity against phytopatogenic fungi. Int J Agric Crop Sci 7:1497–1503

    Google Scholar 

  • Dean R, van Kan J, Pretorius ZA et al (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:1–17

    Google Scholar 

  • Dutta D, Puzari K, Gogoi R, Dutta P (2014) Endophytes: exploitation as a tool in plant protection. Braz Arch Biol Technol 57:621–629

    Google Scholar 

  • Elad Y, Stewart A (2007) Microbial control of Botrytis spp. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control, 1st edn. Springer, New York

    Google Scholar 

  • Eljounaidi K, Kyu S, Bae H (2016) Bacterial endophytes as potential biocontrol agents of vascular wilt diseases—review and future prospects. Biol Control 103:62–68

    Google Scholar 

  • Eun C, Mee J (2016) Endophytic bacteria as biocontrol agents against plant pathogens: current state-of-the-art. Plant Biotechnol Rep 10:353–357

    Google Scholar 

  • Farace G, Fernandez O, Jacquens L et al (2015) Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol Plant Pathol 16:177–187

    CAS  PubMed  Google Scholar 

  • Fouda A, Hassan S, Eid A, Ewais E (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann Agric Sci 60:95–104

    Google Scholar 

  • Fu J, Zhou Y, Li H et al (2011) Antifungal metabolites from Phomopsis sp. By254, an endophytic fungus in Gossypium hirsutum. Afr J Microbiol Res 5:1231–1236

    Google Scholar 

  • Gao Z, Zhang B, Liu H et al (2017) Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biol Control 105:27–39

    Google Scholar 

  • Glare T, Caradus J, Gelernter W et al (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258

    CAS  PubMed  Google Scholar 

  • Haidar R, Fermaud M, Calvo-Garrido C et al (2016) Modes of action for biological control of Botrytis cinerea by antagonistic bacteria. Phytopathol Mediterr 55:13–34

    Google Scholar 

  • Hardoim P, Overbeek L, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    PubMed  PubMed Central  Google Scholar 

  • He R, Wang G, Liu X et al (2009) Antagonistic bioactivity of an endophytic bacterium isolated from Epimedium brevicornu Maxim. Afr J Biotechnol 8:191–195

    CAS  Google Scholar 

  • Hong CE, Jo SH, Moon JY, Lee J (2015) Isolation of novel leaf-inhabiting endophytic bacteria in Arabidopsis thaliana and their antagonistic effects on phytophathogens. Plant Biotechnol Rep 9:451–458

    Google Scholar 

  • Hormazabal E, Piontelli E (2009) Endophytic fungi from Chilean native gymnosperms: antimicrobial activity against human and phytopathogenic fungi. World J Microbiol Biotechnol 25:813–819

    CAS  Google Scholar 

  • Hung R, Lee S, Bennett J (2015) Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotechnol 99:3395–3405

    CAS  PubMed  Google Scholar 

  • Kefi A, Ben Slimene I, Karkouch I et al (2015) Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers. World J Microbiol Biotechnol 31:1967–1976

    CAS  PubMed  Google Scholar 

  • Kernaghan G, Mayerhofer M, Griffin A (2017) Fungal endophytes of wild and hybrid Vitis leaves and their potential for vineyard biocontrol. Can J Microbiol 63:583–595

    CAS  PubMed  Google Scholar 

  • Kilani-Feki O, Jaoua S (2011) Biological control of Botrytis cinerea using an antagonictic and endophytic Burkholderia cepacia (Cs5) for the vine plantlets protection. Can J Microbiol 57:896–901

    CAS  PubMed  Google Scholar 

  • Kusari P, Kusari S, Spiteller M, Kayser O (2013) Endophytic fungi harbored in Cannabis sativa L.: diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Divers 60:137–151

    Google Scholar 

  • Kusari P, Kusari S, Spiteller M, Kayser O (2014) Biocontrol potential of endophytes harbored in Radula marginata (liverwort) from the New Zealand ecosystem. Antonie Van Leeuwenhoek 106:771–788

    CAS  PubMed  Google Scholar 

  • Lazarovits G, Turnbull A, Johnston-Monje D (2014) Plant health management: biological control of plant pathogens. Encycl Agric Food Syst 4:388–399

    Google Scholar 

  • Li X-J, Zhang Q, Zhang A-L, Gao J-M (2012) Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities. J Agric Food Chem 60:3424–3431

    CAS  PubMed  Google Scholar 

  • Liarzi O, Bar E, Lewinsohn E, Ezra D (2016) Use of the endophytic fungus Daldinia cf. concentrica and its volatiles as bio-control agents. PLoS ONE 11:1–18

    Google Scholar 

  • Liu B, Huang L, Buchenauer H, Kang Z (2010) Isolation and partial characterization of an antifungal protein from the endophytic Bacillus subtilis strain EDR4. Pestic Biochem Physiol 98:305–311

    CAS  Google Scholar 

  • Lu XH, Jiao XL, Hao JJ et al (2016) Characterization of resistance to multiple fungicides in Botrytis cinerea populations from Asian ginseng in northeastern China. Eur J Plant Pathol 144:467–476

    CAS  Google Scholar 

  • Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37:1325–1334

    PubMed  Google Scholar 

  • Mari M, Guizzardi M, Brunelli M, Folchi A (1996) Postharvest biological control of grey mould (Botrytis cinerea Pers.: Fr.) on fresh-market tomatoes with Bacillus amyloliquefaciens. Crop Prot 15:699–705

    Google Scholar 

  • Martinez-Hidalgo P, Garcia J, Pozo M (2015) Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules. Front Microbiol 6:1–11

    Google Scholar 

  • Miles L, Lopera C, González S et al (2012) Exploring the biocontrol potential of fungal endophytes from an Andean Colombian Paramo ecosystem. Biocontrol 57:697–710

    Google Scholar 

  • Miotto-Vilanova L, Jacquard C, Courteaux B et al (2016) Burkholderia phytofirmans PsJN confers grapevine resistance against Botrytis cinerea via a direct antimicrobial effect combined with a better resource mobilization. Front Plant Sci 7:1–15

    Google Scholar 

  • Morath S, Hung R, Bennett J (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26:73–83

    Google Scholar 

  • Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Sci World J 2014:1–11

    Google Scholar 

  • Narayan P, Kim W, Woo S et al (2007) Fungal endophytes in roots of Aralia species and their antifungal activity. Plant Pathol J 23:287–294

    Google Scholar 

  • Nicot PC, Stewart A, Bardin M, Elad Y (2016) Biological control and biopesticide suppression of Botrytis-incited diseases. In: Fillinger S, Elad Y (eds) Botrytis—the fungus, the pathogen and its management in agricultural systems, 1st edn. Springer, New York

    Google Scholar 

  • Noumeur SR, Mancini V, Romanazzi G (2016) Activity of endophytic fungi from Artemisia absinthium on Botrytis cinerea. Acta Hortic 1144:101–104

    Google Scholar 

  • O´Brien P (2017) Biological control of plant diseases. Australas Plant Pathol 46:293–304

    Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    CAS  PubMed  Google Scholar 

  • Özer G, Bayraktar H (2014) First report of Botrytis cinerea on Cornelian cherry. Australas Plant Dis Notes 9:2012–2014

    Google Scholar 

  • Pan F, Liu Z, Chen Q et al (2016) Endophytic fungus strain 28 isolated from Houttuynia cordata possesses wide-spectrum antifungal activity. Braz J Microbiol 47:480–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Choi G, Lee H et al (2005) Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol 15:112–117

    CAS  Google Scholar 

  • Park Y, Young J, Jong D et al (2015) Screening and characterization of endophytic fungi of Panax ginseng Meyer for biocontrol activity against ginseng pathogens. Biol Control 91:71–81

    Google Scholar 

  • Parnell JJ, Berka R, Young HA et al (2016) From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front Plant Sci 7:1–12

    Google Scholar 

  • Ritika B, Utpal D (2014) An overview of fungal and bacterial biopesticides to control plant pathogens/diseases. Afr J Microbiol Res 8:1749–1762

    Google Scholar 

  • Rodríguez A, Acosta A, Rodríguez C (2014) Fungicide resistance of Botrytis cinerea in tomato greenhouses in the Canary Islands and effectiveness of non-chemical treatments against gray mold. World J Microbiol Biotechnol 30:2397–2406

    PubMed  Google Scholar 

  • Rojas-Solís D, Zetter-Salmón E, Contreras-Pérez M et al (2018) Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatal Agric Biotechnol 13:46–52

    Google Scholar 

  • Romanazzi G, Smilanick J, Feliziani E, Droby S (2016) Integrated management of postharvest gray mold on fruit crops. Postharvest Biol Technol 113:69–76

    CAS  Google Scholar 

  • Ryan RP, Germaine K, Franks A et al (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    CAS  PubMed  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda M, Glick B (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    CAS  PubMed  Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29

    CAS  PubMed  Google Scholar 

  • Schalchli H, Tortella G, Rubilar O et al (2016) Fungal volatiles: an environmentally friendly tool to control pathogenic microorganisms in plants. Crit Rev Biotechnol 36:144–152

    CAS  PubMed  Google Scholar 

  • Schena L, Nigro F, Pentimone I et al (2003) Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biol Technol 30:209–220

    Google Scholar 

  • Senthilkumar M, Anandham R, Madhaiyan M et al (2011) Endophytic bacteria: perspectives and applications in agricultural crop production. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems, 1st edn. Springer, New York

    Google Scholar 

  • Soares M, Li H-J, Bergen M et al (2015) Functional role of an endophytic Bacillus amyloliquefaciens in enhancing growth and disease protection of invasive English ivy (Hedera Helix L.). Plant Soil 405:107–123

    Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    CAS  PubMed  Google Scholar 

  • Suprapta DN (2012) Potential of microbial antagonists as biocontrol agents against plant fungal pathogens. J ISSAAS 18:1–8

    Google Scholar 

  • Suryanarayanan T, Thirunavukkarasu N, Govindarajulu M et al (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19

    Google Scholar 

  • Syed Ab Rahman S, Singh E, Pietersen C, Schenck P (2018) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267:102–111

    CAS  PubMed  Google Scholar 

  • Terhonen E, Sipari N, Asiegbu FO (2016) Inhibition of phytopathogens by fungal root endophytes of Norway spruce. Biol Control 99:53–63

    Google Scholar 

  • Toffano L, Batista M, Pascholati S (2017) Potential of fumigation of orange fruits with volatile organic compounds produced by Saccharomyces cerevisiae to control citrus black spot disease at postharvest. Biol Control 108:77–82

    CAS  Google Scholar 

  • Tomsheck A, Strobel G, Booth E et al (2010) Hypoxylon sp., an endophyte of Persea indica, producing 1,8-cineole and other bioactive volatiles with fuel potential. Microb Ecol 60:903–914

    CAS  PubMed  Google Scholar 

  • Trotel-Aziz P, Couderchet M, Biagianti S, Aziz A (2008) Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. Environ Exp Bot 64:21–32

    Google Scholar 

  • Van J, Shaw M, Grant-Downton R (2014) Botrytis species: relentless necrotrophic thugs or endophytes gone rogue? Mol Plant Pathol 15:957–961

    Google Scholar 

  • Velivelli S, De Vos P, Kromann P et al (2014) Biological control agents: from field to market, problems, and challenges. Trends Biotechnol 32:493–496

    CAS  PubMed  Google Scholar 

  • Wang H, Wen K, Zhao X et al (2009a) The inhibitory activity of endophytic Bacillus sp. strain CHM1 against plant pathogenic fungi and its plant growth-promoting effect. Crop Prot 28:634–639

    Google Scholar 

  • Wang S, Hu T, Jiao Y et al (2009b) Isolation and characterization of Bacillus subtilis EB-28, an endophytic bacterium strain displaying biocontrol activity against Botrytis cinerea Pers. Front Agric China 3:247–252

    Google Scholar 

  • Williamson B, Tudzynski B, Tudzynnski P, van Kan JA (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8:561–580

    CAS  PubMed  Google Scholar 

  • Yang C, Zhang X, Shi G et al (2011) Isolation and identification of endophytic bacterium W4 against tomato Botrytis cinerea and antagonistic activity stability. Afr J Microbiol 5:131–136

    Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    CAS  PubMed  Google Scholar 

  • Zhang C, Zheng B, Lao J et al (2008) Clavatol and patulin formation as the antagonistic principle of Aspergillus clavatonanicus, an endophytic fungus of Taxus mairei. Appl Microbiol Biotechnol 78:833–840

    CAS  PubMed  Google Scholar 

  • Zhang Q, Zhang J, Yang L et al (2014) Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biol Control 72:98–108

    Google Scholar 

  • Zhang X, Zhou Y, Li Y et al (2017) Screening and characterization of endophytic Bacillus for biocontrol of grapevine downy mildew. Crop Prot 96:173–179

    Google Scholar 

  • Zhao JH, Zhang YL, Wang LW et al (2012) Bioactive secondary metabolites from Nigrospora sp. LLGLM003, an endophytic fungus of the medicinal plant Moringa oleifera Lam. World J Microbiol Biotechnol 28:2107–2112

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isidro G. Collado.

Additional information

Isidro G. Collado: Dedicated to the Dr. James R. Hanson in Memoriam.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolívar-Anillo, H.J., Garrido, C. & Collado, I.G. Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea. Phytochem Rev 19, 721–740 (2020). https://doi.org/10.1007/s11101-019-09603-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-019-09603-5

Keywords

Navigation