Mesua sp.: chemical aspects and pharmacological relevance of prenylated polyphenols

Abstract

The genus Mesua L. (Calophyllaceae) comprises approximately 50 species that grow in the restrictive area of South East Asia. Investigations of Mesua species reported the chemodiversity and pharmacological relevance of their phytoconstituents, in particular polyphenolic compounds. To date, about 170 secondary metabolites have been identified from 13 Mesua species, predominantly xanthones and coumarins. Most of them hold a prenylated skeleton and display activities such as antitumor and antimicrobial, antioxidant, anti-inflammatory or immunomodulating properties, which were evaluated using either in vitro assay or, in rare cases, in vivo animal studies. Prenylation of aromatic compounds appears as a key element to enhance their biological activities, including their cytotoxicity and, could be involved in their inhibitory potential towards enzymes playing crucial roles in inflammatory and immune cascades. The aim of this review is to provide a systematic and comprehensive overview of Mesua polyphenolic secondary metabolites and their pharmacological properties. Among them, the structure of coumarin beccamarin T is herein revised and attributed to lepidotol A based on a careful examination of the 1D and 2D NMR spectra of the respective compounds. A considerable attention is also given to the place of prenylated polyphenols as anti-inflammatory and immunomodulatory molecules, to highlight the interest of Mesua metabolites as chemical probes for target discovery.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.

  2. 2.

    The bioactivities of xanthones and coumarins isolated from Mesua are herein those reported in the literature related to this genus.

References

  1. Aird WC (2008) Endothelium in health and disease. Pharmacol Rep 60(1):139–143

    PubMed  Google Scholar 

  2. Alam MS, Jain N, Kamil M et al (1987) Mesuein: a novel flavanone glycoside from Mesua ferrea. Chem Ind 16:565–566

    Google Scholar 

  3. Asif M, Shafaei A, Jafari SF et al (2016) Isoledene from Mesua ferrea oleo-gum resin induces apoptosis in HCT 116 cells through ROS-mediated modulation of multiple proteins in the apoptotic pathways: a mechanistic study. Toxicol Lett 257:84–96

    Article  CAS  PubMed  Google Scholar 

  4. Awang K, Chan G, Litaudon M et al (2010) 4-Phenylcoumarins from Mesua elegans with acetylcholinesterase inhibitory activity. Bioorg Med Chem 18(22):7873–7877

    Article  CAS  PubMed  Google Scholar 

  5. Baell JB (2016) Feeling nature’s PAINS: natural products, natural product drugs, and pan assay interference compounds (PAINS). J Nat Prod 79(3):616–628

    Article  CAS  PubMed  Google Scholar 

  6. Bala KR, Seshadri TR (1971) Isolation and synthesis of some coumarin components of Mesua ferrea seed oil. Phytochemistry 10(5):1131–1134

    Article  CAS  Google Scholar 

  7. Bandaranayake WM, Selliah SS, Sultanbawa MUS et al (1975) Chemical investigation of Ceylonese plants. XI. Xanthones and 4-phenylcoumarins of Mesua thwaitesii. Phytochemistry 14(1):265–269

    Article  CAS  Google Scholar 

  8. Bharate SB, Singh B, Vishwakarma RA (2012) Modulation of k-Ras signaling by natural products. Curr Med Chem 19(14):2273–2291

    Article  CAS  PubMed  Google Scholar 

  9. Bhattacharyya P, Chakrabartty P, Chowdhuty BK (1988) Mesuarin: a new 4-phenyl-coumarin from Mesua ferrea. Chem Ind 7:239–240

    Google Scholar 

  10. Bordoloi M, Mohan S, Barua NC et al (1997) An alkylated coumarin from Kayea assamica. Phytochemistry 44(5):939–942

    Article  CAS  Google Scholar 

  11. Bruneton J (2008) Pharmacognosy. Phytochemistry. Medicinal plants, 2nd edn. Lavoisier, Paris

    Google Scholar 

  12. Cechinel FV, Meyre-Silva C, Niero R (2009) Chemical and pharmacological aspects of the genus Calophyllum. Chem Biodivers 6(3):313–327

    Article  Google Scholar 

  13. Chahar MK, Sanjaya KDS, Lokesh T et al (2012) In-vivo antioxidant and immunomodulatory activity of mesuol isolated from Mesua ferrea L. seed oil. Int Immunopharmacol 13(4):386–391

    Article  CAS  PubMed  Google Scholar 

  14. Chahar MK, Sanjaya KDS, Geetha L et al (2013) Mesua ferrea L.: a review of the medical evidence for its phytochemistry and pharmacological actions. Afr J Pharm Pharmacol 7(6):211–219

    Article  Google Scholar 

  15. Chakraborty DP, Chatterji D (1969) Structure of mesuagin, a new 4-phenylcoumarin. J Org Chem 34(12):3784–3786

    Article  CAS  PubMed  Google Scholar 

  16. Chan G, Kamarudin MNA, Wong DZH et al (2012) Mitigation of H2O2-induced mitochondrial-mediated apoptosis in NG108-15 cells by novel mesuagenin C from Mesua kunstleri (King) Kosterm. Evid Based Complement Alternat Med 2012:156521

    PubMed  PubMed Central  Google Scholar 

  17. Choi J, Enis DR, Koh KP et al (2004) T lymphocyte-endothelial cell interactions. Annu Rev Immunol 22:683–709

    Article  CAS  PubMed  Google Scholar 

  18. Chow YL, Quon HH (1968) Chemical constituents of the heartwood of Mesua ferrea. Phytochemistry 7(10):1871–1874

    Article  CAS  Google Scholar 

  19. Conn EE, Stumpf PK (1981) The biochemistry of plants: A comprehensive treatise. Vol 7: Secondary plant products. Academic Press, New York

    Google Scholar 

  20. Crombie L, Games DE, McCormick A (1966) Isolation and structure of mammea B/BA, B/BB, B/BC, and C/BB: a group of 4-propyl and 4-amylcoumarin extractives of Mammea americana. Tetrahedron Lett 2:151–156

    Article  Google Scholar 

  21. Dennis TJ, Kumar KA, Srimannarayana G (1988) A new cyclo hexadione from Mesua ferrea. Phytochemistry 27(7):2325–2327

    Article  CAS  Google Scholar 

  22. Ee GCL, Lim CK, Rahmat A (2005a) Structure-activity relationship of xanthones from Mesua daphnifolia and Garcinia nitida towards human estrogen receptor negative breast cancer cell line. Nat Prod Sci 11(4):220–224

    CAS  Google Scholar 

  23. Ee GCL, Lim CK, Rahmat A et al (2005b) Cytotoxic activities of chemical constituents from Mesua daphnifolia. Trop Biomed 22(2):99–102

    CAS  PubMed  Google Scholar 

  24. Ee GCL, Lim CK, Ong GP et al (2006) Daphnifolin, a new xanthone from Mesua daphnifolia (Guttiferae). J Asian Nat Prod Res 8(6):567–570

    Article  CAS  PubMed  Google Scholar 

  25. Ee GCL, Teh SS, Mah SH et al (2011) A novel cyclodione coumarin from the stem bark of Mesua beccariana. Molecules 16:7249–7255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ee GCL, Teh SS, Kwong HC et al (2012a) A new benzophenone from Mesua congestiflora, an inhibitor against human B lymphocyte cancer cell line. Phytochem Lett 5(3):545–548

    Article  CAS  Google Scholar 

  27. Ee GCL, Teh SS, Rahmani M et al (2012b) A new furanoxanthone from the root bark of Mesua ferrea. Lett Org Chem 9(6):457–459

    Article  CAS  Google Scholar 

  28. El-Seedi HR, El-Barbary MA, El-Ghorab DMH et al (2010) Recent insights into the biosynthesis and biological activities of natural xanthones. Curr Med Chem 17(9):854–901

    Article  CAS  PubMed  Google Scholar 

  29. Flora of China (2007) 1. Clusiaceae (Guttiferae) Published on the Internet. http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=10203. Accessed 23 March 2018

  30. Govindachari TR, Pai BR, Subramaniam PS et al (1967a) Constituents of Mesua ferrea. I. Mesuaxanthone A and mesuaxanthone B. Tetrahedron 23(1):243–248

    Article  CAS  Google Scholar 

  31. Govindachari TR, Pai BR, Subramaniam PS et al (1967b) Constituents of Mesua ferrea. II. Ferruol A, a new 4-alkylcoumarin. Tetrahedron 23(10):4161–4165

    Article  CAS  Google Scholar 

  32. Greenwood J, Steinman L, Zamvil SS (2006) Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol 6(5):358–370

    Article  CAS  Google Scholar 

  33. Gunasekera SP, Sudltanbawa MUS (1977) Chemical investigation of Ceylonese plants. Part 20. Extractives of Mesua myrtifolia. Isolation and structure of a new triterpene hydroxy-acid, myrtifolic acid. J Chem Soc Perkin 1(1):6–10

    Article  Google Scholar 

  34. Gunasekera SP, Ramachandran S, Selliah S et al (1975) Chemical investigation of Ceylonese plants. XVII. Isolation and structures of the xanthones in the extractives of Mesua ferrea (Guttiferae). J Chem Soc Perkin 1(23):2447–2450

    Article  Google Scholar 

  35. Gunatilleke N, Pethiyagoda R, Gunatilleke S (2008) Biodiversity of Sri Lanka. J Natl Sci Found 36(Special Issue):25–62

    Google Scholar 

  36. Hassler M (2017) World plants: synonymic checklists of the vascular plants of the world (version May 2017). In: Roskov Y, Abucay L, Orrell T, Nicolson D, Bailly N, Kirk PM, Bourgoin T, DeWalt RE, Decock W, De Wever A, van Nieukerken E, Zarucchi J, Penev L (eds) Species 2000 and ITIS Catalogue of Life, 25th August 2017. Digital resource at www.catalogueoflife.org/col. Species 2000: Naturalis, Leiden, the Netherlands. ISSN 2405-8858

  37. Hemshekhar M, Sunitha K, Santhosh MS et al (2011) An overview on genus Garcinia: phytochemical and therapeutical aspects. Phytochem Rev 10(3):325–351

    Article  CAS  Google Scholar 

  38. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53(6):1841–1856

    Article  CAS  PubMed  Google Scholar 

  39. Iinuma M, Tosa H, Tanaka T et al (1996) Two new dimeric xanthones in Mesua ferrea. Heterocycles 43(9):1999–2004

    Article  CAS  Google Scholar 

  40. Islam R, Ahmed I, Sikder AA et al (2014) Chemical investigation of Mesua nagassarium (Burm. f.) Kosterm. J Basic Appl Sci 10:124–128

    Article  CAS  Google Scholar 

  41. Jalalpure SS, Mandavkar YD, Khalure PR et al (2011) Antiarthritic activity of various extracts of Mesua ferrea Linn. seed. J Ethnopharmacol 138(3):700–704

    Article  PubMed  Google Scholar 

  42. Jean F, Bohle DS (2006) Pharmacological and biological activities of xanthones. AntiInfect Agents Med Chem 5(1):15–31

    Article  Google Scholar 

  43. Karunakaran T, Ee GCL, Tee KH et al (2016a) Cytotoxic prenylated xanthone and coumarin derivatives from Malaysian Mesua beccariana. Phytochem Lett 17:131–134

    Article  CAS  Google Scholar 

  44. Karunakaran T, Ee GCL, Teh SS et al (2016b) A new coumarin from stem bark of Mesua hexapetala. Nat Prod Res 30(14):1591–1597

    Article  CAS  PubMed  Google Scholar 

  45. Kassimatis TI, Goldsmith DJA (2014) Statins in chronic kidney disease and kidney transplantation. Pharmacol Res 88:62–73

    Article  CAS  PubMed  Google Scholar 

  46. Keawsa-ard S, Kongtaweelert S (2012) Antioxidant, antibacterial, anticancer activities and chemical constituents of the essential oil from Mesua ferrea leaves. Chiang Mai J Sci 39(3):455–463

    CAS  Google Scholar 

  47. Kostermans AJGH (1969) Kayea wall, and Mesua L. (Guttiferae). Reinwardtia 7(5):425–431

    Google Scholar 

  48. Lee K-H, Chai H-B, Tamez PA et al (2003) Biologically active alkylated coumarins from Kayea assamica. Phytochemistry 64(2):535–541

    Article  CAS  PubMed  Google Scholar 

  49. Mahavorasirikul W, Viyanant V, Chaijaroenkul W et al (2010) Cytotoxic activity of Thai medicinal plants against human cholangiocarcinoma, laryngeal and hepatocarcinoma cells in vitro. BMC Complement Altern Med 10:55

    Article  PubMed  PubMed Central  Google Scholar 

  50. Morel C, Dartiguelongue C, Youhana T et al (1999a) New coumarins from Mesua racemosa: isolation and synthesis. Heterocycles 51(9):2183–2191

    Article  CAS  Google Scholar 

  51. Morel C, Guilet D, Oger J-M et al (1999b) 6-Acylcoumarins from Mesua racemosa. Phytochemistry 50(7):1243–1247

    Article  CAS  Google Scholar 

  52. Negi JS, Bisht VK, Singh P et al (2013) Naturally occurring xanthones: chemistry and biology. J Appl Chem 2013:1–10

    Article  CAS  Google Scholar 

  53. Nguyen L-TT, Lai NTDDT, Nguyen LTT et al (2016) Thoreliolides A and B, two polyisoprenylated benzoylphloroglucinol derivatives with a new carbon skeleton from the fruits of Calophyllum thorelii. Tetrahedron Lett 57(25):2737–2741

    Article  CAS  Google Scholar 

  54. Notis C (2004) Phylogeny and character evolution of Kielmeyeroideae (Clusiaceae) based on molecular and morphological data. University of Florida, Gainesville, p 116

    Google Scholar 

  55. Ochocki JD, Distefano MD (2013) Prenyltransferase inhibitors: treating human ailments from cancer to parasitic infections. MedChemComm 4(3):476–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Oldfield E, Lin F-Y (2012) Terpene biosynthesis: modularity rules. Angew Chem Int Ed 51(5):1124–1137

    Article  CAS  Google Scholar 

  57. Peng L, Wang B, Ren P (2005) Reduction of MTT by flavonoids in the absence of cells. Colloids Surf B Biointerfaces 45(2):108–111

    Article  CAS  PubMed  Google Scholar 

  58. Pober JS, Tellides G (2012) Participation of blood vessel cells in human adaptive immune responses. Trends Immunol 33(1):49–57

    Article  CAS  PubMed  Google Scholar 

  59. Raad I, Terreux R, Richomme P et al (2006) Structure-activity relationship of natural and synthetic coumarins inhibiting the multidrug transporter P-glycoprotein. Bioorg Med Chem 14(20):6979–6987

    Article  CAS  PubMed  Google Scholar 

  60. Rajesh KP, Manjunatha H, Krishna V et al (2013) Potential in vitro antioxidant and protective effects of Mesua ferrea Linn. bark extracts on induced oxidative damage. Ind Crops Prod 47:186–198

    Article  CAS  Google Scholar 

  61. Rajopadhye AA, Upadhye AS (2012) Hepatoprotective effect of stamen extracts of Mesua ferrea L. against oxidative stress induced by CCl4 in liver slice culture model. Nat Prod Sci 18(2):76–82

    CAS  Google Scholar 

  62. Raju MS, Rao NVS (1969) Isolation of mammeisin from the seeds of Mesua ferrea. Indian J Chem 7(12):1278–1279

    CAS  Google Scholar 

  63. Raju MS, Srimannarayana G, Subba Rao NV (1974) Structure of mesuanic acid. Indian J Chem 12(8):884–886

    CAS  Google Scholar 

  64. Raju MS, Srimannarayana G, Rao NVS et al (1976) Structure of mesuaferrone-B, a new biflavanone from the stamens of Mesua ferrea linn. Tetrahedron Lett 49:4509–4512

    Article  Google Scholar 

  65. Raju MS, Srimannarayana G, Rao NVS (1978) Structure of mesuaferrone-A, a new biflavanone from the stamens of Mesua ferrea Linn. Indian J Chem B Org 16B(2):167–168

    CAS  Google Scholar 

  66. Ramakrishna NVS, Kulkarni AS, More TS et al (2004) Screening of natural products for new leads as inhibitors of IκBα kinase: coumarin derivatives from plant extracts. Indian J Chem B Org 43B(4):869–872

    CAS  Google Scholar 

  67. Ramiandrasoa F, Kunesch N, Poisson J et al (1983) Le calofloride, intermédiaire d’un type nouveau de la biogenèse des néoflavonoïdes. Tetrahedron 39(23):3923–3928

    Article  CAS  Google Scholar 

  68. Ranganathaiah P, Hanumanthappa M, Venkatarangaiah K (2016) Evaluation of in vitro anti-inflammatory activity of stem bark extracts of Mesua ferrea Linn. Int J Pharm Pharm Sci 8(2):173–177

    CAS  Google Scholar 

  69. Reutrakul V, Leewanich P, Tuchinda P et al (2003) Cytotoxic Coumarins from Mammea harmandii. Planta Med 69(11):1048–1051

    Article  CAS  PubMed  Google Scholar 

  70. Reyes-Chilpa R, Estrada-Muniz E, Ramirez AT et al (2004) Cytotoxic effects of mammea type coumarins from Calophyllum brasiliense. Life Sci 75(13):1635–1647

    Article  CAS  PubMed  Google Scholar 

  71. Rhee IK, van Rijn RM, Verpoorte R (2003) Qualitative determination of false-positive effects in the acetylcholinesterase assay using thin layer chromatography. Phytochem Anal 14(3):127–131

    Article  CAS  PubMed  Google Scholar 

  72. Romo D, Liu JO (2016) Editorial: strategies for cellular target identification of natural products. Nat Prod Rep 33(5):592–594

    Article  CAS  PubMed  Google Scholar 

  73. Rouger C (2015) Activité pharmacologique de dérivés polyphénoliques isolés de Clusiaceae et de Calophyllaceae malaisiennes: effets régulateurs sur des marqueurs endothéliaux de l’inflammation et de l’immunité. Université d’Angers, Angers, p 292

  74. Rouger C, Derbre S, Charreau B et al (2015) Lepidotol A from Mesua lepidota inhibits inflammatory and immune mediators in human endothelial cells. J Nat Prod 78(9):2187–2197

    Article  CAS  PubMed  Google Scholar 

  75. Rouger C, Pagie S, Derbre S et al (2016) Prenylated polyphenols from Clusiaceae and Calophyllaceae with immunomodulatory activity on endothelial cells. PLoS ONE 11(12):e0167361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Roy SK, Kumari N, Pahwa S et al (2013) NorA efflux pump inhibitory activity of coumarins from Mesua ferrea. Fitoterapia 90:140–150

    Article  CAS  PubMed  Google Scholar 

  77. Ruhfel BR, Bittrich V, Bove CP et al (2011) Phylogeny of the clusioid clade (Malpighiales): evidence from the plastid and mitochondrial genomes. Am J Bot 98(2):306–325

    Article  PubMed  Google Scholar 

  78. Ruhfel BR, Stevens PF, Davis CC (2013) Combined morphological and molecular phylogeny of the clusioid clade (Malpighiales) and the placement of the ancient rosid macrofossil Paleoclusia. Int J Plant Sci 174(6):910–936

    Article  Google Scholar 

  79. Singh S, Gray AI, Waterman PG (1993) Mesuabixanthone-A and mesuabixanthone-B: novel bis-xanthones from the stem bark of Mesua ferrea (Guttiferae). Nat Prod Lett 3(1):53–58

    Article  CAS  Google Scholar 

  80. Singha S, Adhikari U, Chandra G (2011) Smoke repellency and mosquito larvicidal potentiality of Mesua ferra L. leaf extract against filarial vector Culex quinquefasciatus Say. Asian Pac J Trop Biomed 1(Suppl. 1):S119–S123

    Article  Google Scholar 

  81. Stevens PF (2007) Clusiaceae-Guttiferae. In: Kubitzki K (ed) Flowering plants. Eudicots: berberidopsidales, Buxales, Crossosomatales, Fabales pp, Geraniales, Gunnerales, Myrtales pp, Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance, Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae. Springer, Berlin, pp 48–66

  82. Su X-H, Zhang M-L, Li L-G et al (2008) Chemical constituents of the plants of the genus Calophyllum. Chem Biodivers 5(12):2579–2608

    Article  CAS  PubMed  Google Scholar 

  83. Suhandi AS, Anggraeni D, Effendi E, et al (2002) Final report feasibility study of conservation concession reconciliatory effort between the demand of increasing local revenue and ecosystem protection in the process of power devolution. A case study from Siberut Island, Sumatra. Jakarta. Published on the Internet. https://adriawanperbatakusuma.wordpress.com/ Accessed 23 March 2018

  84. Suparji NS, Chan G, Sapili H et al (2016) Geranylated 4-phenylcoumarins exhibit anticancer effects against human prostate cancer cells through caspase-independent mechanism. PLoS ONE 11(3):e0151472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Surveswaran S, Cai Y-Z, Corke H et al (2007) Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem 102(3):938–953

    Article  CAS  Google Scholar 

  86. Szygula-Jurkiewicz B, Szczurek W, Zembala M (2015) The role of statins in patients after heart transplantation. Kardiochir Torakochirurgia Pol 12(1):42–47

    PubMed  PubMed Central  Google Scholar 

  87. Tanjung M, Saputri RD, Fitriati FF et al (2016) Antimalarial and antioxidant activities of isoprenylated coumarins from the stem bark of Mesua borneensis L. J Biol Act Prod Nat 6(2):95–100

    CAS  Google Scholar 

  88. Tanjung M, Saputri RD, Tjahjandarie TS et al (2018) Mesucalophylloidin, a new isoprenylated 4-phenylcoumarin from Mesua calophylloides (Ridl.) Kosterm. Nat Prod Res 32(9):1062–1067

    Article  CAS  PubMed  Google Scholar 

  89. Teh SS, Ee GCL, Rahmani M et al (2010) Two new pyranoxanthones from Mesua beccariana (Guttiferae). Molecules 15(10):6733–6742

    Article  CAS  PubMed Central  Google Scholar 

  90. Teh SS, Cheng Lian Ee G, Rahmani M et al (2011) Pyranoxanthones from Mesua ferrea. Molecules 16:5647–5654

    Article  CAS  PubMed Central  Google Scholar 

  91. Teh SS, Ee GCL, Mah SH et al (2012) Mesua beccariana (Clusiaceae), a source of potential anti-cancer lead compounds in drug discovery. Molecules 17:10791–10800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Teh SS, Ee GCL, Mah SH et al (2013a) Cytotoxicity and structure-activity relationships of xanthone derivatives from Mesua beccariana, Mesua ferrea and Mesua congestiflora towards nine human cancer cell lines. Molecules 18:1985–1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Teh SS, Ee GCL, Mah SH et al (2013b) In vitro cytotoxic, antioxidant, and antimicrobial activities of Mesua beccariana (Baill.) Kosterm., Mesua ferrea Linn., and Mesua congestiflora extracts. Biomed Res Int 2013:517072

    Article  PubMed  PubMed Central  Google Scholar 

  94. Teh SS, Ee GCL, Mah SH et al (2016) Structure-activity relationship study of secondary metabolites from Mesua beccariana, Mesua ferrea and Mesua congestiflora for anti-cholinesterase activity. Med Chem Res 25(5):819–823

    Article  CAS  Google Scholar 

  95. Teh SS, Ee GCL, Mah SH (2017) ) Evaluation of nitric oxide inhibition effect in LPS-stimulated RAW 264.7 macrophages by phytochemical constituents from Mesua beccariana, Mesua congestiflora, and Mesua ferrea. Med Chem Res 26(12):3240–3246

    Article  CAS  Google Scholar 

  96. The Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161(2):105–121

    Article  Google Scholar 

  97. The Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181(1):1–20

    Article  Google Scholar 

  98. The Plant List (2013) Version 1.1. Published on the internet. http://www.theplantlist.org/. Accessed 23 July 2017

  99. Thurnher M, Gruenbacher G, Nussbaumer O (2013) Regulation of mevalonate metabolism in cancer and immune cells. Biochim Biophys Acta 1831(6):1009–1015

    Article  CAS  PubMed  Google Scholar 

  100. Verotta L, Lovaglio E, Vidari G et al (2004) 4-Alkyl- and 4-phenylcoumarins from Mesua ferrea as promising multidrug resistant antibacterials. Phytochemistry 65(21):2867–2879

    Article  CAS  PubMed  Google Scholar 

  101. Walia S, Mukerjee SK (1984) Ferrxanthone, a 1,3,5,6-tetraoxygenated xanthone from Mesua ferrea. Phytochemistry 23(8):1816–1817

    Article  CAS  Google Scholar 

  102. Win NN, Awale S, Esumi H et al (2008a) Novel anticancer agents, kayeassamins A and B from the flower of Kayea assamica of Myanmar. Bioorg Med Chem Lett 18(16):4688–4691

    Article  CAS  PubMed  Google Scholar 

  103. Win NN, Awale S, Esumi H et al (2008b) Novel anticancer agents, kayeassamins C-I from the flower of Kayea assamica of Myanmar. Bioorg Med Chem 16(18):8653–8660

    Article  CAS  PubMed  Google Scholar 

  104. Wurdack KJ, Davis CC (2009) Malpighiales phylogenetics: gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. Am J Bot 96(8):1551–1570

    Article  PubMed  Google Scholar 

  105. Xia W, Mo H (2016) Potential of tocotrienols in the prevention and therapy of Alzheimer’s disease. J Nutr Biochem 31:1–9

    Article  CAS  PubMed  Google Scholar 

  106. Yang H, Protiva P, Gil RR et al (2005) Antioxidant and cytotoxic isoprenylated coumarins from Mammea americana. Planta Med 71(09):852–860

    Article  CAS  PubMed  Google Scholar 

  107. Yazaki K, Sasaki K, Tsurumaru Y (2009) Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry 70(15–16):1739–1745

    Article  CAS  PubMed  Google Scholar 

  108. Zakaria R, Choong CY, Faridah-Hanum I (2007) Systematic study on Guttiferae Juss. of Peninsular Malaysia based on plastid sequences. Tropics 16(2):141–150

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Derbré.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 352 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rouger, C., Derbré, S. & Richomme, P. Mesua sp.: chemical aspects and pharmacological relevance of prenylated polyphenols. Phytochem Rev 18, 317–342 (2019). https://doi.org/10.1007/s11101-018-9594-9

Download citation

Keywords

  • Immunomodulation
  • Mammea coumarins
  • Mesua L.
  • Prenylated polyphenols
  • Xanthones