Skip to main content
Log in

Engineering plants for tomorrow: how high-throughput phenotyping is contributing to the development of better crops

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

High-throughput plant phenotyping has been advancing at an accelerated rate as a response to the need to fill the gap between genomic information and the plasticity of the plant phenome. During the past decade, North America has seen a stark increase in the number of phenotyping facilities, and these groups are actively contributing to the generation of high-dimensional, richly informative datasets about the phenotype of model and crop plants. As both phenomic datasets and analysis tools are made publicly available, the key to engineering more resilient crops to meet global demand is closer than ever. However, there are a number of bottlenecks that must yet be overcome before this can be achieved. In this paper, we present an overview of the most commonly used sensors that empower digital phenotyping and the information they provide. We also describe modern approaches to identify and characterize plants that are resilient to common abiotic and biotic stresses that limit growth and yield of crops. Of interest to researchers working in plant biochemistry, we also include a section discussing the potential of these high-throughput approaches in linking phenotypic data with chemical composition data. We conclude by discussing the main bottlenecks that still remain in the field and the importance of multidisciplinary teams and collaboration to overcome those challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta-Gamboa LM, Liu S, Langley E et al (2017) Moderate to severe water limitation differentially affects the phenome and ionome of Arabidopsis. Funct Plant Biol 44:94–106

    Article  Google Scholar 

  • Al-Tamimi N, Brien C, Oakey H et al (2016) Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat Commun 7:1–11

    Article  Google Scholar 

  • Andrade-Sanchez P, Gore MA, Heun JT et al (2014) Development and evaluation of a field-based high-throughput phenotyping platform. Funct Plant Biol 41:68–79

    Article  Google Scholar 

  • Angulo C, de la O Leyva M, Finiti I et al (2015) Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea. J Plant Physiol 175:163–173

    Article  CAS  PubMed  Google Scholar 

  • Arvidsson S, Pérez-Rodríguez P, Mueller-Roeber B (2011) A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects. New Phytol 191:895–907

    Article  PubMed  Google Scholar 

  • Avila CA, Arevalo-Soliz LM, Jia L et al (2012) Loss of function of FATTY ACID DESATURASE7 in tomato enhances basal aphid resistance in a salicylate-dependent manner. Plant Physiol 158:2028–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awlia M, Nigro A, Fajkus J et al (2016) High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. Front Plant Sci 7:1–15

    Article  Google Scholar 

  • Backoulou GF, Elliott NC, Giles K et al (2011) Spatially discriminating Russian wheat aphid induced plant stress from other wheat stressing factors. Comput Electron Agric 78:123–129

    Article  Google Scholar 

  • Baranowski P, Jedryczka M, Mazurek W et al (2015) Hyperspectral and thermal imaging of oilseed rape (Brassica napus) response to fungal species of the genus Alternaria. PLoS ONE 10:1–20

    Google Scholar 

  • Barlow KM, Christy BP, O’Leary GJ et al (2015) Simulating the impact of extreme heat and frost events on wheat crop production: a review. F Crop Res 171:109–119

    Article  Google Scholar 

  • Bauer SD, Korč F, Förstner W (2011) The potential of automatic methods of classification to identify leaf diseases from multispectral images. Precis Agric 12:361–377

    Article  Google Scholar 

  • Blackburn GA (2007) Hyperspectral remote sensing of plant pigments. J Exp Bot 58:855–867

    Article  CAS  PubMed  Google Scholar 

  • Bock CH, Poole GH, Parker PE, Gottwald TR (2010) Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit Rev Plant Sci 29:59–107

    Article  Google Scholar 

  • Camargo AV, Lobos GA (2016) Latin America: a development pole for phenomics. Front Plant Sci 7:1729

    PubMed  PubMed Central  Google Scholar 

  • Camargo A, Smith JS (2009) An image-processing based algorithm to automatically identify plant disease visual symptoms. Biosyst Eng 102:9–21

    Article  Google Scholar 

  • Campbell MT, Knecht AC, Berger B et al (2015) Integrating image-based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice. Plant Physiol 168:1476–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casanova JJ, O’Shaughnessy SA, Evett SR, Rush CM (2014) Development of a wireless computer vision instrument to detect biotic stress in wheat. Sensors 14:17753–17769

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Hua G, Jurat-Fuentes JL et al (2007) Synergism of Bacillus thuringiensis toxins by a fragment of a toxin-binding cadherin. Proc Natl Acad Sci USA 104:13901–13906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Neumann K, Friedel S et al (2014) Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell 26:4636–4655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobb JN, DeClerck G, Greenberg A et al (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126:867–887

    Article  PubMed  PubMed Central  Google Scholar 

  • Crain J, Reynolds M, Poland J (2017) Utilizing high-throughput phenotypic data for improved phenotypic selection of stress-adaptive traits in wheat. Crop Sci 57:648–659

    Article  Google Scholar 

  • De Diego N, Fürst T, Humplík JF et al (2017) An automated method for high-throughput screening of Arabidopsis rosette growth in multi-well plates and its validation in stress conditions. Front Plant Sci 8:1702

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobrescu A, Scorza LCT, Tsaftaris SA, McCormick AJ (2017) A “Do-It-Yourself” phenotyping system: measuring growth and morphology throughout the diel cycle in rosette shaped plants. Plant Methods 13:1–12

    Article  Google Scholar 

  • Fahlgren N, Feldman M, Gehan MA et al (2015a) A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in Setaria. Mol Plant 8:1520–1535

    Article  CAS  PubMed  Google Scholar 

  • Fahlgren N, Gehan MA, Baxter I (2015b) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol 24:93–99

    Article  PubMed  Google Scholar 

  • Flynn P (2003) Biotic vs. abiotic—distinguishing disease problems from environmental stresses. Hortic Home Pest News 489:22

    Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics—technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644

    Article  CAS  PubMed  Google Scholar 

  • Gehan MA, Kellogg EA (2017) High-throughput phenotyping. Am J Bot 104:505–508

    Article  PubMed  Google Scholar 

  • Gehan MA, Fahlgren N, Abbasi A et al (2017) PlantCV v2: image analysis software for high-throughput plant phenotyping. PeerJ 5:e4088

    Article  PubMed  PubMed Central  Google Scholar 

  • Gendrin C, Roggo Y, Collet C (2008) Pharmaceutical applications of vibrational chemical imaging and chemometrics: a review. J Pharm Biomed Anal 48:533–553

    Article  CAS  PubMed  Google Scholar 

  • Goggin FL, Lorence A, Topp CN (2015) Applying high-throughput phenotyping to plant-insect interactions: picturing more resistant crops. Curr Opin Insect Sci 9:69–76

    Article  PubMed  Google Scholar 

  • Golzarian MR, Frick RA, Rajendran K et al (2011) Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods 7:1–11

    Article  Google Scholar 

  • González-Pérez JL, Espino-Gudiño MC, Gudiño-Bazaldúa J et al (2013) Color image segmentation using perceptual spaces through applets for determining and preventing diseases in chili peppers. Afr J Biotechnol 12:679–688

    Google Scholar 

  • Gowen AA, Feng Y, Gaston E, Valdramidis V (2015) Recent applications of hyperspectral imaging in microbiology. Talanta 137:43–54

    Article  CAS  PubMed  Google Scholar 

  • Granier C, Vile D (2014) Phenotyping and beyond: modelling the relationships between traits. Curr Opin Plant Biol 18:96–102

    Article  PubMed  Google Scholar 

  • Granier C, Aguirrezabal L, Chenu K et al (2006) PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol 169:623–635

    Article  PubMed  Google Scholar 

  • Hairmansis A, Berger B, Tester M, Roy SJ (2014) Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice. Rice 7:1–10

    Article  Google Scholar 

  • Hernández-Rabadán DL, Ramos-Quintana F, Guerrero Juk J (2014) Integrating SOMs and a bayesian classifier for segmenting diseased plants in uncontrolled environments. Sci World J 2014:1–13

    Google Scholar 

  • Honsdorf N, March TJ, Berger B et al (2014) High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS ONE 9:e97047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866

    Article  CAS  PubMed  Google Scholar 

  • Huang KY (2007) Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features. Comput Electron Agric 57:3–11

    Article  Google Scholar 

  • Humplík JF, Lazár D, Fürst T et al (2015) Automated integrative high-throughput phenotyping of plant shoots: a case study of the cold-tolerance of pea (Pisum sativum L). Plant Methods 11:1–11

    Article  CAS  Google Scholar 

  • Jansen M, Gilmer F, Biskup B et al (2009) Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via Growscreen Fluoro allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct Plant Biol 36:902–914

    Article  CAS  PubMed  Google Scholar 

  • Kerchev PI, Fenton B, Foyer CH, Hancock RD (2012) Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant Cell Environ 35:441–453

    Article  CAS  PubMed  Google Scholar 

  • Kirchgessner N, Liebisch F, Yu K et al (2017) The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system. Funct Plant Biol 44:154–168

    Article  Google Scholar 

  • Knecht AC, Campbell MT, Caprez A, Swanson DR, Walia H (2016) Image harvest: an open-source platform for high-throughput plant image processing and analysis. J Exp Bot 67:3587–3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhlgert S, Austic G, Zegarac R et al (2016) MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. R Soc Open Sci 3:160592

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Ye W, Wang M, Yan X (2009) Climate change and drought: a risk assessment of crop-yield impacts. Clim Res 39:31–46

    Article  CAS  Google Scholar 

  • Lobet G, Draye X, Perilleux C (2013) An online database for plant image analysis software tools. Plant Methods 9:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity, and drought stress: an overview. Plant Stress Biol From Genom Syst Biol 444:137–159

    Google Scholar 

  • Mahlein AK, Steiner U, Hillnhütter C et al (2012) Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods 8:1–13

    Article  Google Scholar 

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77

    Article  CAS  PubMed  Google Scholar 

  • Masler EP, Chitwood D (2016) Heterodera glycines cysts contain an extensive array of endoproteases as well as inhibitors of proteases in H. glycines and Meloidogyne incognita infective juvenile stages. Nematology 18:489–499

    Article  CAS  Google Scholar 

  • Mishra P, Cordella CBY, Rutledge DN et al (2016) Application of independent components analysis with the JADE algorithm and NIR hyperspectral imaging for revealing food adulteration. J Food Eng 168:7–15

    Article  Google Scholar 

  • Mishra P, Asaari MSM, Herrero-Langreo A et al (2017) Close range hyperspectral imaging of plants: a review. Biosyst Eng 164:49–67

    Article  Google Scholar 

  • Mokhtar U, Ali MAS, Hassanien AE, Hefny HA (2015) Identifying two of tomatoes leaf viruses using support vector machine. In: Information systems design and intelligent applications: proceedings of second international conference India, pp 781–782

    Google Scholar 

  • Nabity PD, Zavala JA, DeLucia EH (2009) Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Ann Bot 103:655–663

    Article  CAS  PubMed  Google Scholar 

  • Nabity PD, Haus MJ, Berenbaum MR, DeLucia EH (2013) Leaf-galling phylloxera on grapes reprograms host metabolism and morphology. Proc Natl Acad Sci USA 110:16663–16668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan TT, Sun DW, Cheng JH, Pu H (2016) Regression algorithms in hyperspectral data analysis for meat quality detection and evaluation. Compr Rev Food Sci Food Saf 15:529–541

    Article  PubMed  Google Scholar 

  • Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6:1–14

    Article  Google Scholar 

  • Pandey P, Ge Y, Stoerger V, Schnable JC (2017) High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Front Plant Sci 8:1–12

    PubMed  PubMed Central  Google Scholar 

  • Pound MP, Fozard S, Torres Torres M et al (2017) AutoRoot: open-source software employing a novel image analysis approach to support fully-automated plant phenotyping. Plant Methods 13:1–10

    Article  Google Scholar 

  • Rahaman MM, Chen D, Gillani Z et al (2015) Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front Plant Sci 6:1–15

    Article  Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32:237–249

    Article  CAS  PubMed  Google Scholar 

  • Reuzeau C, Pen J, Frankard V et al (2010) TraitMill: a discovery engine for identifying yield-enhancement genes in cereals. Plant Gene Trait 1:1–7

    Google Scholar 

  • Rumpf T, Mahlein AK, Steiner U et al (2010) Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Comput Electron Agric 74:91–99

    Article  Google Scholar 

  • Sirault XRR, James RA, Furbank RT (2009) A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Funct Plant Biol 36:970–977

    Article  CAS  PubMed  Google Scholar 

  • Sirault X, Fripp J, Paproki A, et al (2013) PlantScan™: a three-dimensional phenotyping platform for capturing the structural dynamic of plant development and growth. In: nternational Conference on Functional-Structural Plant Model, pp 45–48

  • Skirycz A, Vandenbroucke K, Clauw P et al (2011) Survival and growth of Arabidopsis plants given limited water are not equal. Nat Biotechnol 29:212–214

    Article  CAS  PubMed  Google Scholar 

  • Slovak R, Goschl C, Su X et al (2014) A scalable open-source pipeline for large-scale root phenotyping of Arabidopsis. Plant Cell 26:2390–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CM, Clement SL (2012) Molecular bases of plant resistance to arthropods. Annu Rev Entomol 57:309–328

    Article  CAS  PubMed  Google Scholar 

  • Symonova O, Topp CN, Edelsbrunner H (2015) DynamicRoots: a software platform for the reconstruction and analysis of growing plant roots. PLoS ONE 10:1–15

    Article  CAS  Google Scholar 

  • Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M (2017) Plant phenomics, from sensors to knowledge. Curr Biol 27:R770–R783

    Article  CAS  PubMed  Google Scholar 

  • Thurau T, Ye W, Cai D (2009) Insect and nematode resistance. Biotechnol Agric For 64:177–197

    Google Scholar 

  • Tisné S, Serrand Y, Bach L et al (2013) Phenoscope: an automated large-scale phenotyping platform offering high spatial homogeneity. Plant J 74:534–544

    Article  PubMed  CAS  Google Scholar 

  • Vadez V, Kholová J, Hummel G et al (2015) LeasyScan: a novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget. J Exp Bot 66:5581–5593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  PubMed  Google Scholar 

  • Vigneau N, Ecarnot M, Rabatel G, Roumet P (2011) Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in wheat. Field Crop Res 122:25–31

    Article  Google Scholar 

  • Wahabzada M, Mahlein AK, Bauckhage C et al (2015) Metro maps of plant disease dynamics-automated mining of differences using hyperspectral images. PLoS ONE 10:1–21

    Article  CAS  Google Scholar 

  • Walter A, Scharr H, Gilmer F et al (2007) Dynamics of seedling growth acclimation towards altered light conditions can be quantified via GROWSCREEN: a setup and procedure designed for rapid optical phenotyping of different plant species. New Phytol 174:447–455

    Article  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wetterich CB, Kumar R, Sankaran S et al (2013) A comparative study on application of computer vision and fluorescence imaging spectroscopy for detection of citrus huanglongbing disease in USA and Brazil. J Spectrosc 2013:1–6

    Article  CAS  Google Scholar 

  • Wu DK, Xie CY (2008) Cheng-Wei M (2008) The SVM classification leafminer-infected leaves based on fractal dimension. IEEE Int Conf Cybern Intell Syst CIS 2008:147–151

    Google Scholar 

  • Yang W, Guo Z, Huang C et al (2014) Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun 5:1–9

    Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF-IOS-Plant Genome Research Project Award # 1238125, by the Plant Imaging Consortium (PIC; http://plantimaging.cast.uark.edu/) NSF EPSCoR Track-2 Research Infrastructure Improvement Program Awards IIA-1430427 and IIA-1430428, and by the Wheat and Rice Center for Heat Resilience (WRCHR; http://wrchr.org/) funded by NSF EPCoR Track 2 Award No. IIA-1736192. We also thank funds provided by the Arkansas Biosciences Institute, the major research component of the Arkansas Tobacco Settlement Proceeds Act. LMAG and NN thank the Molecular Biosciences Graduate Program at Arkansas State University for stipend support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Argelia Lorence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, Z.C., Acosta-Gamboa, L.M., Nepal, N. et al. Engineering plants for tomorrow: how high-throughput phenotyping is contributing to the development of better crops. Phytochem Rev 17, 1329–1343 (2018). https://doi.org/10.1007/s11101-018-9585-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-018-9585-x

Keywords

Navigation