Skip to main content

Dissecting metabolic flux in C4 plants: experimental and theoretical approaches

Abstract

C4 photosynthesis is the carbon fixation pathway in specific plant species, so called C4 plants including maize, sorghum and sugarcane. It is characterized by the carboxylation reaction that forms four-carbon (C4) molecules, which are then used to transport CO2 to the proximity of RubisCO in the bundle sheath cells. Since C4 photosynthesis confers high photosynthetic as well as water and nitrogen use efficiency on plants, worldwide efforts have been made to understand the mechanisms of C4 photosynthesis and to properly introduce the pathway into C3 crops. Metabolic flux analysis (MFA) is a research field trying to analyze the metabolic pathway structure and activity (i.e., flux) in vivo. Constraint-based reconstruction and analysis tools theoretically study the distribution of metabolic flux in genome-scale network-based models. Different types of MFA and model-based analyses have been contributing to the discovery of C4 photosynthetic pathways and to analyze its operation in C4 plant species. This article reviews the studies to dissect the operation of C4 photosynthesis and adjacent pathways, from the pioneer studies using radioisotope-based MFA to the recent stable isotope-based MFA and the model-based approaches. These studies indicate complex interconnections among metabolic pathways and the importance of the integration of experimental and theoretical approaches. Perspectives on the integrative approach and major obstacles are also discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

CBB:

Calvin–Benson–Bassham

COBRA:

Constraint-based reconstruction and analysis

EMU:

Elementary metabolite units

FBA:

Flux balance analysis

GC:

Gas chromatography

GPR:

Gene-protein relationship

LC:

Liquid chromatography

MFA:

Metabolic flux analysis

MID:

Mass isotopomer distribution

MS:

Mass spectrometry

NAD-ME:

NAD+-dependent malic enzyme

NADP-ME:

NADP+-dependent malic enzyme

NMR:

Nuclear magnetic resonance

PEP:

Phosphoenolpyruvate

PEPCK:

Phosphoenolpyruvate carboxykinase

RubisCO:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

TCA:

Tricarboxylic acid

References

  1. Agarie S, Miura A, Sumikura R et al (2002) Overexpression of C4PEPC caused O2-insensitive photosynthesis in transgenic rice plants. Plant Sci 162:257–265. https://doi.org/10.1016/S0168-9452(01)00572-6

    CAS  Article  Google Scholar 

  2. Antoniewicz MR (2013) 13C metabolic flux analysis: optimal design of isotopic labeling experiments. Curr Opin Biotechnol 24:1116–1121. https://doi.org/10.1016/j.copbio.2013.02.003

    CAS  Article  PubMed  Google Scholar 

  3. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2006) Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng 8:324–337. https://doi.org/10.1016/j.ymben.2006.01.004

    CAS  Article  PubMed  Google Scholar 

  4. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68–86. https://doi.org/10.1016/j.ymben.2006.09.001

    CAS  Article  PubMed  Google Scholar 

  5. Arrivault S, Obata T, Szecówka M et al (2017) Metabolite pools and carbon flow during C4 photosynthesis in maize: 13CO2 labeling kinetics and cell type fractionation. J Exp Bot 68:283–298. https://doi.org/10.1093/jxb/erw414

    CAS  Article  PubMed  Google Scholar 

  6. Barthelmes J, Ebeling C, Chang A et al (2007) BRENDA, AMENDA and FRENDA: the enzyme information system in 2007. Nucleic Acids Res 35:D511–D514. https://doi.org/10.1093/nar/gkl972

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Batista Silva W, Daloso DM, Fernie AR et al (2016) Can stable isotope mass spectrometry replace & radiolabelled approaches in metabolic studies? Plant Sci 249:59–69. https://doi.org/10.1016/j.plantsci.2016.05.011

    CAS  Article  PubMed  Google Scholar 

  8. Berry JA, Downton WJS, Tregunna EB (1970) The photosynthetic carbon metabolism of Zea mays and Gomphrena globosa: the location of the CO2 fixation and the carboxyl transfer reactions. Can J Bot 48:777–786. https://doi.org/10.1139/b70-106

    CAS  Article  Google Scholar 

  9. Björkman O, Gauhl E (1969) Carboxydismutase activity in plants with and without β-carboxylation photosynthesis. Planta 88:197–203. https://doi.org/10.1007/BF00385062

    Article  PubMed  Google Scholar 

  10. Bogart E, Myers CR (2016) Multiscale metabolic modeling of C4 plants: connecting nonlinear genome-scale models to leaf-scale metabolism in developing maize leaves. PLoS ONE 11:1–27. https://doi.org/10.1371/journal.pone.0151722

    CAS  Article  Google Scholar 

  11. Brautigam A, Kajala K, Wullenweber J et al (2011) An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species. Plant Physiol 155:142–156. https://doi.org/10.1104/pp.110.159442

    CAS  Article  PubMed  Google Scholar 

  12. Bräutigam A, Schliesky S, Külahoglu C et al (2014) Towards an integrative model of C4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species. J Exp Bot 65:3579–3593. https://doi.org/10.1093/jxb/eru100

    Article  PubMed  PubMed Central  Google Scholar 

  13. Burgard AP, Maranas CD (2003) Optimization-based framework for inferring and testing hypothesized metabolic objective functions. Biotechnol Bioeng 82:670–677. https://doi.org/10.1002/bit.10617

    CAS  Article  PubMed  Google Scholar 

  14. Burgard AP, Pharkya P, Maranas CD (2003) OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647–657. https://doi.org/10.1002/bit.10803

    CAS  Article  PubMed  Google Scholar 

  15. Burgard AP, Nikolaev EV, Schilling CH, Maranas CD (2004) Flux coupling analysis of genome-scale metabolic network. Genome Res 14:301–312. https://doi.org/10.1101/gr.1926504

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Calvin M (1962) The path of carbon in photosynthesis: the carbon cycle is a tool for exploring chemical biodynamics and the mechanism of quantum conversion. Science 135:879–889. https://doi.org/10.1126/science.135.3507.879

    CAS  Article  PubMed  Google Scholar 

  17. Cañas RA, Yesbergenova-Cuny Z, Simons M et al (2017) Exploiting the genetic diversity of maize using a combined metabolomic, enzyme activity profiling, and metabolic modelling approach to link leaf physiology to kernel yield. Plant Cell. https://doi.org/10.1105/tpc.16.00613

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen TM, Brown RH, Black CC (1971) Photosynthetic CO2 fixation products and activities of enzymes related to photosynthesis in bermudagrass and other plants. Plant Physiol 47:199–203

    CAS  Article  Google Scholar 

  19. Chen WL, Chen DZ, Taylor KT (2013) Automatic reaction mapping and reaction center detection. Wiley Interdiscip Rev Comput Mol Sci 3:560–593

    CAS  Article  Google Scholar 

  20. Danila FR, Quick WP, White RG et al (2016) The metabolite pathway between bundle sheath and mesophyll: quantification of plasmodesmata in leaves of C3 and C4 monocots. Plant Cell 28:1461–1471. https://doi.org/10.1105/tpc.16.00155

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. de Oliveira Dal’Molin CG, Nielsen LK (2013) Plant genome-scale metabolic reconstruction and modelling. Curr Opin Biotechnol 24:271–277. https://doi.org/10.1016/j.copbio.2012.08.007

    CAS  Article  PubMed  Google Scholar 

  22. de Oliveira Dal’Molin CG, Quek L-E, Palfreyman RW et al (2010a) C4GEM, a genome-scale metabolic model to study C4 plant metabolism. Plant Physiol 154:1871–1885. https://doi.org/10.1104/pp.110.166488

    CAS  Article  PubMed Central  Google Scholar 

  23. de Oliveira Dal’Molin CG, Quek L-E, Palfreyman RW et al (2010b) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 152:579–589. https://doi.org/10.1104/pp.109.148817

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. de Oliveira Dal’Molin CG, Quek L-E, Palfreyman RW, Nielsen LK (2014) Plant genome-scale modeling and implementation. Methods Mol Biol 1090:317–332. https://doi.org/10.1007/978-1-62703-688-7_19

    CAS  Article  Google Scholar 

  25. de Oliveira Dal’Molin CG, de Quek LE, Saa PA, Nielsen LK (2015) A multi-tissue genome-scale metabolic modeling framework for the analysis of whole plant systems. Front Plant Sci 6:4. https://doi.org/10.3389/fpls.2015.00004

    Article  Google Scholar 

  26. de Oliveira Dal’Molin CG, Orellana C, Gebbie L et al (2016) Metabolic reconstruction of Setaria italica: a systems biology approach for integrating tissue-specific omics and pathway analysis of bioenergy grasses. Front Plant Sci 7:1–18. https://doi.org/10.3389/fpls.2016.01138

    Article  Google Scholar 

  27. Dieuaide-Noubhani M, Alonso AP (eds) (2014) Plant metabolic flux analysis. Humana Press, Totowa

    Google Scholar 

  28. Du J, Yuan Z, Ma Z et al (2014) KEGG-PATH: kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model. Mol BioSyst 10:2441. https://doi.org/10.1039/C4MB00287C

    CAS  Article  PubMed  Google Scholar 

  29. Dueñas ME, Klein AT, Alexander LE et al (2017) High spatial resolution mass spectrometry imaging reveals the genetically programmed, developmental modification of the distribution of thylakoid membrane lipids among individual cells of maize leaf. Plant J 89:825–838. https://doi.org/10.1111/tpj.13422

    CAS  Article  PubMed  Google Scholar 

  30. Edwards GE, Lee SS, Chen TM, Black CC (1970) Carboxylation reactions and photosynthesis of carbon compounds in isolated mesophyll and bundle sheath cells of Digitaria sanguinalis (L.) Scop. Biochem Biophys Res Commun 39:389–395

    CAS  Article  Google Scholar 

  31. Edwards GE, Kanai R, Black CC (1971) Phosphoenolpyruvate carboxykinase in leaves of certain plants which fix CO2 by the C4-dicarboxylic acid cycle of photosynthesis. Biochem Biophys Res Commun 45:278–285

    CAS  Article  Google Scholar 

  32. Feist AM, Herrgård MJ, Thiele I et al (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143. https://doi.org/10.1038/nrmicro1949

    CAS  Article  PubMed  Google Scholar 

  33. Fernie AR, Martinoia E (2009) Malate. Jack of all trades or master of a few? Phytochemistry 70:828–832. https://doi.org/10.1016/j.phytochem.2009.04.023

    CAS  Article  PubMed  Google Scholar 

  34. Finn RD, Mistry J, Tate J et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222. https://doi.org/10.1093/nar/gkp985

    CAS  Article  PubMed  Google Scholar 

  35. Fleming RMT, Thiele I, Nasheuer HP (2009) Quantitative assignment of reaction directionality in constraint-based models of metabolism: application to Escherichia coli. Biophys Chem 145:47–56. https://doi.org/10.1016/j.bpc.2009.08.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Florian A, Timm S, Nikoloski Z et al (2014) Analysis of metabolic alterations in Arabidopsis following changes in the carbon dioxide and oxygen partial pressures. J Integr Plant Biol 56:941–959. https://doi.org/10.1111/jipb.12237

    CAS  Article  PubMed  Google Scholar 

  37. Fouracre JP, Ando S, Langdale JA (2014) Cracking the Kranz enigma with systems biology. J Exp Bot 65:3327–3339. https://doi.org/10.1093/jxb/eru015

    Article  PubMed  Google Scholar 

  38. Furbank RT (2011) Evolution of the C4 photosynthetic mechanism: are there really three C4 acid decarboxylation types? J Exp Bot 62:3103–3108. https://doi.org/10.1093/jxb/err080

    CAS  Article  PubMed  Google Scholar 

  39. Furbank RT (2016) Walking the C4 pathway: past, present, and future. J Exp Bot 67:4057–4066. https://doi.org/10.1093/jxb/erw161

    CAS  Article  PubMed  Google Scholar 

  40. Gao J, Zhao B, Dong S et al (2017) Response of summer maize photosynthate accumulation and distribution to shading stress assessed by using 13CO2 stable isotope tracer in the field. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01821

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gardy JL, Laird MR, Chen F et al (2005) PSORTb v. 2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21:617–623. https://doi.org/10.1093/bioinformatics/bti057

    CAS  Article  PubMed  Google Scholar 

  42. Gianchandani EP, Oberhardt MA, Burgard AP, Maranas CD, Papin JA (2008) Predicting biological system objectives de novo from internal state measurements. BMC Bioinformatics 9:43. https://doi.org/10.1186/1471-2105-9-43

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Gopalakrishnan S, Maranas CD (2015) 13C metabolic flux analysis at a genome-scale. Metab Eng 32:12–22. https://doi.org/10.1016/j.ymben.2015.08.006

    CAS  Article  PubMed  Google Scholar 

  44. Gopalakrishnan S, Pakrasi HB, Maranas CD (2018) Elucidation of photoautotrophic carbon flux topology in Synechocystis PCC 6803 using genome-scale carbon mapping models. Metab Eng 47:190–199. https://doi.org/10.1016/j.ymben.2018.03.008

    CAS  Article  PubMed  Google Scholar 

  45. Grafahrend-Belau E, Schreiber F, Koschutzki D, Junker BH (2009) Flux balance analysis of barley seeds: a computational approach to study systemic properties of central metabolism. Plant Physiol 149:585–598. https://doi.org/10.1104/pp.108.129635

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Greco M, Chiappetta A, Bruno L, Bitonti MB (2012) In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J Exp Bot 63:695–709. https://doi.org/10.1093/jxb/err313

    CAS  Article  PubMed  Google Scholar 

  47. Greene JL, Waechter A, Tyo KEJ, Broadbelt LJ (2017) Acceleration strategies to enhance metabolic ensemble modeling performance. Biophys J 113:1150–1162. https://doi.org/10.1016/j.bpj.2017.07.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Guo W, Sheng J, Feng X (2015) 13C-metabolic flux analysis: an accurate approach to demystify microbial metabolism for biochemical production. Bioengineering 3:3. https://doi.org/10.3390/bioengineering3010003

    CAS  Article  PubMed Central  Google Scholar 

  49. Hatch MD (1971) The C4-pathway of photosynthesis. Evidence for an intermediate pool of carbon dioxide and the identity of the donor C4-dicarboxylic acid. Biochem J 125:425–432

    CAS  Article  Google Scholar 

  50. Hatch MD (1975) C4-Pathway photosynthesis in Portulaca oleracea and the significance of alanine labelling. Planta 125:273–279. https://doi.org/10.1007/BF00385603

    CAS  Article  PubMed  Google Scholar 

  51. Hatch MD (1987) C4 photosynthesis: a unique belend of modified biochemistry, anatomy and ultrastructure. Biochim Biophys Acta Rev Bioenerg 895:81–106. https://doi.org/10.1016/S0304-4173(87)80009-5

    CAS  Article  Google Scholar 

  52. Hatch MD, Kagawa T (1974) NAD malic enzyme in leaves with C4-pathway photosynthesis and its Role in C4 acid decarboxylation. Arch Biochem Biophys 160:346–349

    CAS  Article  Google Scholar 

  53. Hatch MD, Kagawa T (1976) Photosynthetic activities of isolated bundle sheath cells in relation to differing mechanisms of C4 pathway photosynthesis. Arch Biochem Biophys 175:39–53

    CAS  Article  Google Scholar 

  54. Hatch MD, Slack CR (1966) Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation. Biochem J 101:103–111

    CAS  Article  Google Scholar 

  55. Hatch MD, Slack CR, Johnson HS (1967) Further studies on a new pathway of photosynthetic carbon dioxide fixation in sugar-cane and its occurrence in other plant species. Biochem J 102:417–422

    CAS  Article  Google Scholar 

  56. Heckmann D, Schulze S, Denton A et al (2013) Predicting C4 photosynthesis evolution: modular, individually adaptive steps on a Mount Fuji fitness landscape. Cell 153:1579–1588. https://doi.org/10.1016/j.cell.2013.04.058

    CAS  Article  PubMed  Google Scholar 

  57. Heise R, Arrivault S, Szecowka M et al (2014) Flux profiling of photosynthetic carbon metabolism in intact plants. Nat Protoc 9:1803–1824. https://doi.org/10.1038/nprot.2014.115

    CAS  Article  PubMed  Google Scholar 

  58. Henry CS, Dejongh M, Best AA et al (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982. https://doi.org/10.1038/nbt.1672

    CAS  Article  PubMed  Google Scholar 

  59. Hibberd JM, Quick WP (2002) Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature 415:451–454. https://doi.org/10.1038/415451a

    CAS  Article  PubMed  Google Scholar 

  60. Hubeau M, Steppe K (2015) Plant-PET scans. In vivo mapping of xylem and phloem functioning. Trends Plant Sci 20:676–685. https://doi.org/10.1016/j.tplants.2015.07.008

    CAS  Article  PubMed  Google Scholar 

  61. Islam MM, Saha R (2018) Computational approaches on stoichiometric and kinetic modeling for efficient strain design. In: Jensen MK, Keasling JD (eds) Synthetic metabolic pathways. Methods in molecular biology, vol 1671. Humana Press, New York, NY, pp 63–82

    Chapter  Google Scholar 

  62. Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V (2008) Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J 95:1487–1499. https://doi.org/10.1529/biophysj.107.124784

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Johnson HS, Hatch MD (1968) Distribution of the C4-dicarboxylic acid pathway of photosynthesis and its occurrence in Dicotyledonous plants. Phytochemistry 7:375–380

    CAS  Article  Google Scholar 

  64. Johnson HS, Hatch MD (1970) Properties and regulation of leaf nicotinamide-adenine dinucleotide phosphate-malate dehydrogenase and “malic” enzyme in plants with the C4-dicarboxylic acid pathway of photosynthesis. Biochem J 119:273–280

    CAS  Article  Google Scholar 

  65. Joyce AR, Palsson BØ (2008) Predicting gene essentiality using genome-scale in silico models. In: Osterman AL, Gerdes SY (eds) Microbial gene essentiality: protocols and bioinformatics. Methods in molecular biology™, vol 416. Humana Press, New York, NY, pp 433–457

    Chapter  Google Scholar 

  66. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    CAS  Article  Google Scholar 

  67. Karki S, Rizal G, Quick W (2013) Improvement of photosynthesis in rice (Oryza sativa L.) by inserting the C4 pathway. Rice 6:28. https://doi.org/10.1186/1939-8433-6-28

    Article  PubMed  PubMed Central  Google Scholar 

  68. Karp PD, Paley S, Romero P (2002) The pathway tools software. Bioinformatics 18(Suppl 1):S225–S232

    Article  Google Scholar 

  69. Karp PD, Paley SM, Krummenacker M et al (2010) Pathway tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform 11:40–79. https://doi.org/10.1093/bib/bbp043

    CAS  Article  PubMed  Google Scholar 

  70. Karp PD, Latendresse M, Paley SM et al (2016) Pathway tools version 19.0 update: software for pathway/genome informatics and systems biology. Brief Bioinform 17:877–890. https://doi.org/10.1093/bib/bbv079

    CAS  Article  PubMed  Google Scholar 

  71. Karve AA, Alexoff D, Kim D et al (2015) In vivo quantitative imaging of photoassimilate transport dynamics and allocation in large plants using a commercial positron emission tomography (PET) scanner. BMC Plant Biol 15:1–11. https://doi.org/10.1186/s12870-015-0658-3

    Article  Google Scholar 

  72. Khodayari A, Maranas CD (2016) A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains. Nat Commun 7:13806. https://doi.org/10.1038/ncomms13806

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Kiser MR, Reid CD, Crowell AS et al (2008) Exploring the transport of plant metabolites using positron emitting radiotracers. HFSP J 2:189–204. https://doi.org/10.2976/1.2921207

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Klie S, Krueger S, Krall L et al (2011) Analysis of the compartmentalized metabolome—a validation of the non-aqueous fractionation technique. Front Plant Sci 2:55. https://doi.org/10.3389/fpls.2011.00055

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Kortschak HP, Hartt CE, Burr GO (1965) Carbon dioxide fixation in sugarcane leaves. Plant Physiol 40:209–213. https://doi.org/10.1104/pp.40.2.209

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Kruger NJ, Ratcliffe RG (2009) Insights into plant metabolic networks from steady-state metabolic flux analysis. Biochimie 91:697–702. https://doi.org/10.1016/j.biochi.2009.01.004

    CAS  Article  PubMed  Google Scholar 

  77. Ku MS, Cho D, Li X, et al (2001) Introduction of genes encoding C4 photosynthesis enzymes into rice plants: physiological consequences. In: Novartis foundation symposium, vol 236, pp 100–116

    Google Scholar 

  78. Kumar A, Maranas CD (2014) CLCA: maximum common molecular substructure queries within the MetRxn database. J Chem Inf Model 54:3417–3438. https://doi.org/10.1021/ci5003922

    CAS  Article  PubMed  Google Scholar 

  79. Kumar A, Suthers PF, Maranas CD (2012) MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases. BMC Bioinformatics 13:1–13. https://doi.org/10.1186/1471-2105-13-6

    Article  Google Scholar 

  80. Kümmel A, Panke S, Heinemann M (2006) Systematic assignment of thermodynamic constraints in metabolic network models. BMC Bioinformatics 7:1–12. https://doi.org/10.1186/1471-2105-7-512

    CAS  Article  Google Scholar 

  81. Lakshmanan M, Zhang Z, Mohanty B et al (2013) Elucidating rice cell metabolism under flooding and drought stresses using flux-based modeling and analysis. Plant Physiol 162:2140–2150. https://doi.org/10.1104/pp.113.220178

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Latendresse M, Malerich JP, Travers M, Karp PD (2012) Accurate atom-mapping computation for biochemical reactions. J Chem Inf Model 52:2970–2982. https://doi.org/10.1021/ci3002217

    CAS  Article  PubMed  Google Scholar 

  83. Lee SY, Park JM, Kim TY (2011) Application of metabolic flux analysis in metabolic engineering, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  84. Leegood RC (2013) Strategies for engineering C4 photosynthesis. J Plant Physiol 170:378–388. https://doi.org/10.1016/j.jplph.2012.10.011

    CAS  Article  PubMed  Google Scholar 

  85. Lin H, Karki S, Coe RA et al (2016) Targeted knockdown of GDCH in rice leads to a photorespiratory-deficient phenotype useful as a building block for C4 rice. Plant Cell Physiol 57:919–932. https://doi.org/10.1093/pcp/pcw033

    CAS  Article  PubMed  Google Scholar 

  86. Lu Z, Szafron D, Greiner R et al (2004) Predicting subcellular localization of proteins using machine-learned classifiers. Bioinformatics 20:547–556. https://doi.org/10.1093/bioinformatics/bth026

    CAS  Article  PubMed  Google Scholar 

  87. Ma F, Jazmin LJ, Young JD, Allen DK (2014) Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation. Proc Natl Acad Sci 111:16967–16972. https://doi.org/10.1073/pnas.1319485111

    CAS  Article  PubMed  Google Scholar 

  88. Ma F, Jazmin LJ, Young JD, Allen DK (2017) Isotopically nonstationary metabolic flux analysis (INST-MFA) of photosynthesis and photorespiration in plants. Methods Mol Biol 1653:167–194

    CAS  Article  Google Scholar 

  89. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5:264–276. https://doi.org/10.1016/j.ymben.2003.09.002

    CAS  Article  PubMed  Google Scholar 

  90. Mahadevan R, Edwards JS, Doyle FJ (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83:1331–1340. https://doi.org/10.1016/S0006-3495(02)73903-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. Maltsev N, Glass E, Sulakhe D et al (2006) PUMA2-grid-based high-throughput analysis of genomes and metabolic pathways. Nucleic Acids Res 34:D369–D372. https://doi.org/10.1093/nar/gkj095

    CAS  Article  PubMed  Google Scholar 

  92. Martinoia E, Rentsch D (1994) Malate compartmentation-responses to a complex metabolism. Annu Rev Plant Physiol Plant Mol Biol 45:447–467. https://doi.org/10.1146/annurev.pp.45.060194.002311

    CAS  Article  Google Scholar 

  93. McQualter RB, Bellasio C, Gebbie LK et al (2016) Systems biology and metabolic modelling unveils limitations to polyhydroxybutyrate accumulation in sugarcane leaves; lessons for C4 engineering. Plant Biotechnol J 14:567–580. https://doi.org/10.1111/pbi.12399

    CAS  Article  PubMed  Google Scholar 

  94. Monaco MK, Sen TZ, Dharmawardhana PD et al (2013) Maize metabolic network construction and transcriptome analysis. Plant Genome. https://doi.org/10.3835/plantgenome2012.09.0025

    Article  Google Scholar 

  95. Obata T, Rosado-Souza L, Fernie AR (2017) Coupling radiotracer experiments with chemical fractionation for the estimation of respiratory fluxes. In: Jagadis Gupta K (ed) Plant respiration and internal oxygen. Methods in molecular biology, vol 1670. Humana Press, New York, NY, pp 17–30

    Chapter  Google Scholar 

  96. Oberhardt MA, Chavali AK, Papin J (2009) Flux balance analysis: interrogating genome-scale metabolic networks. In: Maly I (ed) Systems biology. Methods in molecular biology (Methods and Protocols), vol 500. Humana Press, pp 61–80

  97. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248. https://doi.org/10.1038/nbt.1614

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. Palsson B (2006) Systems biology: properties of reconstructed networks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  99. Pence HE, Williams A (2010) Chemspider: an online chemical information resource. J Chem Educ 87:1123–1124. https://doi.org/10.1021/ed100697w

    CAS  Article  Google Scholar 

  100. Peterhansel C, Offermann S (2012) Re-engineering of carbon fixation in plants—challenges for plant biotechnology to improve yields in a high-CO2 world. Curr Opin Biotechnol 23:204–208. https://doi.org/10.1016/j.copbio.2011.12.013

    CAS  Article  PubMed  Google Scholar 

  101. Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res 14:2367–2376. https://doi.org/10.1101/gr.2872004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. Pick TR, Bräutigam A, Schlüter U et al (2011) Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation. Plant Cell 23:4208–4220. https://doi.org/10.1105/tpc.111.090324

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Pinney JW, Shirley MW, McConkey GA, Westhead DR (2005) metaSHARK: software for automated metabolic network prediction from DNA sequence and its application to the genomes of Plasmodium falciparum and Eimeria tenella. Nucleic Acids Res 33:1399–1409. https://doi.org/10.1093/nar/gki285

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. Poolman MG, Miguet L, Sweetlove LJ, Fell DA (2009) A genome-scale metabolic model of arabidopsis and some of its properties. Plant Physiol 151:1570–1581. https://doi.org/10.1104/pp.109.141267

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. Price ND, Papin JA, Schilling CH, Palsson BO (2003) Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol 21:162–169. https://doi.org/10.1016/S0167-7799(03)00030-1

    CAS  Article  PubMed  Google Scholar 

  106. Ranganathan S, Suthers PF, Maranas CD (2010) OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput Biol 6:e1000744. https://doi.org/10.1371/journal.pcbi.1000744

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. Reed JL, Senger RS, Antoniewicz MR, Young JD (2010) Computational approaches in metabolic engineering. J Biomed Biotechnol. https://doi.org/10.1155/2010/207414

    Article  PubMed  Google Scholar 

  108. Rizk ML, Liao JC (2009) Ensemble modeling and related mathematical modeling of metabolic networks. J Taiwan Inst Chem Eng 40:595–601. https://doi.org/10.1016/j.jtice.2009.05.003

    CAS  Article  Google Scholar 

  109. Robaina-Estévez S, Nikoloski Z (2016) Metabolic network constrains gene regulation of C4 photosynthesis: the case of maize. Plant Cell Physiol 57:933–943. https://doi.org/10.1093/pcp/pcw034

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. Sage RF (2016) A portrait of the C 4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of Fame. J Exp Bot 67:4039–4056. https://doi.org/10.1093/jxb/erw156

    CAS  Article  PubMed  Google Scholar 

  111. Sage RF, Monson RK (eds) (1999) C4 plant biology. Academic Press, New York

    Google Scholar 

  112. Saha R, Suthers PF, Maranas CD (2011) Zea mays irs1563: a comprehensive genome-scale metabolic reconstruction of maize metabolism. PLoS ONE. https://doi.org/10.1371/journal.pone.0021784

    Article  PubMed  PubMed Central  Google Scholar 

  113. Schmidt K, Carlsen M, Nielsen J, Villadsen J (1997) Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol Bioeng 55:831–840. https://doi.org/10.1002/(SICI)1097-0290(19970920)55:6<831::AID-BIT2>3.0.CO;2-H

    CAS  Article  Google Scholar 

  114. Seaver SMD, Gerdes S, Frelin O et al (2014) High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource. Proc Natl Acad Sci 111:9645–9650. https://doi.org/10.1073/pnas.1401329111

    CAS  Article  PubMed  Google Scholar 

  115. Seaver SMD, Bradbury LMT, Frelin O et al (2015) Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm. Front Plant Sci 6:142. https://doi.org/10.3389/fpls.2015.00142

    Article  PubMed  PubMed Central  Google Scholar 

  116. Segre D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci 99:15112–15117. https://doi.org/10.1073/pnas.232349399

    CAS  Article  PubMed  Google Scholar 

  117. Simons M, Misra A, Sriram G (2014a) Genome-scale models of plant metabolism. Methods Mol Biol 1083:213–230. https://doi.org/10.1007/978-1-62703-661-0_13

    CAS  Article  PubMed  Google Scholar 

  118. Simons MN, Saha R, Amiour N et al (2014b) Assessing the metabolic impact of nitrogen availability using a compartmentalized maize leaf genome-scale model. Plant Physiol 166:1659–1674. https://doi.org/10.1104/pp.114.245787

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. Slatyer RO, Tolbert NE (1971) Photosynthesis and photorespiration. Science 173:1162–1167. https://doi.org/10.1126/science.173.4002.1162

    CAS  Article  PubMed  Google Scholar 

  120. Smallbone K, Simeonidis E, Swainston N, Mendes P (2010) Towards a genome-scale kinetic model of cellular metabolism. BMC Syst Biol 4:6. https://doi.org/10.1186/1752-0509-4-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. Srinivasan S, Cluett WR, Mahadevan R (2015) Constructing kinetic models of metabolism at genome-scales: a review. Biotechnol J 10:1345–1359. https://doi.org/10.1002/biot.201400522

    CAS  Article  PubMed  Google Scholar 

  122. Stitt M, Zhu X-G (2014) The large pools of metabolites involved in intercellular metabolite shuttles in C4 photosynthesis provide enormous flexibility and robustness in a fluctuating light environment. Plant, Cell Environ. https://doi.org/10.1111/pce.12290

    Article  Google Scholar 

  123. Suzuki S, Murai N, Burnell JN, Arai M (2000) Changes in photosynthetic carbon flow in transgenic rice plants that express C4-type phosphoenolpyruvate carboxykinase from Urochloa panicoides. Plant Physiol 124:163–172. https://doi.org/10.1104/pp.124.1.163

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  124. Suzuki S, Murai N, Kasaoka K et al (2006) Carbon metabolism in transgenic rice plants that express phosphoenolpyruvate carboxylase and/or phosphoenolpyruvate carboxykinase. Plant Sci 170:1010–1019. https://doi.org/10.1016/j.plantsci.2006.01.009

    CAS  Article  Google Scholar 

  125. Sweetlove LJ, Ratcliffe RG (2011) Flux-balance modeling of plant metabolism. Front Plant Sci 2:38. https://doi.org/10.3389/fpls.2011.00038

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. Szecowka M, Heise R, Tohge T et al (2013) Metabolic fluxes in an illuminated Arabidopsis rosette. Plant Cell 25:694–714. https://doi.org/10.1105/tpc.112.106989

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. Taniguchi Y, Nagasaki J, Kawasaki M et al (2004) Differentiation of dicarboxylate transporters in mesophyll and bundle sheath chloroplasts of maize. Plant Cell Physiol 45:187–200. https://doi.org/10.1093/pcp/pch022

    CAS  Article  PubMed  Google Scholar 

  128. Terzer M, Maynard ND, Covert MW, Stelling J (2009) Genome-scale metabolic networks. Syst Biol Med 1:285–297. https://doi.org/10.1002/wsbm.037

    CAS  Article  Google Scholar 

  129. Thiele I, Palsson B (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121. https://doi.org/10.1038/nprot.2009.203

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  130. Tran LM, Rizk ML, Liao JC (2008) Ensemble modeling of metabolic networks. Biophys J 95:5606–5617. https://doi.org/10.1529/biophysj.108.135442

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  131. Tran TM, Hampton CS, Brossard TW et al (2017) In vivo transport of three radioactive [18F]-fluorinated deoxysucrose analogs by the maize sucrose transporter ZmSUT1. Plant Physiol Biochem 115:1–11. https://doi.org/10.1016/j.plaphy.2017.03.006

    CAS  Article  PubMed  Google Scholar 

  132. Varma A, Palsson BO (1993) Metabolic capabilities of Escherichia coli: I. synthesis of biosynthetic precursors and cofactors. J Theor Biol 165:477–502

    CAS  Article  Google Scholar 

  133. Varma A, Palsson BO (1994a) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60:3724–3731

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Varma A, Palsson BO (1994b) Metabolic flux balancing: basic concepts, scientific and practical use. Bio/Technology 12:994–998. https://doi.org/10.1038/nbt1094-994

    CAS  Article  Google Scholar 

  135. von Caemmerer S, Quick WP, Furbank RT (2012) The development of C4 rice: current progress and future challenges. Science 336:1671–1672. https://doi.org/10.1126/science.1220177

    CAS  Article  Google Scholar 

  136. Wang C, Guo L, Li Y, Wang Z (2012) Systematic comparison of C3 and C4 plants based on metabolic network analysis. BMC Syst Biol 6:S9. https://doi.org/10.1186/1752-0509-6-S2-S9

    Article  PubMed  PubMed Central  Google Scholar 

  137. Wang L, Czedik-Eysenberg A, Mertz RA et al (2014a) Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice. Nat Biotechnol 32:1158–1165. https://doi.org/10.1038/nbt.3019

    CAS  Article  PubMed  Google Scholar 

  138. Wang Y, Bräutigam A, Weber APM, Zhu X-G (2014b) Three distinct biochemical subtypes of C4 photosynthesis? A modelling analysis. J Exp Bot 65:3567–3578. https://doi.org/10.1093/jxb/eru058

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  139. Weissmann S, Ma F, Furuyama K et al (2016) Interactions of C4 subtype metabolic activities and transport in maize are revealed through the characterization of DCT2 mutants. Plant Cell 28:466–484. https://doi.org/10.1105/tpc.15.00497

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. Wheeler DL, Chappey C, Lash AE et al (2000) Database resources of the national center for biotechnology information. Nucleic Acids Res 28:10–14

    CAS  Article  Google Scholar 

  141. Wiechert W, Nöh K (2005) From stationary to instationary metabolic flux analysis. Adv Biochem Eng Biotechnol 92:145–172. https://doi.org/10.1007/b98921

    CAS  Article  PubMed  Google Scholar 

  142. Wiechert W, Nöh K (2013) Isotopically non-stationary metabolic flux analysis: complex yet highly informative. Curr Opin Biotechnol 24:979–986. https://doi.org/10.1016/j.copbio.2013.03.024

    CAS  Article  PubMed  Google Scholar 

  143. Wiechert W, Möllney M, Isermann N et al (1999) Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnol Bioeng 66:69–85. https://doi.org/10.1002/(SICI)1097-0290(1999)66:2<69:AID-BIT1>3.0.CO;2-6

    CAS  Article  Google Scholar 

  144. Young JD (2014) INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics 30:1333–1335. https://doi.org/10.1093/bioinformatics/btu015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  145. Young JD, Walther JL, Antoniewicz MR et al (2008) An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol Bioeng 99:686–699. https://doi.org/10.1002/bit.21632

    CAS  Article  PubMed  Google Scholar 

  146. Young JD, Shastri AA, Stephanopoulos G, Morgan JA (2011) Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis. Metab Eng 13:656–665. https://doi.org/10.1016/j.ymben.2011.08.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  147. Yu NY, Wagner JR, Laird MR et al (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615. https://doi.org/10.1093/bioinformatics/btq249

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Cheryl Immethun, PhD for her input during the preparation of the manuscript. This study is based upon work supported by the Research Council Interdisciplinary Grant from University of Nebraska Lincoln (RS and TO), University of Nebraska-Lincoln Faculty Startup Grant 21-1106-4308 (RS), and the National Science Foundation/EPSCoR RII Track-2 FEC Award No. #1736192 (TO).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Rajib Saha or Toshihiro Obata.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 73 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Islam, M.M., Al-Siyabi, A., Saha, R. et al. Dissecting metabolic flux in C4 plants: experimental and theoretical approaches. Phytochem Rev 17, 1253–1274 (2018). https://doi.org/10.1007/s11101-018-9579-8

Download citation

Keywords

  • C4 photosynthesis
  • Constraint-based reconstruction and analysis
  • Genome scale metabolic model
  • Isotope labeling
  • Metabolic flux analysis