Skip to main content

Carvacrol and its derivatives as antibacterial agents

Abstract

In recent years, essential oils constituents have attracted interest as alternative approach in the traditional medicine for their therapeutics properties. In this field, carvacrol, since it showed strong antimicrobial activity against a wide range of Gram-positive and -negative bacteria, has emerged as active molecule for therapeutic purpose. This review focuses on the antimicrobial properties of carvacrol and highlights the advantageous impact of the medicinal chemistry and technological-based approaches employed to improve its therapeutic profile.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ait-Ouazzou A, Espina L, Gelaw TK et al (2013) New insights in mechanisms of bacterial inactivation by carvacrol. J Appl Microbiol 114:173–185

    PubMed  Article  CAS  Google Scholar 

  2. Aligiannis N, Kalpoutzakis E, Mitaku S, Chinou IB (2001) Composition and antimicrobial activity of the essential oils of two Origanum species. J Agric Food Chem 49:4168–4170

    PubMed  Article  CAS  Google Scholar 

  3. Alokam R, Jeankumar VU, Sridevi JP et al (2014) Identification and structure–activity relationship study of carvacrol derivatives as Mycobacterium tuberculosis chorismate mutase inhibitors. J Enzyme Inhib Med Chem 29:547–554

    PubMed  Article  CAS  Google Scholar 

  4. Anaya-Castro MA, Ayala-Zavala JF, Muñoz-Castellanos L et al (2017) β-Cyclodextrin inclusion complexes containing clove (Eugenia caryophyllata) and Mexican oregano (Lippia berlandieri) essential oils: preparation, physicochemical and antimicrobial characterization. Food Packag Shelf Life 14:96–101

    Article  Google Scholar 

  5. Andrade-Ochoa S, Nevárez-Moorillón GV, Sánchez-Torres LE et al (2015) Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. BMC Complement Altern Med 15:332

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. Asfaw N, Storesund HJ, Skattebol L et al (2000) Volatile oil constituents of two Thymus species from Ethiopia. Flavour Fragr J 15:123–125

    Article  CAS  Google Scholar 

  7. Austgulen LT, Solheim E, Scheline RR (1987) Metabolism in rats of p-cymene derivatives: carvacrol and thymol. Pharmacol Toxicol 61:98–102

    PubMed  Article  CAS  Google Scholar 

  8. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46:446–475

    PubMed  Article  CAS  Google Scholar 

  9. Baser KHC (2008) Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des 14:3106–3119

    PubMed  Article  CAS  Google Scholar 

  10. Baser KHC, Buchbauer G (2010) Handbook of essential oils: science, technology and applications, 1st edn. CRC, Boca Raton

    Google Scholar 

  11. Baser KHC, Özek T, Tümen G, Sezik E (1993) Composition of the essential oils of Turkish Origanum species with commercial importance. J Essent Oil Res 5:619–623

    Article  CAS  Google Scholar 

  12. Baser KH, Özek T, Kürkçüoglu M, Tümen G (1994) The essential oil of Origanum vulgare subsp. hirtum of Turkish Origin. J Essent Oil Res 6:31–36

    Article  CAS  Google Scholar 

  13. Bassanetti I, Carcelli M, Buschini A et al (2017) Investigation of antibacterial activity of new classes of essential oils derivatives. Food Control 73:606–612

    Article  CAS  Google Scholar 

  14. Bassolé IHN, Juliani HR (2012) Essential oils in combination and their antimicrobial properties. Molecules 17:3989–4006

    PubMed  Article  CAS  Google Scholar 

  15. Baydar H, Saǧdiç O, Özkan G, Karadoǧan T (2004) Antibacterial activity and composition of essential oils from Origanum, Thymbra and Satureja species with commercial importance in Turkey. Food Control 15:169–172

    Article  CAS  Google Scholar 

  16. Becerril R, Gómez-Lus R, Goñi P et al (2007) Combination of analytical and microbiological techniques to study the antimicrobial activity of a new active food packaging containing cinnamon or oregano against E. coli and S. aureus. Anal Bioanal Chem 388:1003–1011

    PubMed  Article  CAS  Google Scholar 

  17. Ben Arfa A, Combes S, Preziosi-Belloy L et al (2006) Antimicrobial activity of carvacrol related to its chemical structure. Lett Appl Microbiol 43:149–154

    PubMed  Article  CAS  Google Scholar 

  18. Bentayeb K, Vera P, Rubio C, Nerín C (2014) The additive properties of Oxygen Radical Absorbance Capacity (ORAC) assay: the case of essential oils. Food Chem 148:204–208

    PubMed  Article  CAS  Google Scholar 

  19. Bergonzelli GE, Donnicola D, Porta N, Corthésy-Theulaz IE (2003) Essential oils as components of a diet-based approach to management of helicobacter infection essential oils as components of a diet-based approach to management of helicobacter infection. Antimicrob Agents Chemother 47:3240–3246

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. Bilia AR, Guccione C, Isacchi B et al (2014) Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid Based Complement Altern Med 2014: ID 651593

  21. Blanco-Padilla A, Soto KM, Hernández Iturriaga M, Mendoza S (2014) Food antimicrobials nanocarriers. Sci World J 2014: ID837215

  22. Botelho MA, Nogueira NAP, Bastos GM et al (2007) Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Braz J Med Biol Res 40:349–356

    PubMed  Article  CAS  Google Scholar 

  23. Bouhdid S, Abrini J, Zhiri A et al (2009) Investigation of functional and morphological changes in pseudomonas aeruginosa and staphylococcus aureus cells induced by origanum compactum essential oil. J Appl Microbiol 106:1558–1568

    PubMed  Article  CAS  Google Scholar 

  24. Burt SA, van der Zee R, Koets AP et al (2007) Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157:H7. Appl Environ Microbiol 73:4484–4490

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. Cacciatore I, Baldassarre L, Fornasari E et al (2012) (R)-a-Lipoyl-Glycyl-l-Prolyl-l-glutamyl dimethyl ester codrug as a multifunctional agent with potential neuroprotective activities. Chem Med Chem 7:2021–2029

    PubMed  Article  CAS  Google Scholar 

  26. Cacciatore I, Di Giulio M, Fornasari E et al (2015) Carvacrol codrugs: a new approach in the antimicrobial plan. PLoS ONE 10(4):e0120937

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. Cacciatore I, Ciulla M, Fornasari E et al (2016) Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases. Expert Opin Drug Deliv 13:1121–1131

    PubMed  Article  CAS  Google Scholar 

  28. Caillet S, Shareck F, Lacroix M (2005) Effect of gamma radiation and oregano essential oil on murein and ATP concentration of Escherichia coli O157:H7. J Food Prot 68:2571–2579

    PubMed  Article  CAS  Google Scholar 

  29. Ćavar S, Maksimović M, Šolić ME et al (2008) Chemical composition and antioxidant and antimicrobial activity of two Satureja essential oils. Food Chem 111:648–653

    Article  CAS  Google Scholar 

  30. Choi J-G, Kang O-H, Lee Y-S et al (2009) Antibacterial activity of methyl gallate isolated from galla rhois or carvacrol combined with nalidixic acid against nalidixic acid resistant bacteria. Molecules 14:1773–1780

    PubMed  Article  CAS  Google Scholar 

  31. Cirioni O, Mocchegiani F, Cacciatore I, Vecchiet J, Silvestri C, Baldassarre L, Ucciferri C, Orsetti E, Castelli P, Provinciali M, Vivarelli M, Fornasari E, Giacometti A (2013) Quorum sensing inhibitor FS3-coated vascular graft enhances daptomycin efficacy in a rat model of staphylococcal infection. Peptides 40:77–81. https://doi.org/10.1016/j.peptides.2012.12.002

    PubMed  CAS  Article  Google Scholar 

  32. Commission European (2012) COMMISSION IMPLEMENTING REGULATION (EU) No 872/2012 of 1 October 2012 adopting the list of flavouring substances provided for by regulation (EC) No 2232/96 of the European parliament and of the council, introducing it in Annex I to Regulation (EC) No 1334. Off J Eur Union L 267:161

    Google Scholar 

  33. Cosentino S, Tuberoso CIG, Pisano B et al (1999) In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett Appl Microbiol 29:130–135

    PubMed  Article  CAS  Google Scholar 

  34. Croteau R, Kutchan TM, Lewis NG (2000) Secondary Metabolites. Biochem Mol Biol Plants 7:1250–1318

    Google Scholar 

  35. da Rosa CG, de Oliveira Brisola Maciel MV, de Carvalho SM et al (2015) Characterization and evaluation of physicochemical and antimicrobial properties of zein nanoparticles loaded with phenolics monoterpenes. Coll Surf A Physicochem Eng Asp 481:337–344

    Article  CAS  Google Scholar 

  36. De Oliveira AS, Llanes LC, Brighente IMC et al (2016) New sulfonamides derived from carvacrol: compounds with high antibacterial activity against resistant staphylococcus aureus strains. J Biosci Med 4:105–114

    Google Scholar 

  37. Di Pasqua R, Hoskins N, Betts G, Mauriello G (2006) Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media. J Agric Food Chem 54:2745–2749

    PubMed  Article  CAS  Google Scholar 

  38. Dong RH, Fang ZZE, Zhu LL et al (2012) Identification of CYP isoforms involved in the metabolism of thymol and carvacrol in human liver microsomes (HLMs). Pharmazie 67:1002–1006

    PubMed  CAS  Google Scholar 

  39. Dorman HJ, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316

    PubMed  Article  CAS  Google Scholar 

  40. Engel JB, Heckler C, Tondo EC et al (2017) Antimicrobial activity of free and liposome-encapsulated thymol and carvacrol against Salmonella and Staphylococcus aureus adhered to stainless steel. Int J Food Microbiol 252:18–23

    PubMed  Article  CAS  Google Scholar 

  41. FDA (2017) CFR—Code of federal regulations title 21 3: 25–26

  42. Figueiredo CA, Barroso JG, Pedro LG, Scheefeer JJC (2008) Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr J 23:213–226

    Article  CAS  Google Scholar 

  43. Friedman M (2014) Chemistry and multibeneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices. J Agric Food Chem 62:7652–7670

    PubMed  Article  CAS  Google Scholar 

  44. Galvão LCDC, Furletti VF, Bersan SMF et al (2012) Antimicrobial activity of essential oils against Streptococcus mutans and their antiproliferative effects. Evid Based Complement Altern Med 2012: Art. No. 751435

  45. Gaysinsky S, Davidson PM, Bruce BD, Weiss J (2005) Growth inhibition of Escherichia coli O157:H7 and Listeria monocytogenes by carvacrol and eugenol encapsulated in surfactant micelles. J Food Prot 68:2559–2566

    PubMed  Article  CAS  Google Scholar 

  46. Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414

    PubMed  Article  CAS  Google Scholar 

  47. Ghelichnia H (2016) Essential oil composition of three species of thymus growing wild in mazandaran, Iran. Cercet Agron Mold 49:107–113

    Article  Google Scholar 

  48. Gill AO, Holley RA (2004) Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and Lactobacillus sakei. Appl Environ Microbiol 70:5750–5755

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. Gochev V, Dobreva A, Girova T, Stoyanova A (2014) Antimicrobial activity of essential oil from Rosa Alba. Biotechnol Biotechnol Equip 24:512–515

    Article  Google Scholar 

  50. Griffin SG, Wyllie SG, Markham JL, Leach DN (1999) The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr J 14:322–332

    Article  CAS  Google Scholar 

  51. Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 46:412–429

    Article  CAS  Google Scholar 

  52. Habbadi K, Meyer T, Vial L et al (2017) Essential oils of Origanum compactum and Thymus vulgaris exert a protective effect against the phytopathogen Allorhizobium vitis. DOI, Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-1008-9

    Book  Google Scholar 

  53. Helander IM, Alakomi H-L, Latva-Kala K et al (1998) Characterization of the action of selected essential oil components on gram-negative bacteria. J Agric Food Chem 46:3590–3595

    Article  CAS  Google Scholar 

  54. Iannitelli A, Grande R, Di Stefano A et al (2011) Potential antibacterial activity of carvacrol-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against microbial biofilm. Int J Mol Sci 12:5039–5051

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. İşcan G (2017) Antibacterial and anticandidal activities of common essential oil constituents. Rec Nat Prod 11:374–388

    Google Scholar 

  56. Jamali CA, El Bouzidi L, Bekkouche K et al (2012) Chemical composition, antioxidant and antimicrobial activities of essential oils obtained from wild and cultivated Moroccan Thymus species. Chem Biodivers 9:1188–1197

    PubMed  Article  CAS  Google Scholar 

  57. Joshi JR, Khazanov N, Senderowitz H et al (2016) Plant phenolic volatiles inhibit quorum sensing in pectobacteria and reduce their virulence by potential binding to ExpI and ExpR proteins. Sci Rep 6:38126

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. Juven BJ, Kanner J, Schved F, Weisslowicz H (1994) Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J Appl Bacteriol 76:626–631

    PubMed  Article  CAS  Google Scholar 

  59. Karaman S, Digrak M, Ravid U, Ilcim A (2001) Antibacterial and antifungal activity of the essential oils of Thymus revolutus Celak from Turkey. J Ethnopharmacol 76:183–186

    PubMed  Article  CAS  Google Scholar 

  60. Karousou R, Koureas DN, Kokkini S (2005) Essential oil composition is related to the natural habitats: coridothymus capitatus and Satureja thymbra in NATURA 2000 sites of Crete. Phytochemistry 66:2668–2673

    PubMed  Article  CAS  Google Scholar 

  61. Keawchaoon L, Yoksan R (2011) Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Coll Surf B Biointerfaces 84:163–171

    Article  CAS  Google Scholar 

  62. Kim J, Marshall MR, Wei CI (1995a) Antibacterial activity of some essential oil components against five foodborne pathogens. J Agric Food Chem 43:2839–2845

    Article  CAS  Google Scholar 

  63. Kim JM, Marshall MR, Cornell JA et al (1995b) Antibacterial activity of carvacrol, citral and geraniol against Salmonella Typhimuriumin culture mediumand on Fish Gubes. J Food Sci 60:1364–1674

    Article  CAS  Google Scholar 

  64. Kirimer N, Başer KHC, Tümen G (1995) Carvacrol-rich plants in Turkey. Chem Nat Compd 31:37–41

    Article  Google Scholar 

  65. Knobloch K, Pauli A, Iberl B et al (1989) Antibacterial and antifungal properties of essential oil components. J Essent Oil Res 1:119–128

    Article  CAS  Google Scholar 

  66. Kokkini S, Vokou D (1989) Carvacrol-rich plants in Greece. Flavour Fragr J 4:1–7

    Article  Google Scholar 

  67. Kumari S, Pundhir S, Priya P et al (2014) EssOilDB: A database of essential oils reflecting terpene composition and variability in the plant kingdom. Database 2014: bau120

  68. Kurkcuoglu M, Tumen G, Baser KHC (2001) Essential oil constituents of Satureja boissieri from Turkey. Chem Nat Compd 37:329–331

    Article  CAS  Google Scholar 

  69. La Storia A, Ercolini D, Marinello F et al (2011) Atomic force microscopy analysis shows surface structure changes in carvacrol-treated bacterial cells. Res Microbiol 162:164–172

    PubMed  Article  CAS  Google Scholar 

  70. Lambert RJW, Skandamis PN, Coote PJ, Nychas GJE (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462

    PubMed  Article  CAS  Google Scholar 

  71. Liolios CC, Gortzi O, Lalas S et al (2009) Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chem 112:77–83

    Article  CAS  Google Scholar 

  72. Lupo JAT, Nakatsu T, Caldwell J et al (2000) Substituted phenols as fragrance, flavor and antimicrobial compounds. US Patent 6,110,888

  73. Magi G, Marini E, Facinelli B (2015) Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant group a streptococci. Front Microbiol 6:1–7

    Article  Google Scholar 

  74. Mastelić J, Jerković I, Blažević I et al (2008) Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. J Agric Food Chem 56:3989–3996

    PubMed  Article  CAS  Google Scholar 

  75. Mathela CS, Singh KK, Gupta VK (2010) Synthesis and in vitro antibacterial activity of thymol and carvacrol derivatives. Acta Pol Pharm Drug Res 67:375–380

    CAS  Google Scholar 

  76. Michiels J, Missotten J, Dierick N et al (2008) In vitro degradation and in vivo passage kinetics of carvacrol, thymol, eugenol and trans-cinnamaldehyde along the gastrointestinal tract of piglets. J Sci Food Agric 88:2371–2381

    Article  CAS  Google Scholar 

  77. Nabet N, Boudries H, Loupassaki S et al (2017) Chemical composition, antimicrobial and antioxidant activities of Thymus fontanesii Boiss. et Reut. and Origanum glandulosum Desf. essential oils. Int food Res J 24:2518–2525

    Google Scholar 

  78. Nazzaro F, Fratianni F, De Martino L et al (2013) Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6:1451–1474

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. Nickavar B, Mojab F, Dolat-Abadi R (2005) Analysis of the essential oils of two Thymus species from Iran. Food Chem 90:609–611

    Article  CAS  Google Scholar 

  80. Nikumbh VP, Tare VS, Mahulikar PP (2003) Eco-friendly pest management using monoterpenoids-III: antibacterial efficacy of carvacrol derivatives. J Sci Ind Res 62:1086–1089

    CAS  Google Scholar 

  81. Nostro A, Roccaro AS, Bisignano G et al (2007) Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol 56:519–523

    PubMed  Article  CAS  Google Scholar 

  82. Nostro A, Marino A, Blanco AR et al (2009) In vitro activity of carvacrol against staphylococcal preformed biofilm by liquid and vapour contact. J Med Microbiol 58:791–797

    PubMed  Article  CAS  Google Scholar 

  83. Nostro A, Cellini L, Zimbalatti V et al (2012) Enhanced activity of carvacrol against biofilm of staphylococcus aureus and Staphylococcus epidermidis in an acidic environment. Apmis 120:967–973

    PubMed  Article  CAS  Google Scholar 

  84. Olasupo NA, Fitzgerald DJ, Gasson MJ, Narbad A (2003) Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium. Lett Appl Microbiol 36:448–451

    Article  CAS  Google Scholar 

  85. Patil JU, Suryawanshi KC, Patil PB et al (2010) Synthesis and antibacterial activity of carvacryl ethers. J Asian Nat Prod Res 12:129–133

    PubMed  Article  CAS  Google Scholar 

  86. Pedro AS, Santo IE, Silva C V et al (2013) The use of nanotechnology as an approach for essential oil-based formulations with antimicrobial activity. In: Méndez-Vilas FA (ed.) Microbial pathogenes and Strategies for combating them: science, technology and education, vol 2. Formatex Research Center, Spain, pp 1364–1374

  87. Pei RS, Zhou F, Ji BP, Xu J (2009) Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. J Food Sci 74:379–383

    Article  CAS  Google Scholar 

  88. Pèrez-Conesa D, Cao J, Chen L et al (2011) Inactivation of listeria monocytogenes and escherichia coli O157:H7 biofilms by micelle-encapsulated eugenol and carvacrol. J Food Prot 74:55–62

    PubMed  Article  Google Scholar 

  89. Pol IE, Smid EJ (1999) Combined action of nisin and carvacrol on Bacillus cereus and Listeria monocytogenes. Lett Appl Microbiol 29:166–170

    PubMed  Article  CAS  Google Scholar 

  90. Radulović NS, Blagojević PD, Stojanović-Radić ZZ, Stojanović NM (2013) Antimicrobial plant metabolites: structural diversity and mechanism of action. Curr Med Chem 20:932–952

    PubMed  Google Scholar 

  91. Rashidipour M, Ezatpour B, Talei GR, Pournia Y (2016) The carvacrol level and antibacterial properties of industrial and laboratory essential oils of the wild and cultivated Satureja khuzestanica. J Essent Oil-Bear Plants 19:519–528

    Article  CAS  Google Scholar 

  92. Raut JS, Karuppayil SM (2014) A status review on the medicinal properties of essential oils. Ind Crops Prod 62:250–264

    Article  CAS  Google Scholar 

  93. Ruiz-Rico M, Pérez-Esteve É, Bernardos A et al (2017) Enhanced antimicrobial activity of essential oil components immobilized on silica particles. Food Chem 233:228–236

    PubMed  Article  CAS  Google Scholar 

  94. Saini S, Quinot D, Lavoine N et al (2017) β-cyclodextrin-grafted TEMPO-oxidized cellulose nanofibers for sustained release of essential oil. J Mater Sci 52:3849–3861

    Article  CAS  Google Scholar 

  95. Sefidkon F, Jamzad Z (2005) Chemical composition of the essential oil of three Iranian Satureja species (S. mutica, S. macrantha and S. intermedia). Food Chem 91:1–4

    Article  CAS  Google Scholar 

  96. Sefidkon F, Abbasi K, Jamzad Z, Ahmadi S (2007) The effect of distillation methods and stage of plant growth on the essential oil content and composition of Satureja rechingeri Jamzad. Food Chem 100:1054–1058

    Article  CAS  Google Scholar 

  97. Sfeir J, Lefrançois C, Baudoux D et al (2013) In vitro antibacterial activity of essential oils against streptococcus pyogenes. Evid Based Complement Altern Med 2013: ID269161

  98. Shakeri F, Shakeri S, Hojjatoleslami M (2014) Preparation and characterization of carvacrol loaded polyhydroxybutyrate nanoparticles by nanoprecipitation and dialysis methods. J Food Sci 79:N697–N705

    PubMed  Article  CAS  Google Scholar 

  99. Shimoda K, Kondo Y, Nishida T et al (2006) Biotransformation of thymol, carvacrol, and eugenol by cultured cells of Eucalyptus perriniana. Phytochemistry 67:2256–2261

    PubMed  Article  CAS  Google Scholar 

  100. Sikkema J, De Bont JAM, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028

    PubMed  CAS  Google Scholar 

  101. Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    PubMed  PubMed Central  CAS  Google Scholar 

  102. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:1–16

    Article  CAS  Google Scholar 

  103. Simonetti O, Cirioni O, Cacciatore I et al (2016) Efficacy of the quorum sensing inhibitor FS10 alone and in combination with tigecycline in an animal model of staphylococcal infected wound. PLoS ONE 11(6):e0151956

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  104. Sivropoulou A, Kokkini S, Lanaras T, Arsenakis M (1995) Antimicrobial activity of mint essential oils. J Agric Food Chem 43:2384–2388

    Article  CAS  Google Scholar 

  105. Skočibušić M, Bezić N (2004) Phytochemical analysis and in vitro antimicrobial activity of two Satureja species essential oils. Phytother Res 18:967–970

    PubMed  Article  CAS  Google Scholar 

  106. Skočibušić M, Bezić N, Dunkić V (2006) Phytochemical composition and antimicrobial activities of the essential oils from Satureja subspicata vis. growing in Croatia. Food Chem 96:20–28

    Article  CAS  Google Scholar 

  107. Soković MD, Vukojević J, Marin PD et al (2009) Chemical composition of essential oils of thymus and mentha species and their antifungal activities. Molecules 14:238–249

    PubMed  Article  CAS  Google Scholar 

  108. Sozio P, Marinelli L, Cacciatore I et al (2013) New flurbiprofen derivatives: synthesis, membrane affinity and evaluation of in vitro effect on β-Amyloid levels. Molecules 18:10747–10767

    PubMed  Article  CAS  Google Scholar 

  109. Suburg H, Panten J (2006) Common fragrance and flavor materials, preparation, properties and uses. Wiley, Weinheim

    Book  Google Scholar 

  110. Tepe B, Cilkiz M (2016) A pharmacological and phytochemical overview on Satureja. Pharm Biol 54:375–412

    PubMed  Article  CAS  Google Scholar 

  111. Ultee A (2000) Bactericidal action of carvacrol towards the food pathogen Bacillus cereus: a case study of a novel approach to mild food preservation—Thesis Wageningen University, Wageningen

  112. Ultee A, Kets EP, Smid EJ (1999) Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl Env Microbiol 65:4606–4610

    CAS  Google Scholar 

  113. Ultee A, Slump RA, Steging G, Smid EJ (2000) Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J Food Protect 63:620–624

    Article  CAS  Google Scholar 

  114. Ultee A, Bennik MHJ, Moezelaar R (2002) The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen bacillus cereus the phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen bacillus cereus. Appl Environ Microbiol 68:1561–1568

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  115. Veldhuizen EJA, Tjeerdsma-Van Bokhoven JLM, Zweijtzer C et al (2006) Structural requirements for the antimicrobial activity of carvacrol. J Agric Food Chem 54:1874–1879

    PubMed  Article  CAS  Google Scholar 

  116. Wang Q, Gong J, Huang X et al (2009) In vitro evaluation of the activity of microencapsulated carvacrol against Escherichia coli with K88 pili. J Appl Microbiol 107:1781–1788

    PubMed  Article  CAS  Google Scholar 

  117. Xu J, Zhou F, Ji BP et al (2008) The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett Appl Microbiol 47:174–179

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lisa Marinelli.

Ethics declarations

Conflict of interest

The authors declare not conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marinelli, L., Di Stefano, A. & Cacciatore, I. Carvacrol and its derivatives as antibacterial agents. Phytochem Rev 17, 903–921 (2018). https://doi.org/10.1007/s11101-018-9569-x

Download citation

Keywords

  • Antimicrobials
  • Carvacrol
  • Carvacrol derivatives
  • Essential oils