Family Juncaceae: promising source of biologically active natural phenanthrenes

  • Csaba Bús
  • Barbara Tóth
  • Dóra Stefkó
  • Judit Hohmann
  • Andrea Vasas
Article

Abstract

Phenanthrenes represent a relatively small group of aromatic secondary metabolites, which can be divided into three main subgroups (mono-, di-, and triphenanthrenes). Phenanthrenes are reported as an intensively researched field in phytochemistry according to their structural diversity and promising biological activities. Because of their limited occurrence phenanthrenes are considered to be as important taxonomic markers. Juncaceae is a relatively large plant family divided into seven genera of which Juncus and Luzula are the most important ones from phytochemical and pharmacological points of view. To date, almost one hundred natural phenanthrenes have been isolated but only from eight (Juncus acutus, J. effusus, J. inflexus, J. maritimus, J. roemerianus, J. setchuensis, J. subulatus, and Luzula luzuloides) Juncaceae species, including mono-, and diphenanthrenes, and phenanthrene glucosides. Great deal of the isolated compounds are substituted with a vinyl group. This substitution is characteristic exclusively to Juncaceae species. Juncusol (2) was isolated from every investigated species. The richest source of phenanthrenes, as well as the most extensively investigated species is J. effusus. Several isolated compounds possessed different biological activities, e.g. antiproliferative, antimicrobial, anti-inflammatory, antioxidant, spasmolytic, anxiolytic, and antialgal effects. Among them, dehydroeffusol (60) is the most promising one, as it showed antimicrobial, anxiolytic, sedative, spasmolytic, cellular protective and antiproliferative activities. The aim of this review is to summarize the occurrence of phenanthrenes in the family Juncaceae, and give a comprehensive overview of their isolation, structural characteristics and biological activities.

Keywords

Phenanthrenes Juncaceae Juncus Luzula Biological activities 

Notes

Acknowledgements

Financial supports from GINOP-2.3.2-15-2016-00012 and TÁMOP 4.2.4.A/2-11/1-2012-0001 are gratefully acknowledged.

References

  1. Abdel-Razik AFI, Elshamy ASI, Nassar MI, El-Kousy SM, Hamdy H (2009) Chemical constituents and hepatoprotective activity of Juncus subulatus. Rev Latinoam Quím 37:70–84Google Scholar
  2. Awaad AS (2006) Phenolic glycosides of Juncus acutus and its anti-eczematic activity. Chem Nat Comp 42:152–155CrossRefGoogle Scholar
  3. Behery FAA, Naeem ZEM, Maatooq GT, Amer MMA, Wen ZH, Sheu JH, Ahmed AF (2007) Phenanthrenoids from Juncus acutus L., new natural lipopolysaccharide-inducible nitric oxide synthase inhibitors. Chem Pharm Bull 55:1264–1266CrossRefPubMedGoogle Scholar
  4. Behery FAA, Naeem ZEM, Maatooq GT, Amer MAA, Ahmed AF (2013) A novel antioxidant phenanthrenoid dimer from Juncus acutus L. Nat Prod Res 27:155–163CrossRefPubMedGoogle Scholar
  5. Chapatwala KD, de la Cruz AA, Miles DH (1981) Antimicrobial activity of juncusol, a novel 9,10-dihydrophenanthrene from the marsh plant Juncus roemerianus. Life Sci 29:1997–2001CrossRefPubMedGoogle Scholar
  6. Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177:143–155CrossRefGoogle Scholar
  7. DellaGreca M, Fiorentino A, Nangoni L, Molinaro A, Monaco P, Previtera L (1992) 9,10-Dihydrophenanthrene metabolites from Juncus effusus L. Tetrahedron Lett 33:5257–5260CrossRefGoogle Scholar
  8. DellaGreca M, Fiorentino A, Mangoni L, Molinaro A, Monaco P, Previtera L (1993) Cytotoxic 9,10-dihydrophenanthrenes from Juncus effusus L. Tetrahedron 49:3425–3432CrossRefGoogle Scholar
  9. DellaGreca M, Fiorentino A, Monaco P, Previtera L (1994) Cycloartane triterpenes from Juncus effusus. Phytochemistry 35:1017–1022CrossRefGoogle Scholar
  10. DellaGreca M, Fiorentino A, Monaco P, Previtera L, Zarrelli A (1995) Effusides I-V: 9,10-dihydrophenanthrene glucosides from Juncus effusus. Phytochemistry 40:533–535CrossRefGoogle Scholar
  11. DellaGreca M, Fiorentino A, Monaco P, Pollio A, Pinto G, Previtera L (1996) Action of antialgal compounds from Juncus effusus L. on Selenastrum capricornutum. J Chem Ecol 22:587–603CrossRefGoogle Scholar
  12. DellaGreca M, Monaco P, Previtera L, Zarrelli A (1997) Minor bioactive dihydrophenanthrenes from Juncus effusus. J Nat Prod 60:1265–1268CrossRefGoogle Scholar
  13. DellaGreca M, Fiorentino A, Isidori M, Zarrelli A (2001) Toxicity evaluation of natural and synthetic phenanthrenes in aquatic systems. Envirol Toxicol Chem 20:1824–1830CrossRefGoogle Scholar
  14. DellaGreca M, Fiorentino A, Isidori M, Lavorgna M, Monaco P, Previtera L, Zarrelli A (2002a) Phenanthrenoids from the wetland Juncus acutus. Phytochemistry 60:633–638CrossRefPubMedGoogle Scholar
  15. DellaGreca M, Fiorentino A, Monaco P, Previtera L, Zarrelli A (2002b) A new dimeric 9,10-dihydrophenanthrenoid from the rhizome of Juncus acutus. Tetrahedron Lett 43:2573–2575CrossRefGoogle Scholar
  16. DellaGreca M, Fiorentino A, Monaco P, Previtera L, Temussi F, Zarrelli A (2003) New dimeric phenanthrenoids from the rhizomesof Juncus acutus. Structure determination and antialgal activity. Tetrahedron 59:2317–2324CrossRefGoogle Scholar
  17. DellaGreca M, Isidori M, Lavorgna M, Monaco P, Previtera L, Zarrelli A (2004) Bioactivity of phenanthrenes from Juncus acutus on Selenastrum capricornutum. J Chem Ecol 30:867–879CrossRefPubMedGoogle Scholar
  18. DellaGreca M, Previtera L, Zarrelli A (2005) Dimeric phenanthrenoids from Juncus acutus. Nat Prod Res 19:69–74CrossRefPubMedGoogle Scholar
  19. Di F, Zhai H, Li P, Huang J (2014) Effects of dehydroeffusol on spasmogen-induced contractile responses of rat intestinal smooth muscles. Planta Med 80:978–983CrossRefPubMedGoogle Scholar
  20. Dong-Zhe J, Zhi-Da M, Chiou GCY, Iinuma M, Tanaka T (1996) Two p-coumaroyl glycerides from Juncus effusus. Phytochemistry 41:545–547CrossRefGoogle Scholar
  21. Flora of China (2000) Juncus Linnaeus, Sp. Pl. 1:325.1753. 24:44–64. http://flora.huh.harvard.edu/china/PDF/PDF24/juncus.pdf
  22. Hanawa F, Okamoto M, Towers GHN (2002) Antimicrobial DNA-binding photosensitizers from the common rush, Juncus effusus. Photochem Photobiol 76:51–56CrossRefPubMedGoogle Scholar
  23. Ishiuchi K, Kosuge Y, Hamagami H, Ozaki M, Ishige K, Ito Y, Kitanaka S (2015) Chemical constituents isolated from Juncus effusus induce cytotoxicity in HT22 cells. J Nat Med 69:421–426CrossRefPubMedGoogle Scholar
  24. Kovács A, Vasas A, Hohmann J (2008) Natural phenanthrenes and their biological activity. Phytochemistry 69:1084–1110CrossRefPubMedGoogle Scholar
  25. Kubitzki K (1998) The families and genera of vascular plants. Springer-Verlag, Berlin, p 258Google Scholar
  26. Kuhnlein HV, Turner NJ (1991) Traditional plant foods of Canadian indigenous peoples: nutrition, botany and use. Gordon and Breach Science Publishers, Amsterdam, p 297Google Scholar
  27. Kuo CY, Schelz Z, Tóth B, Vasas A, Hohmann J, Zupkó I, Wang HC (2016) Investigation of the anticancer mechanism of compounds derived from Juncus inflexus root extract on cervical cancer cells. Panta Med 81(S 01):P195Google Scholar
  28. Li J, Shi SM, Sun YK, Liu L, Sun YF, Fan Y, Zhang LD (2015) A new dihydrophenanthrene from Juncus setchuensis. Chin Tradit Herb Drugs 16:2361–2363Google Scholar
  29. Liao YJ, Zhai HF, Zhang B, Duan TX, Huang JM (2011) Anxiolytic and sedative effects of dehydroeffusol from Juncus effusus in mice. Planta Med 77:416–420CrossRefPubMedGoogle Scholar
  30. Liu W, Meng M, Zhang B, Du L, Pan Y, Yang P, Gu Z, Zhou Q, Cao Z (2015) Dehydroeffusol effectively inhibits human gastric cell-mediated vasculogenic mimicry with low toxicity. Toxicol Appl Pharmacol 287:98–110CrossRefPubMedGoogle Scholar
  31. Lu TL, Han CK, Chang YS, Lu TJ, Huang HC, Bao BY, Wu HY, Huang CH, Li CY, Wu TS (2014) Denbinobin, a phenanthrene from Dendrobium nobile, impairs prostate cancer migration by inhibiting Rac1 activity. Am J Chin Med 42:1539–1554CrossRefPubMedGoogle Scholar
  32. Ma W, Liu F, Ding YY, Zhang Y, Li N (2015) Four new phenanthrenoid dimers from Juncus effusus L. with cytotoxic and anti-inflammatory activities. Fitoterapia 105:83–88CrossRefPubMedGoogle Scholar
  33. Ma W, Yue Zhang Y, Ding YY, Li N (2016) Cytotoxic and anti-inflammatory activities of phenanthrenes from the medullae of Juncus effusus L. Arch Pharmasal Res 39:154–160CrossRefGoogle Scholar
  34. Macía MJ (2001) Economic use of totorilla (Juncus arcticus, Juncaceae) in Ecuador. Econ Bot 55:236–242CrossRefGoogle Scholar
  35. Mahmoud T, Gairola S (2013) Traditional knowledge and use of medicinal plants in the Eastern Desert of Egypt: a case study from Wadi El-Gemal National Park. J Med Plants Stud 1:10–17Google Scholar
  36. Mansour RMA, Zahran MA, Salah NAM (1986) Flavonoids and ecology of Juncus acutus and Juncus rigidus in Egypt. Egypt J Bot 29:161–166Google Scholar
  37. Menendez-Baceta G, Aceituno-Mata L, Molina M, Reyes-García V, Tardío J, Pardo-De-Santayana M (2014) Medicinal plants traditionally used in the northwest of the Basque Country (Biscay and Alava), Iberian Peninsula. J Ethnopharmacol 152:113–134CrossRefPubMedGoogle Scholar
  38. Menendez-Baceta G, Aceituno-Mata L, Reyes-García V, Tardío J, Salpeteur M, Pardo-De-Santayana M (2015) The importance of cultural factors in the distribution of medicinal plant knowledge: a case study in four Basque regions. J Ethnopharmacol 161:116–127CrossRefPubMedGoogle Scholar
  39. Miles HDH, Randle S (1981) Structure of juncunone: a biogenetically intriguing molecule from the marsh plant Juncus roemerianus. J Org Chem 46:2813–2815CrossRefGoogle Scholar
  40. Miles DH, Bhattacharyya J, Mody NV, Atwood JL, Black S, Hedin PA (1977) The structure of juncusol. A novel cytotoxic dihydrophenanthrene from the estuarine marsh plant Juncus roemerianus. J Am Chem Soc 99:618–620CrossRefPubMedGoogle Scholar
  41. Mody NV, Mahmoud II, Finer-Moore J, Pelletier SW (1982) Constitutents of Juncus effusus: the X-ray analysis of effusol diacetate. J Nat Prod 45:733–737CrossRefGoogle Scholar
  42. Park SN, Won DH, Hwang JP, Han SB (2014) Cellular protective effects of dehydroeffusol isolated from Juncus effusus L. and the mechanisms underlying these effects. J Indust Eng Chem 20:3046–3052CrossRefGoogle Scholar
  43. Pharmacopoeia of the People’s Republic of China (2005) Medulla Junci, vol 1. People’s Medical Publishing House, Beijing, p 166Google Scholar
  44. Rodrigues MJ, Gangadhar KN, Zengin G, Mollica A, Varela J, Barreira L, Custódio L (2017) Juncaceae species as sources of innovative bioactive compounds for the food industry: in vitro antioxidant activity, neuroprotective properties and in silico studies. Food Chem Toxicol 107:590–596CrossRefPubMedGoogle Scholar
  45. Sahli R, Rivière C, Siah A, Smaoui A, Samaillie J, Hennebelle T, Roumy V, Ksouri R, Halama P (2017) Biocontrol activity of effusol from the extremophile plant, Juncus maritimus, against the wheat pathogen Zymoseptoria tritici. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-017-9043-0 Google Scholar
  46. Sarkar H, Zerechi M, Bhattacharya J (1988) Dehydrojuncusol, a constituent of the roots of Juncus roemerianus. Phytochemistry 27:3006–3008CrossRefGoogle Scholar
  47. Sen DN, Rajpurohit KS (1982) Contributions to the ecology of Halophytes. Junk Publishers, London, p 237CrossRefGoogle Scholar
  48. Shan CY, Ye YH, Jiang HF, Zhang J (2008) Study on chemical constituents isolated from Juncus effusus. J Chin Med Mat 31:374–376Google Scholar
  49. Sharma OP (2009) Plant taxonomy. New Delhi, Tata McGraw-Hill Education, p 498Google Scholar
  50. Shima K, Toyota M, Asakawa Y (1991) Phenanthrene derivatives from the medullae of J. effusus. Phytochemistry 30:3149–3151CrossRefGoogle Scholar
  51. Simon T (1992) A magyarországi edényes flóra határozója. Harasztok—Virágos növények. Tankönyvkiadó, BudapestGoogle Scholar
  52. Singhuber J, Baburin I, Khom S, Zehl M, Urban E, Hering S, Kopp B (2012) GABAA receptor modulators from the Chinese herbal drug Junci Medulla—the pith of Juncus effusus. Planta Med 78:455–458CrossRefPubMedGoogle Scholar
  53. Snogerup S (1978) Notes on Juncus for Flora Europaea. Bot Not 131:185–187Google Scholar
  54. Su XH, Yuan ZP, Li CY, Zhong YJ, Du HJ, Wen YY, Li YF, Liang B (2013) Phenanthrenes from Juncus effusus. Planta Med 79:1447–1452CrossRefPubMedGoogle Scholar
  55. Tackholm V (1974) Students Flora of Egypt. Cairo University, GizaGoogle Scholar
  56. Tóth B, Liktor-Busa E, Kúsz N, Szappanos Á, Mándi A, Kurtán T, Urbán E, Hohmann J, Chang FR, Vasas A (2016a) Phenanthrenes from Juncus inflexus with antimicrobial activity against methicillin-resistant Staphylococcus aureus. J Nat Prod 79:2814–2823CrossRefPubMedGoogle Scholar
  57. Tóth B, Liktor-Busa E, Urbán E, Csorba A, Jakab G, Hohmann J, Vasas A (2016b) Antibacterial screening of Juncaceae species native to the Carpathian Basin against resistant strains and LC-MS investigation of phenanthrenes responsible for the effect. Fitoterapia 115:69–73CrossRefPubMedGoogle Scholar
  58. Tóth B, Chang FR, Hwang TL, Szappanos Á, Mándi A, Hunyadi A, Kurtán T, Jakab G, Hohmann J, Vasas A (2017) Screening of Luzula species native to the Carpathian Basin for anti-inflammatory activity and bioactivity-guided isolation of compounds from Luzula luzuloides (Lam.) Dandy & Wilmott. Fitoterapia 116:131–138CrossRefPubMedGoogle Scholar
  59. Traynor CH (2008) Socio-economics and sustainability of Juncus kraussii harvesting in South African protected areas. Afr J Aquat Sci 33:27–36CrossRefGoogle Scholar
  60. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (1980) Flora Europaea Volume 5 Alismataceae to Orchidaceae. Cambridge University Press, CambridgeGoogle Scholar
  61. Wang XY, Ke CQ, Tang CP, Yuan D, Ye Y (2009) 9,10-Dihydrophenanthrenes and phenanthrenes from Juncus setchuensis. J Nat Prod 72:1209–1212CrossRefPubMedGoogle Scholar
  62. Wang J, Liu J, Wen Q, Li C, Li Y, Lian B, Tang H, Yao T (2010) Chemical constituents from the aerial parts of Juncus setchuensis. Biochem Syst Ecol 38:1039–1041CrossRefGoogle Scholar
  63. Wang YG, Wang YL, Zhai HF, Liao YJ, Zhang B, Huang JM (2012) Phenanthrenes from Juncus effusus with anxiolytic and sedative activities. Nat Prod Res 26:1234–1239CrossRefPubMedGoogle Scholar
  64. Wang Y, Li GY, Fu Q, Hao TS, Huang JM, Zhai HF (2014) Two new anxiolytic phenanthrenes found in the medullae of Juncus effusus. Nat Prod Commun 9:1177–1178PubMedGoogle Scholar
  65. Xiao F, Li Q, Tang CP, Ke CQ, Ye Y, Yao S (2016) Two new phenanthrenoid dimers from Juncus effusus. Chin Chem Lett 27:1721–1724CrossRefGoogle Scholar
  66. Yang GZ, Lia HX, Song FJ, Chen Y (2007) Diterpenoid and phenolic compounds from Juncus effusus L. Helv Chim Acta 90:1283–1295Google Scholar
  67. Zhang B, Han H, Fu S, Yang P, Gu Z, Zhou Q, Cao Z (2016) Dehydroeffusol inhibits gastric cancer cell growth and tumorigenicity by selectively inducing tumor-suppressive endoplasmic reticulum stress and a moderate apoptosis. Biochem Pharmacol 104:8–18CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PharmacognosyUniversity of SzegedSzegedHungary

Personalised recommendations