Skip to main content

Advertisement

Log in

Linking plant phytochemistry to soil processes and functions: the usefulness of 13C NMR spectroscopy

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

The organic matter cycle is one of the most fundamental processes in ecosystems affecting the soil and controlling its functions. The soil complex microbiome is made up of thousands of bacterial and hundreds of fungal strains that coexist on the many different available organic carbon sources. In natural plant communities, freshly fallen leaf-litter and dead roots are subject to decomposition by a complex food-web composed of both microbial saprotrophs and invertebrate detritivores. The litter chemical composition varies dramatically among species in relation to plant life forms (conifer, broadleaf, nitrogen-fixing, graminoid) and, within species, with plant organs (leaf, root, woody tissues). This paper reviews the usefulness of advanced chemical technologies to study the composition of both plant litter and organic amendments, supporting the description of their mechanism of action and attention to their potential applications. First, a critical review is presented on the limitations of C/N and lignin/N ratios, still widely used as basic indicators of litter chemistry. Second, the potential of the solid state 13C-CPMAS NMR is reported as a powerful tool to assess the chemical composition of both litter and organic amendments. Finally, six different study cases are reported to provide evidence of the usefulness of such metabolomic approach for the description of organic matter chemistry aimed to an effective prediction of its impact on soil ecosystem functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Reproduced with permission from Bonanomi et al. 2011a)

Fig. 3

(Reproduced with permission from Bonanomi et al. 2017c)

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abiven S, Menasseri S, Chenu C (2009) The effects of organic inputs over time on soil aggregate stability—a literature analysis. Soil Biol Biochem 41:1–12

    Article  CAS  Google Scholar 

  • Adair EC, Parton WJ, Del Grosso SJ et al (2008) Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Glob Change Biol 14:2636–2660

    Google Scholar 

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Department of Plant Pathology, University of Florida, Gainesville

    Google Scholar 

  • Águas A, Incerti G, Saracino A et al (2017) Fire effects on litter chemistry and early development of Eucalyptus globulus. Plant Soil. https://doi.org/10.1007/s11104-017-3419-2

    Article  Google Scholar 

  • Almendros G, Knicker H, Gonzalez-Vila FJ (2003) Rearrangement of carbon and nitrogen forms in peat after progressive thermal oxidation as determined by solid-state 13 C and 15 N-NMR spectroscopy. Org Geochem 34:1559–1568

    Article  CAS  Google Scholar 

  • Baldock JA, Oades JM, Nelson PN, Skene TM, Golchin A, Clarke P (1997) Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy. Soil Res 35(5):1061–1084

    Article  Google Scholar 

  • Bäumler AJ, Sperandio V (2016) Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535:85–93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berg B, Matzner E (1997) The effect of N deposition on the mineralization of C from plant litter and humus. Environ Rev 5:1–25

    Article  CAS  Google Scholar 

  • Berg B, McClaugherty C (2013) Plant litter: decomposition, humus formation and carbon sequestration, 3rd edn. Springer, Berlin

    Google Scholar 

  • Biederbeck VO, Campbell CA, Rasiah V, Zentner RP, Wen G (1998) Soil quality attributes as influenced by annual legumes used as green manure. Soil Biol Biochem 30(8):1177–1185

    Article  CAS  Google Scholar 

  • Blackwell PS (2000) Management of water repellency in Australia, and risks associated with preferential flow, pesticide concentration and leaching. J Hydrol 231:384–395

    Article  Google Scholar 

  • Boddy E, Hill PW, Farrar J, Jones DL (2007) Fast turnover of low molecular weight components of the dissolved organic carbon pool of temperate grassland field soils. Soil Biol Biochem 39(4):827–835

    Article  CAS  Google Scholar 

  • Boehm MJ, Wu T, Stone AG, Kraakman B, Iannotti DA (1997) Crosspolarized magic-angle spinning 13C nuclear magnetic resonance spectroscopic characterization of soil organic matter relative to culturable bacterial species composition and sustained biological control of Pythium root rot. Appl Environ Microbiol 63:162–168

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bonanomi G, Sicurezza MG, Caporaso S, Esposito A, Mazzoleni S (2006) Phytotoxicity dynamics of decaying plant materials. New Phytol 169:571–578

    Article  PubMed  CAS  Google Scholar 

  • Bonanomi G, Antignani V, Pane C, Scala F (2007) Suppression of soilborne fungal diseases with organic amendments. J Plant Pathol 89:311–324

    Google Scholar 

  • Bonanomi G, Antignani V, Capodilupo M, Scala F (2010) Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol Biochem 42:136–144

    Article  CAS  Google Scholar 

  • Bonanomi G, Antignani V, Barile E, Lanzotti V, Scala F (2011a) Decomposition of Medicago sativa residues affects phytotoxicity, fungal growth and soil-borne pathogen diseases. J Plant Pathol 93:57–69

    CAS  Google Scholar 

  • Bonanomi G, Incerti G, Barile E, Capodilupo M, Antignani V et al (2011b) Phytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects: evidence from solid-state 13C NMR spectroscopy. New Phytol 191:1018–1030

    Article  PubMed  CAS  Google Scholar 

  • Bonanomi G, Gaglione SA, Incerti G, Zoina A (2013a) Biochemical quality of organic amendments affects soil fungistasis. Appl Soil Ecol 72:135–142

    Article  Google Scholar 

  • Bonanomi G, Incerti G, Giannino F, Mingo A, Lanzotti V et al (2013b) Litter quality assessed by solid state 13C NMR spectroscopy predicts decay rate better than C/N and Lignin/N ratios. Soil Biol Biochem 56:40–48

    Article  CAS  Google Scholar 

  • Bonanomi G et al (2016a) Unimodal patter of soil hydrophobicity along an altitudinal gradient encompassing Mediterranean, temperate and alpine ecosystems. Plant Soil 409:37–47

    Article  CAS  Google Scholar 

  • Bonanomi G, Ippolito F, Senatore M, Cesarano G, Incerti G, Saracino A, Lanzotti V, Scala F, Mazzoleni S (2016b) Water extracts of charred litter cause opposite effects on growth of plants and fungi. Soil Biol Biochem 92:133–141

    Article  CAS  Google Scholar 

  • Bonanomi G et al (2017a) Comparing chemistry and bioactivity of burned vs. decomposed plant litter: different pathways but same result? Ecology. https://doi.org/10.1002/ecy.2053

    Article  PubMed  Google Scholar 

  • Bonanomi G, Cesarano G, Lombardi N, Motti R, Scala F et al (2017b) Litter chemistry explains contrasting feeding preferences of bacteria, fungi, and higher plants. Sci Rep 7:9208

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonanomi G, Gaglione SA, Cesarano G, Sarker TC, Pascale M et al (2017c) Frequent applications of organic matter to agricultural soil increase fungistasis. Pedosphere 27:86–95

    Article  Google Scholar 

  • Bonanomi G, Ippolito F, Cesarano G, Vinale F, Lombardi N et al (2018) Biochar chemistry defined by 13C-CPMAS NMR explains opposite effects on soilborne microbes and crop plants. Appl Soil Ecol. https://doi.org/10.1016/j.apsoil.2017.11.027

    Article  Google Scholar 

  • Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–394

    Article  PubMed  Google Scholar 

  • Börner H (1960) Liberation of organic substances from higher plants and their role in the soil sickness problem. Bot Rev 26:393–424

    Article  Google Scholar 

  • Bradford MA, Berg B, Maynard DS, Wieder WR, Wood SA (2016) Understanding the dominant controls on litter decomposition. J Ecol 104:229–238

    Article  CAS  Google Scholar 

  • Burke IC, Kaye JP, Bird SP, Hall SA, McCulley RL, Sommerville GL (2003) Evaluating and testing models of terrestrial biogeochemistry: the role of temperature in controlling decomposition. In: Canham CD, Lauenroth WK (eds) Models in ecosystem science. Princeton University Press, Princeton, pp 225–253

    Google Scholar 

  • Cesarano G, Incerti G, Bonanomi G (2016) The influence of plant litter on soil water repellency: insight from 13C NMR spectroscopy. PLoS ONE 11:e0152565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coleman K, Jenkinson DS (1996) RothC-26.3—a model for the turnover of carbon in soil. In: Powlson DS, Smith P, Smith JU (eds) Evaluation of soil organic matter models, using existing long-term datasets. Springer, Heidelberg, pp 237–246

    Chapter  Google Scholar 

  • Cornelissen JHC, Thompson K (1997) Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol 135:109–114

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JH, Amatangelo K et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11(10):1065–1071

    Article  PubMed  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  PubMed  CAS  Google Scholar 

  • DeBano L (2000) Water repellency in soils: a historical overview. J Hydrol 231(232):4–32

    Article  Google Scholar 

  • Dekker LW, Jungerius PD (1990) Water repellency in the dunes with special reference to the Netherlands. Catena Suppl 18:173–183

    Google Scholar 

  • Del Grosso SJ, Parton WJ, Mosier AR et al (2001) Simulated interaction of carbon dynamics and nitrogen trace gas fluxes using the DAYCENT model. In: Schaffer M, Ma L, Hansen S (eds) Modeling carbon and nitrogen dynamics for soil management. CRC Press, Boca Raton, pp 303–332

    Google Scholar 

  • Diacono M, Montemurro F (2010) Long-term effects of organic amendments on soil fertility. A review. Agron Sustain Dev 30(2):401–422

  • Dilly O, Bloem J, Vos A, Munch JC (2004) Bacterial diversity in agricultural soils during litter decomposition. Appl Environ Microbiol 70:468–474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dix NJ, Webster J (1995) Fungal ecology. Springer. https://doi.org/10.1007/978-94-011-0693-1

    Article  Google Scholar 

  • Doerr SH, Shakesby RA, Walsh RPD (2000) Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci Rev 51:33–65

    Article  Google Scholar 

  • Elad Y, David DR, Harel YM et al (2010) Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 100:913–921

    Article  PubMed  Google Scholar 

  • Facelli JM, Pickett STA (1991) Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:1–32

    Article  Google Scholar 

  • Ferreira AJD, Coelho COA, Walsh RPD, Shakesby RA, Ceballos A, Doerr SH (2000) Hydrological implications of soil waterrepellency in Eucalyptus globulus forests, north-Central Portugal. J Hydrol 231:165–177

    Article  Google Scholar 

  • Fogel R, Cromack K Jr (1977) Effect of habitat and substrate quality on Douglas fir litter decomposition in Western Oregon. Can J Bot 55:1632–1640

    Article  Google Scholar 

  • Frankland JC (1998) Fungal succession: unravelling the unpredictable. Mycol Res 102:1–15

    Article  Google Scholar 

  • Franko U, Oelschlägel B, Schenk S (1995) Simulation of temperature, and nitrogen dynamics using the model CANDY. Ecol Model 81:213–222

    Article  CAS  Google Scholar 

  • Galletti GC, Reeves JB, Bloomfield J, Vogt KA, Vogt DJ (1993) Analysis of leaf and fine root litter from a subtropical montane rain forest by pyrolysis—gas chromatography/mass spectrometry. J Anal Appl Pyrol 27(1):1–14

    Article  CAS  Google Scholar 

  • Gillon D, Joffre R, Ibrahima A (1994) Initial litter properties and decay rate: a microcosm experiment on Mediterranean species. Can J Bot 72:946–954

    Article  Google Scholar 

  • Gillon D, Joffre R, Ibrahima A (1999) Can litter decomposability be predicted by near infrared reflectance spectroscopy? Ecology 80:175–186

    Article  Google Scholar 

  • Goebel M, Hobbie SE, Bulaj B et al (2011) Decomposition of the finest root branching orders: linking belowground dynamics to fine-root function and structure. Ecol Monogr 81:89–102

    Article  Google Scholar 

  • González-Pelayo O, Gimeno-García E, Ferreira CSS et al (2015) Water repellency of air-dried and sieved samples from limestone soils in Central Portugal collected before and after prescribed fire. Plant Soil 394:199–214

    Article  CAS  Google Scholar 

  • González-Pérez JA, González-Vila FJ, Almendros G, Knicker H (2004) The effect of fire on soil organic matter—a review. Environ Int 30:855–870

    Article  PubMed  CAS  Google Scholar 

  • Hardison JR (1976) Fire and flame for plant disease control. Annu Rev Phytopathol 14:355–379

    Article  Google Scholar 

  • Harper JE, Webster J (1964) An experimental analysis of the coprophilous fungus succession. Trans Br Mycol Soc 47:511–530

    Article  Google Scholar 

  • Hättenschwiler S, Gasser P (2005) Soil animals alter plant litter diversity effects on decomposition. PNAS 102(5):1519–1524

    Article  PubMed  CAS  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition interrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

  • Hättenschwiler S, Coq S, Barantal S, Tanya I (2011) Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis. New Phytol 189:950–965

    Article  PubMed  Google Scholar 

  • Hodge A, Robinson D, Fitter AH (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308

    Article  PubMed  CAS  Google Scholar 

  • Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446

    Article  PubMed  CAS  Google Scholar 

  • Hoitink HAJ, Madden LV, Dorrance AE (2006) Systemic resistance induced by Trichoderma spp.: interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathology 96:186–189

    Article  PubMed  CAS  Google Scholar 

  • Hudson HJ (1968) The ecology of fungi on plant remains above the soil. New Phytol 67:837–874

    Article  Google Scholar 

  • Hunt ER Jr, Piper SC, Nemani R et al (1996) Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by an ecosystem process model and three-dimensional atmospheric transport model. Glob Biogeochem Cycles 10:431–456

    Article  CAS  Google Scholar 

  • Inbar Y, Chen Y, Hadar Y (1989) Solid-state carbon-13 nuclear magnetic resonance and infrared spectroscopy of composted organic matter. Soil Sci Soc Am J 53:1695–1701

    Article  CAS  Google Scholar 

  • Incerti G, Bonanomi G, Giannino F et al (2011) Litter decomposition in Mediterranean ecosystems: modelling the controlling role of climatic conditions and litter quality. Appl Soil Ecol 49:148–157

    Article  Google Scholar 

  • Incerti G, Capodilupo M, Senatore M et al (2013) Biochemical changes assessed by 13C-CPMAS NMR spectroscopy control fungal growth on water extracts of decaying plant litter. Mycoscience 54:449–457

    Article  CAS  Google Scholar 

  • Incerti G, Bonanomi G, Giannino F, Cartenì F, Spaccini R et al (2017) OMDY: a new model of organic matter decomposition based on biomolecular content as assessed by 13C-CPMAS-NMR. Plant Soil 411:377–394

    Article  CAS  Google Scholar 

  • Jaramillo DF, Dekker LW, Ritsema CJ, Hendrickx JMH (2000) Occurrence of soil water repellency in arid and humid climates. J Hydrol 231:105–111

    Article  Google Scholar 

  • Kajiura M, Tokida T, Seki K (2012) Effects of moisture conditions on potential soil water repellency in a tropical forest regenerated after fire. Geoderma 181:30–35

    Article  CAS  Google Scholar 

  • Knicker H (2007) How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85:91–118

    Article  CAS  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Koorem K, Price JN, Moora M (2011) Species-specific effects of woody litter on seedling emergence and growth of herbaceous plants. PLoS One 6:e26505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lehmann J, Joseph S (2015) Biochar for environmental management: science, technology and implementation, 2nd edn. Routledge, Oxon

    Book  Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68

    Article  PubMed  CAS  Google Scholar 

  • Li C, Zhuang Y, Frolking S et al (2003) Modeling soil organic carbon change in croplands of China. Ecol Appl 13:327–336

    Article  Google Scholar 

  • Liski J, Nissinen A, Erhard M, Taskinen O (2003) Climatic effect on litter decomposition from arctic tundra to tropical rainforest. Glob Change Biol 9:575–584

    Article  Google Scholar 

  • Liski J, Palosuo T, Peltoniemi M, Sievänen R (2005) Carbon and decomposition model Yasso for forest soils. Ecol Model 189:168–182

    Article  CAS  Google Scholar 

  • Lockwood JL (1977) Fungistasis in soils. Biol Rev 52:1–43

    Article  CAS  Google Scholar 

  • Lopez-Iglesias B, Olmo M, Gallardo A, Villar R (2014) Short-term effects of litter from 21 woody species on plant growth and root development. Plant Soil 381:177–191

    Article  CAS  Google Scholar 

  • Loydi A, Eckstein RL, Otte A, Donath TW (2013) Effects of litter on seedling establishment in natural and semi-natural grasslands: a meta-analysis. J Ecol 101:454–464

    Article  Google Scholar 

  • Majdi H, Pregitzer K, Moren AS, Nylund JE, Ågren GI (2005) Measuring fine root turnover in forest ecosystems. Plant Soil 276(1–2):1–8

    Article  CAS  Google Scholar 

  • Martens DA, Frankenberger WT (1992) Modification of infiltration rates in an organic-amended irrigated. Agron J 84:707–717

    Article  Google Scholar 

  • Martin FN (2003) Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. Annu Rev Phytopathol 41:325–350

    Article  PubMed  CAS  Google Scholar 

  • Mataix-Solera J, Cerdà A, Arcenegui V, Jordàn A, Zavala LM (2011) Fire effects on soil aggregation: a review. Earth Sci Rev 109:44–60

    Article  Google Scholar 

  • Mathers NJ, Jalota RK, Dalal RC, Boyd SE (2007) 13C-NMR analysis of decomposing litter and fine roots in the semi-arid Mulga Lands of southern Queensland. Soil Biol Biochem 39:993–1006

    Article  CAS  Google Scholar 

  • Mazzoleni S, Bonanomi G, Incerti G et al (2015) Inhibitory and toxic effects of extracellular self-DNA in litter: a mechanism for negative plant–soil feedbacks? New Phytol 205:1195–1210

    Article  PubMed  CAS  Google Scholar 

  • Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472

    Article  CAS  Google Scholar 

  • Meiners SJ (2014) Functional correlates of allelopathic potential in a successional plant community. Plant Ecol 215:661–672

    Article  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  CAS  Google Scholar 

  • Merritt RW, Lawson DL (1992) The role of leaf litter macroinvertebrates in stream-floodplain dynamics. Hydrobiologia 248:65–77

    Article  Google Scholar 

  • Monnier G (1965) Action des matiéres organiques sur la stabilité structurale des sols. The` se de la faculté des sciences de Paris, p 140

  • Morales VL, Parlange J-Y, Steenhuis TS (2010) Are preferential flow paths perpetuated by microbial activity in the soil matrix? A review. J Hydrol 393:29–36

    Article  CAS  Google Scholar 

  • Nebbioso A, Piccolo A (2011) Basis of a Humeomics Science: chemical fractionation and molecular characterization of humic biosuprastructures. Biomacromol 12:1187–1199

    Article  CAS  Google Scholar 

  • Nebbioso A, Vinci G, Drosos M, Spaccini R, Piccolo A (2015) Unveiling the molecular composition of the unextractable soil organic fraction (humin) by humeomics. Biol Fertil Soils 51:443–451

    Article  CAS  Google Scholar 

  • Newell K (1984) Interaction between two decomposer basidiomycetes and a collembolan under Sitka spruce: distribution, abundance and selective grazing. Soil Biol Biochem 16:227–233

    Article  Google Scholar 

  • Ono K, Hiradate S, Morita S, Ohse K, Hirai K (2011) Humification processes of needle litters on forest floors in Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) plantations in Japan. Plant Soil 338:171–181

    Article  CAS  Google Scholar 

  • Osono T, Takeda H (2001) Organic chemical and nutrient dynamics in decomposing beech leaf litter in relation to fungal ingrowth and succession during 3-year decomposition processes in a cool temperate deciduous forest in Japan. Ecol Res 16:649–670

    Article  CAS  Google Scholar 

  • Pane C, Spaccini R, Piccolo A, Scala F, Bonanomi G (2011) Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia solani and Sclerotinia minor. Biol Control 56:115–124

    Article  Google Scholar 

  • Pane C, Piccolo A, Spaccini R, Celano G, Villecco D, Zaccardelli M (2013) Agricultural waste-based composts exhibiting suppressivity to diseases caused by the phytopathogenic soil-borne fungi Rhizoctonia solani and Sclerotinia minor. Appl Soil Ecol 65:43–51

    Article  Google Scholar 

  • Parton WJ, Ojima DS, Cole CV, Schimel DS (1994) A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture, and management. Quant Model Soil Form Process 39:147–167

    CAS  Google Scholar 

  • Pastor J, Post WM (1986) Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry 2:3–27

    Article  Google Scholar 

  • Pausas JG, Vallejo VR (1999) The role of fire in European Mediterranean ecosystems. In: Chuvieco E (ed) Remote sensing of large wildfires. Springer, Berlin, pp 3–16

    Chapter  Google Scholar 

  • Piccolo A (2002) The supramolecular structure of humic substances. A novel understanding of humus chemistry and implications in soil Science. Adv Agron 75:57–134

    Article  CAS  Google Scholar 

  • Piccolo A, Conte P, Spaccini R, Mbagwu JSC (2005) Influence of land use on the characteristics of humic substances in some tropical soils of Nigeria. Eur J Soil Sci 56:343–352

    Article  CAS  Google Scholar 

  • Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–149

    Article  CAS  Google Scholar 

  • Preston CM, Nault JR, Trofymow JA (2009) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, solid-state 13C NMR spectroscopy and the meaning of ‘‘lignin’’. Ecosystems 12:1078–1102

    Article  CAS  Google Scholar 

  • Putnam AR (1994) Phytotoxicity of plant residues. Managing agricultural residues. Lewis Publishers, Boca Raton, pp 285–314

    Google Scholar 

  • Reich PB, Tjoelker MG, Pregitzer KS et al (2008) Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol Lett 11(8):793–801

    Article  PubMed  Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press, London

    Google Scholar 

  • Rinkes ZL, Weintraub MN, DeForest JL, Moorhead DL (2011) Microbial substrate preference and community dynamics during decomposition of Acer saccharum. Fungal Ecol 4:396–407

    Article  Google Scholar 

  • Robichaud PR, Hungerford RD (2000) Water repellency by laboratory burning of four northern Rocky Mountain forest soils. J Hydrol 231:207–219

    Article  Google Scholar 

  • Roper MM, Ward PR, Keulen AF, Hill JR (2013) Under no-tillage and stubble retention, soil water content and crop growth are poorly related to soil water repellency. Soil Tillage Res 126:143–150

    Article  Google Scholar 

  • Rovira P, Rovira R (2010) Fitting litter decomposition datasets to mathematical curves: towards a generalised exponential approach. Geoderma 155:329–343

    Article  Google Scholar 

  • Rovira P, Vallejo VR (2007) Labile, recalcitrant, and inert organic matter in Mediterranean forest soils. Soil Biol Biochem 39:202–213

    Article  CAS  Google Scholar 

  • Running SW, Gower ST (1991) Forest-BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. Tree Physiol 9:147–160

    Article  PubMed  CAS  Google Scholar 

  • Russell EJ, Petherbridge FR (1912) Investigations on “Sickness” in soil: II. “Sickness” in Glasshouse soils. J Agric Sci 5:86–111

    Article  Google Scholar 

  • Sarker TS, Incerti G, Spaccini R et al (2018) Linking organic matter chemistry with soil aggregate stability: insight from 13C NMR spectroscopy. Soil Biol Biochem 117:175–184

    Article  CAS  Google Scholar 

  • Schaumann GE, Braun B, Kirchner D et al (2007) Influence of biofilms on the water repellency of urban soil samples. Hydrol Process 21:2276–2284

    Article  Google Scholar 

  • Schreiner O, Sullivan MX (1908) Soil fatigue caused by organic compounds. J Biol Chem 6:39–50

    Google Scholar 

  • Shakesby RA, Doerr SH, Walsh RPD (2000) The erosional impact of soil hydrophobicity: current problems and future research directions. J Hydrol 231:178–191

    Article  Google Scholar 

  • Shibu ME, Leffelaar PA, Van Keulen H, Aggarwal PK (2006) Quantitative description of soil organic matter dynamics - a review of approaches with reference to rice-based cropping systems. Geoderma 137:1–18

    Article  CAS  Google Scholar 

  • Sirois L (1993) Impact of fire on Picea mariana and Pinus banksiana seedlings in subarctic lichen woodlands. J Veg Sci 4:795–802

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice IC et al (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9:161–185

    Article  Google Scholar 

  • Smith P, Smith JU, Powlson DS et al (1997) A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81:153–225

    Article  Google Scholar 

  • Sonnleitner R, Lorbeer E, Schinner F (2003) Effects of straw, vegetable oil and whey on physical and microbiological properties of a chernozem. Appl Soil Ecol 22:195–204

    Article  Google Scholar 

  • Spaccini R, Piccolo A (2007) Molecular characterization of compost at increasing stages of maturity. 2. Thermochemolysis−GC-MS and 13C-CPMAS-NMR spectroscopy. J Agric Food Chem 55:2303–2311

    Article  PubMed  CAS  Google Scholar 

  • Spaccini R, Mbagwu JSC, Conte P, Piccolo A (2006) Changes of humic substances characteristics from forested to cultivated soils in Ethiopia. Geoderma 132:9–19

    Article  CAS  Google Scholar 

  • Stinca A, Chirico GB, Incerti G, Bonanomi G (2015) Regime shift by an exotic nitrogen-fixing shrub mediates plant facilitation in primary succession. PLoS ONE. https://doi.org/10.1371/journal.pone.0123128

    Article  PubMed  PubMed Central  Google Scholar 

  • Stone AG, Traina SJ, Hoitink HAJ (2001) Particulate organic matter composition and Pythium damping-off of cucumber. Soil Sci Soc Am J 65:761–770

    Article  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell Scientific Publications, Oxford

  • Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97–104

    Article  Google Scholar 

  • Tenuta M, Lazarovits G (2004) Soil properties associated with the variable effectiveness of meat and bone meal to kill microsclerotia of Verticillium dahliae. Appl Soil Ecol 25:219–236

    Article  Google Scholar 

  • Termorshuizen AJ, van Rijn E, van der Gaag DJ et al (2007) Suppressiveness of 18 composts against 7 pathosystems: variability in pathogen response. Soil Biol Biochem 38:2461–2477

    Article  CAS  Google Scholar 

  • Tian G, Brussaard L, Kang BT (1995) An index for assessing the quality of plant residues and evaluating their effects on soil and crop in the (sub-) humid tropics. Appl Soil Ecol 2:25–32

    Article  Google Scholar 

  • Tilston EL, Pitt D, Groenhof AC (2002) Composted recycled organic matter suppresses soil-borne diseases of field crops. New Phytol 154:731–740

    Article  CAS  Google Scholar 

  • Tiquia SM (2010) Reduction of compost phytotoxicity during the process of decomposition. Chemosphere 79:506–512

    Article  PubMed  CAS  Google Scholar 

  • Van-Camp L, Bujarrabal B, Gentile AR et al (2004) Reports of the technical working groups established under the thematic strategy for soil protection. EUR 21319 EN/3. Office for Official Publications of the European Communities, Luxembourg

  • Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486

    Article  PubMed  CAS  Google Scholar 

  • Wallenstein MD, Hess AM, Lewis MR, Steltzer H, Ayres E (2010) Decomposition of aspen leaf litter results in unique metabolomes when decomposed under different tree species. Soil Biol Biochem 42:484–490

    Article  CAS  Google Scholar 

  • Wedin D, Tilman D (1993) Competition among grasses along a nitrogen gradient: initial conditions and mechanisms of competition. Ecol Monogr 63:199–229

    Article  Google Scholar 

  • Wine ML, Ochsner TE, Sutradhar A, Pepin R (2012) Effects of eastern redcedar encroachment on soil hydraulic properties along Oklahoma’s grassland-forest ecotone. Hydrol Process 26:1720–1728

    Article  Google Scholar 

  • Xiong S, Nilsson C (1999) The effects of plant litter on vegetation: a meta-analysis. J Ecol 87:984–994

    Article  Google Scholar 

  • Yang H, Liu L, Li X et al (2014) Water repellency of biological soil crusts and influencing factors on the southeast fringe of the Tengger Desert, north-Central China. Soil Sci 179:424–432

    Article  CAS  Google Scholar 

  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84(8):2042–2050

    Article  Google Scholar 

  • Zavala LM, González FA, Jordán A (2009) Intensity and persistence of water repellency in relation to vegetation types and soil parameters in Mediterranean SW Spain. Geoderma 152:361–374

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Giannino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cartenì, F., Sarker, T.C., Bonanomi, G. et al. Linking plant phytochemistry to soil processes and functions: the usefulness of 13C NMR spectroscopy. Phytochem Rev 17, 815–832 (2018). https://doi.org/10.1007/s11101-018-9560-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-018-9560-6

Keywords