Skip to main content
Log in

Effects of PUFAs on animal reproduction: male and female performances and endocrine mechanisms

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Adequate fat diet supplementation shows variable positive effects in farm animal breeding. Omega-3 and n-6 PUFAs are able to modulate several reproductive effectors: the luteolytic PGF2α, the luteotropic PGE2, the nuclear receptor PPARG, and steroids such as E2 and P4. PUFA supplementation favours fertility, onset of estrus, embryo survival, and also parturition by reducing preterm labour risk. These effects are likely mediated by the balance modulation of PGF2α and PGE2 productions, the syntheses of E2 and P4, and the activation of PPARG. As regards to male fertility, the effects of n-3 or n-6 PUFA supplementation at high concentrations in the diet are relatively unknown. PUFAs confer to the spermatozoa plasma membrane the fluidity it needs to achieve fertilization and seem to stimulate the Leydig cell production of testosterone through the regulation of the steroidogenic acute regulatory protein, a transport protein that regulates cholesterol transfer within the mitochondria, which is the rate-limiting step in the production of steroid hormones. As regards to female fertility, PUFA supplementation mediates a broad range of actions in reproductive processes involving pregnancy establishment, uterine endocrinology, and preterm birth. The perfectly composed follicular environment shapes oocyte quality and thus female fertility. Since both oocytes and embryos are vulnerable to microenvironment changes, nutritional alterations and FA unavailability can lead to their defects. The aim of the present review is to examine the effects of n-3 and n-6 PUFAs on male and female reproductive performances and the correlated endocrine mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3beta-HSD:

3-Beta-hydroxysteroid dehydrogenase

15d-PGJ2:

15-Deoxy delta12,14 prostaglandin J2

AA:

Arachidonic acid

ALA:

Alpha linolenic acid

BCL2:

B-cell lymphoma 2

CL:

Corpora lutea

DHA:

Docosahexaenoic acid

DPA:

Docosapentaenoic acid

E2:

Estradiol

EPA:

Eicosapentaenoic acid

FA:

Fatty acid

FADS:

Fatty acids desaturase

FO:

Fish oil

GLA:

Gamma-linolenic acid

HODE:

Hydroxyoctadecadienoic acid

IBD:

Inflammatory bowel disease

IL:

Interleukin

LA:

Linoleic acid

LCFA:

Long-chain fatty acids

LC-PUFA:

Long chain PUFA

LPS:

Lipopolysaccharides

n-3:

Omega-3

n-6:

Omega-6

NF:

Nuclear factor

P4:

Progesterone

PG:

Prostaglandin

PGE2-9-K:

Prostaglandin E2-9-ketoreductase

PMSG:

Pregnant mare serum gonadotropin

PPAR:

Peroxisome proliferator-activated receptor

PTGES:

Prostaglandin E synthase

PTGS:

Prostaglandin-endoperoxide synthase

PUFA:

Polyunsaturated fatty acid

ROS:

Reactive oxygen species

SDG:

Secoisolariciresinol diglycoside

StAR:

Steroidogenic acute regulatory protein

TNF:

Tumor necrosis factor

TP53:

Tumor protein 53

VA:

Vaccenic acid

References

  • Aardema H, Lolicato F, van de Lest CH et al (2013) Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid storage. Biol Reprod 88:164–171

    Article  PubMed  Google Scholar 

  • Abayasekara DRE, Wathes DC (1999) Effects of altering dietary fatty acid composition on prostaglandin synthesis and fertility. Prostaglandins Leukot Essent Fat Acids 61:275–287

    Article  CAS  Google Scholar 

  • AbuGhazaleh AA, Holmes LD (2007) Diet supplementation with fish oil to increase conjugated linoleic acid levels in milk fat of partially grazing dairy cows. J Dairy Sci 90:2897–2904

    Article  PubMed  CAS  Google Scholar 

  • Adamiak SJ, Powell K, Rooke JA et al (2006) Body composition, dietary carbohydrates and fatty acids determine post-fertilisation development of bovine oocytes in vitro. Reproduction 131:247–258

    Article  PubMed  CAS  Google Scholar 

  • Adibromadi M, Najafi MH, Zeinoaldini S et al (2012) Effect of dietary soybean oil and fish oil supplementation on blood metabolites and testis development of male growing kids. Egypt J Sheep Goat Sci 7:19–25

    Article  Google Scholar 

  • Allred CD, Talbert DR, Southard et al (2008) PPARγ1 as a molecular target of eicosapentaenoic acid in human colon cancer (HT-29) cells. J Nutr 138:250–256

    Article  PubMed  CAS  Google Scholar 

  • Ambrose DJ, Kastelic JP, Corbett R et al (2006) Lower pregnancy losses in lactating dairy cows fed a diet enriched in alpha-linolenic acid. J Dairy Sci 89:3066–3074

    Article  PubMed  CAS  Google Scholar 

  • Andriola YT, Moreira F, Anastácio E et al (2018) Boar sperm quality after supplementation of diets with omega-3 polyunsaturated fatty acids extracted from microalgae. Andrologia 50(1)

  • Arosh JA, Banu SK, Chapdelaine P et al (2004) Prostaglandin biosynthesis, transport and signaling in corpus luteum: a basis for autoregulation of luteal function. Endocrinology 145:2551–2560

    Article  PubMed  CAS  Google Scholar 

  • Ashes JR, Welch PSV, Gulan SK et al (1992) Manipulation of the fatty acid composition of milk by feeding protected canola seeds. J Dairy Sci 75:1090–1096

    Article  PubMed  CAS  Google Scholar 

  • Aurich C, Ortega Ferrusola C, Peña Vega FJ et al (2018) Seasonal changes in the sperm fatty acid composition of Shetland pony stallions. Theriogenology 107:149–153

    Article  PubMed  CAS  Google Scholar 

  • Badiei A, Aliverdilou A, Amanlou H et al (2014) Postpartum responses of dairy cows supplemented with n-3 fatty acids for different durations during the peripartal period. J Dairy Sci 97:6391–6399

    Article  PubMed  CAS  Google Scholar 

  • Bassaganya-Riera J, Hontecillas R (2006) CLA and n-3 PUFA differentially modulate clinical activity and colonic PPAR-responsive gene expression in a pig model of experimental IBD. Clin Nutr 25:454–465

    Article  PubMed  CAS  Google Scholar 

  • Bhaswant M, Poudyal H, Brown L (2015) Mechanisms of enhanced insulin secretion and sensitivity with n-3 unsaturated fatty acids. J Nutr Biochem 26:571–584

    Article  PubMed  CAS  Google Scholar 

  • Bilby TR, Sozzi A, Lopez MM et al (2006) Pregnancy, bovine somatotropin, and dietary n-3 fatty acids in lactating dairy cows: I. Ovarian, conceptus, and growth hormone-insulin-like growth factor system responses. J Dairy Sci 89:3360–3374

    Article  PubMed  CAS  Google Scholar 

  • Bishop-Bailey D, Wray J (2003) Peroxisome proliferator-activated receptors: a criticai review on endogenous pathways for ligand generation. Prostaglandins Lipid Mediat 71:1–22

    Article  CAS  Google Scholar 

  • Boiti C, Canali C, Zerani et al (1998) Changes in refractoriness of rabbit corpora lutea to a prostaglandin F2α analogue, alfaprostol, during pseudopregnancy. Prostaglandins Lipid Mediat 56:255–264

    Article  CAS  Google Scholar 

  • Boiti C, Guelfi G, Brecchia G et al (2005) Role of endothelin-1 system in the luteolytic process of pseudopregnant rabbits. Endocrinology 146:1293–1300

    Article  PubMed  CAS  Google Scholar 

  • Boudry G, Douard V, Mourot et al (2009) Linseed oil in the maternal diet during gestation and lactation modifies fatty acid composition, mucosal architecture, and mast cell regulation of the ileal barrier in piglets. J Nut 139:1–8

    Article  CAS  Google Scholar 

  • Braissant O, Foufelle F, Scotto C et al (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β and -γ in the adult rat. Endocrinology 137:354–366

    Article  PubMed  CAS  Google Scholar 

  • Brazle AE, Johnson BJ, Webel SK et al (2009) Omega-3 fatty acids in the gravid pig uterus as affected by maternal supplementation with omega-3 fatty acids. J Anim Sci 87:994–1002

    Article  PubMed  CAS  Google Scholar 

  • British Nutrition Foundation (1993) Unsaturated fatty acids: nutritional and physiological significance. In: Report of the British Nutrition Foundation’s Task Force. The British Nutrition Foundation ed

  • Broughton KS, Bayes J, Culver B (2010) High α-linolenic acid and fish oil ingestion promotes ovulation to the same extent in rats. Nutr Res 30:731–738

    Article  PubMed  CAS  Google Scholar 

  • Bull AW, Steffensen KR, Leers et al (2003) Activation of PPARγ in colon tumor cell lines by oxidized metabolites of linoleic acid, endogenous ligands for PPARγ. Carcinogenesis 24:1717–1722

    Article  PubMed  CAS  Google Scholar 

  • Burke JM, Carroll DJ, Rowe et al (1996) Intravascular infusion of lipid into ewes stimulates production of progesterone and prostaglandin. Biol Reprod 55:169–175

    Article  PubMed  CAS  Google Scholar 

  • Burke JM, Staples CR, Risco CA et al (1997) Effect of ruminant grade Menhaden fish meal on reproductive and productive performance of lactating dairy cows. J Dairy Sci 80:3386–3398

    Article  PubMed  CAS  Google Scholar 

  • Caldari-Torres C, Lock AL, Staples CR et al (2011) Performance, metabolic, and endocrine responses of periparturient Holstein cows fed 3 sources of fat. J Dairy Sci 94:1500–1510

    Article  PubMed  CAS  Google Scholar 

  • Cerri RL, Juchem SO, Chebel RC et al (2009) Effect of fat source differing in fatty acid profile on metabolic parameters, fertilization, and embryo quality in high-producing dairy cows. J Dairy Sci 92:1520–1531

    Article  PubMed  CAS  Google Scholar 

  • Chavatte-Palmer P, Tarrade A, Rousseau-Ralliard D (2016) Diet before and during pregnancy and offspring health: the importance of animal models and what can be learned from them. Int J Environ Res Public Health 14:13

    Article  Google Scholar 

  • Cheng Z, Elmes M, Kirkup SE et al (2004) Alteration of prostaglandin production and agonist responsiveness by n-6 polyunsaturated fatty acids in endometrial cells from late gestational ewes. J Endocrinol 182:249–256

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Elmes M, Kirkup SE et al (2005a) The effect of a diet supplemented with n-6 polyunsaturated fatty acid (PUFA) linoleic acid on prostaglandin production in early and late pregnant ewes. J Endocrinol 184:167–178

    Article  CAS  Google Scholar 

  • Cheng Z, Abayasekara DRE, Wathes DC et al (2005b) The effect of supplementation with n-6 polyunsaturated fatty acids on 1-, 2- and 3- series prostaglandin F production by ovine uterine epithelial cells. Biochim Biophys Acta 1736:128–135

    Article  PubMed  CAS  Google Scholar 

  • Childs S, Hennessy AA, Sreenan JM (2008) Effect of level of dietary n-3 polyunsaturated fatty-acid supplementation on systemic and tissue fatty-acid concentrations and on selected reproductive variables in cattle. Theriogenology 70:595–611

    Article  PubMed  CAS  Google Scholar 

  • Cicero AF, Colletti A (2016) Role of phytochemicals in the management of metabolic syndrome. Phytomedicine 23:1134–1144

    Article  PubMed  CAS  Google Scholar 

  • Conquer JA, Holub BJ (1998) Effect of supplementation with different doses of DHA on the levels of circulating DHA as non-esterified fatty acid in subjects of Asian Indian background. J Lipid Res 39:286–292

    PubMed  CAS  Google Scholar 

  • Cui Y, Miyoshi K, Claudio E (2002) Loss of the peroxisome proliferation-activated receptor γ (PPARγ) does not affect mammary development and propensity for tumor formation but leads to reduced fertility. J Biol Chem 277:17830–17835

    Article  PubMed  CAS  Google Scholar 

  • Dal Bosco A, Castellini C, Bianchi L (2004) Effect of dietary α-linolenic acid and vitamin E on the fatty acid composition, storage stability and sensory traits of rabbit meat. Meat Sci 66:407–413

    Article  CAS  Google Scholar 

  • Das UN (2005) A defect in the activity of Delta6 and Delta5 desaturases may be a factor predisposing to the development of insulin resistance syndrome. Prostaglandins Leukot Essent Fat Acids 72:343–350

    Article  CAS  Google Scholar 

  • Davis JS, Rueda BR (2002) The corpus luteum: an ovarian structure with maternal instincts and suicidal tendencies. Front Biosci 7:11949–11978

    Article  Google Scholar 

  • de Veth MJ, Bauman DE, Koch W et al (2009) Efficacy of conjugated linoleic acid for improving reproduction: a multi-study analysis in early-lactation dairy cows. J Dairy Sci 92:2662–2669

    Article  PubMed  CAS  Google Scholar 

  • Dirandeh E, Towhidi A, Zeinoaldini S et al (2013) Effects of different polyunsaturated fatty acid supplementations during the postpartum periods of early lactating dairy cows on milk yield, metabolic responses, and reproductive performances. J Anim Sci 91:713–721

    Article  PubMed  CAS  Google Scholar 

  • Donovan DC, Schingoethe DJ, Baer RJ et al (2000) Influence of dietary fish oil on conjugated linoleic acid and other fatty acids in milk fat from lactating dairy cows. J Dairy Sci 83:2620–2628

    Article  PubMed  CAS  Google Scholar 

  • Dunning KR, Russell DL, Robker RL (2014) Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction 148:R15–R27

    Article  PubMed  CAS  Google Scholar 

  • Durand D, Scislowski V, Gruffat D et al (2005) High-fat rations and lipid peroxidation in ruminants: consequences on the health of animals and quality of their products. In: Hocquette JF, Gigli S (eds) Indicators of milk and beef quality, vol 112. Wageningen Academic Publishers, Wageningen, pp 137–150

    Google Scholar 

  • Eckert JJ, Velazquez MA, Fleming TP (2015) Cell signalling during blastocyst morphogenesis. Adv Exp Med Biol 843:1–21

    Article  PubMed  CAS  Google Scholar 

  • Edwards AK, Wessels JM, Kerr A et al (2012) An overview of molecular and cellular mechanisms associated with porcine pregnancy success or failure. Reprod Dom Anim 47:394–401

    Article  Google Scholar 

  • Elmes M, Tew P, Cheng Z et al (2004) The effect of dietary supplementation with linoleic acid to late gestation ewes on the fatty acid composition of maternal and fetal plasma and tissues and the synthetic capacity of the placenta for 2-series prostaglandins. Biochim Biophys Acta 1686:139–147

    Article  PubMed  CAS  Google Scholar 

  • Elmes M, Green LR, Poore K et al (2005) Raised dietary n-6 polyunsaturated fatty intake increases 2-series prostaglandin production during labour in the ewe. J Physiol 562:583–592

    Article  PubMed  CAS  Google Scholar 

  • Enser M, Richardson RI, Wood JD (2000) Feeding linseed to increase the n-3 PUFA of pork: fatty acid composition of muscle, adipose tissue, liver, and sausages. Meat Sci 55:201–212

    Article  PubMed  CAS  Google Scholar 

  • Estienne MJ, Harper AF, Estienne CE (2006) Effects of dietary supplementation with omega-3 polyunsaturated fatty acids on some reproductive characteristics in gilts. Reprod Biol 6:231–241

    PubMed  Google Scholar 

  • Estienne MJ, Harper AF, Crawford RJ (2008) Dietary supplementation with a source of omega-3 fatty acids increases sperm number and the duration of ejaculation in boars. Theriogenology 70:70–76

    Article  PubMed  CAS  Google Scholar 

  • Fang IM, Yang CH, Yang CM (2014) Docosahexaenoic acid reduces linoleic acid induced monocyte chemoattractant protein-1 expression via PPARγ and nuclear factor-κB pathway in retinal pigment epithelial cells. Mol Nutr Food Res 58:2053–2065

    Article  PubMed  CAS  Google Scholar 

  • FAO, MHO (2010) Fats and fatty acids in human nutrition. Food Nut Pap 91:1–161

    Google Scholar 

  • Farnworth ER, Kramer JKG (1988) Fetal pig development in sows fed diets containing different fats. Can J Anim Sci 68:249–256

    Article  Google Scholar 

  • Fischer R, Konkel A, Mehling H et al (2014) Dietary omega-3 fatty acids modulate the eicosanoid profile in man primarily via the CYP-epoxygenase pathway. J Lipid Res 55:1150–1164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fonnan BM, Tontonoz P, Chen J (1995) 15-deoxy-Δ 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARy. Cell 83:803–812

    Article  Google Scholar 

  • Fouladi-Nashta AA, Gutierrez CG, Gong JG et al (2007) Impact of dietary fatty acids on oocyte quality and development in lactating dairy cows. Biol Reprod 77:9–17

    Article  PubMed  CAS  Google Scholar 

  • Froment P, Fabre S, Dupont J (2003) Expression and functional role of peroxisome proliferator-activated receptor-y in ovarian folliculogenesis in the sheep. Biol Reprod 69:1665–1674

    Article  PubMed  CAS  Google Scholar 

  • Froment P, Gizar DF, Defever D et al (2006) Peroxisome proliferator-activated receptors in reproductive tissues: from ga metogenesis to parturition. J Endocrinol 189:199–209

    Article  PubMed  CAS  Google Scholar 

  • Galbreath CW, Scholljegerdes EJ, Lardy et al (2008) Effect of feeding flax or linseed meal on progesterone clearance rate in ovariectomized ewes. Domest Anim Endocrinol 35:164–169

    Article  PubMed  CAS  Google Scholar 

  • Galobart J, Barroeta AC, Baucells MD et al (2001) Lipid oxidation in fresh and spray-dried eggs enriched with ω3 and ω6 polyunsaturated fatty acids during storage as affected by dietary vitamin E and canthaxanthin supplementation. Poult Sci 80:327–337

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Bojalil CM, Staples CR, Risco CA et al (1998) Protein degradability and calcium salts of long-chain fatty acids in the diets of lactating dairy cows: reproductive responses. J Dairy Sci 81:1385–1395

    Article  PubMed  CAS  Google Scholar 

  • Ghaffarilaleh V, Fouladi-Nashta A, Paramio MT (2014) Effect of α-linolenic acid on oocyte maturation and embryo development of prepubertal sheep oocytes. Theriogenology 82:686–696

    Article  PubMed  CAS  Google Scholar 

  • Gibson RA, Muhlhausler B, Makrides M (2011) Conversion of linoleic acid and alpha-linolenic acid to longchain polyunsaturated fatty acids (LCPUFAs), with a focus on pregnancy, lactation and the first 2 years of life. Matern Child Nutr 7(Suppl 2):17–26

    Article  PubMed  Google Scholar 

  • Gómez Candela C, Bermejo López LM et al (2011) Importance of a balanced omega 6/omega 3 ratio for the maintenance of health: nutritional recommendations. Nutr Hosp 26:323–329

    PubMed  Google Scholar 

  • Gonthier C, Mustafa AF, Ouellet DR (2005) Feeding micronized and extruded flaxseed to dairy cows: effects on blood parameters and milk fatty acid composition. J Dairy Sci 88:748–756

    Article  PubMed  CAS  Google Scholar 

  • Gulliver CE, Friend MA, King BJ et al (2012) The role of omega-3 polyunsaturated fatty acids in reproduction of sheep and cattle. Anim Reprod Sci 131:9–22

    Article  PubMed  CAS  Google Scholar 

  • Hammerstedt RH, Graham JK, Nolan JP (1990) Cryopreservation of mammalian sperm: What we ask them to survive. J Androl 11:73–88

    PubMed  CAS  Google Scholar 

  • Hargis PS, Van Elswyk ME (1993) Manipulating the fatty acid composition of poultry meat and eggs for the health conscious consumer. World’s Poult Sci J 49:251–264

    Article  Google Scholar 

  • Helliwell RJA, Adams LF, Mitchell MD (2004) Prostaglandin synthases: recent developments and a novel hypothesis. Prostaglandins Leukot Essent Fat Acids 70:101–113

    Article  CAS  Google Scholar 

  • Henman D (2006) Nutritional management of reproduction. In: Taylor-Pickard JA, Nollet L (eds) Nutritional approaches to arresting the decline in fertility of pigs and poultry. Wageningen Academic Publishers, Amsterdam, pp 73–92

    Google Scholar 

  • Hinckley T, Clark RM, Bushmich HL (1996) Long chain polyunsaturated fatty acids and bovine luteal cell function. Biol Reprod 55:445–449

    Article  PubMed  CAS  Google Scholar 

  • Hirahashi J (2017) Omega-3 polyunsaturated fatty acids for the treatment of IgA nephropathy. J Clin Med 6:E70

    Article  PubMed  Google Scholar 

  • Hishikawa D, Valentine WJ, Iizuka-Hishikawa Y et al (2017) Metabolism and functions of docosahexaenoic acid-containing membrane glycerophospholipids. FEBS Lett 591:2730–2744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hornstra G, van Houwelingen AC, Kivits GA (1991) Dietary fish and prostanoid formation in man. Adv Prostaglandin Thromboxane Leukot Res 21A:225–228

    PubMed  CAS  Google Scholar 

  • Huang CH, Hou YC, Yeh CL et al (2014) A soybean and fish oil mixture with different n-6/n-3 PUFA ratios modulates the inflammatory reaction in mice with dextran sulfate sodium-induced acute colitis. Clin Nutr 34:1018–1024

    Article  PubMed  CAS  Google Scholar 

  • Innis SM (2007) Dietary (n-3) fatty acids and brain development. J Nutr 137:855–859

    Article  PubMed  CAS  Google Scholar 

  • Jain YC, Anand SR (1976) Fatty acids and fatty aldehydes of buffalo seminal plasma and sperm lipid. J Reprod Fertil 47:261–267

    Article  PubMed  CAS  Google Scholar 

  • Jolly CA, Jiang Y-H, Chapkin RS (1997) Dietary (n-3) polyunsaturated fatty acids suppress murine lymphoproliferation, interleukin-2 secretion, and the formation of diacylglycerol and ceramide. J Nutr 127:37–43

    Article  PubMed  CAS  Google Scholar 

  • Kelso KA, Redpath A, Noble RC et al (1997) Lipid and antioxidant changes in spermatozoa and seminal plasma throughout the reproductive period of bulls. J Reprod Fertil 109:1–6

    Article  PubMed  CAS  Google Scholar 

  • Komar CM (2005) Peroxisome proliferator-activated receptors (PPARs) and ovarian function-implications for regulating steroidogenesis, differenti-ation, and tissue remodelling. Reprod Biol Endocrinol 3:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lambe KG, Tugwood ID (1996) A human peroxisome-proliferator-activated receptor-y is activated by inducers of adipogenesis, including thiazalidinedione drugs. Eur J Biochem 239:1–7

    Article  PubMed  CAS  Google Scholar 

  • Lands WEM (1992) Biochemistry and physiology of n-3 fatty acids. FASEB 6:2530–2536

    Article  CAS  Google Scholar 

  • Lerch S, Ferlay A, Graulet B et al (2015) Extruded linseeds, vitamin E and plant extracts in corn silage-based diets of dairy cows: effects on sensory properties of raw milk and uncooked pressed cheese. Int Dairy J 51:65–74

    Article  CAS  Google Scholar 

  • Liu Q, Zhou YF, Duan RJ et al (2015) Effects of dietary n-6:n-3 fatty acid ratio and vitamin E on semen quality, fatty acid composition and antioxidant status in boars. Anim Reprod Sci 162:11–19

    Article  PubMed  CAS  Google Scholar 

  • MacLaren LA, Guzeloglu A, Michel F et al (2006) Peroxisome proliferator-activated receptor (PPAR) expression in cultured bovine endometrial cells and response to omega-3 fatty acid, growth hormone and agonist stimulation in relation to series 2 prostaglandin production. Domest Anim Endocrinol 30:155–169

    Article  PubMed  CAS  Google Scholar 

  • Maranesi M, Menchetti L, Boiti C et al (2016) Maternal supplementation with fish oil improves insulin sensitivity and up-regulates PPARγ gene expression in the liver of post-weaned rabbits. In: Proceedings of the 70th congress of the society of nutrition physiology, vol. 25. Society of Nutrition Physiology, University of Gottingen, p 157

  • Maranesi M, Petrucci L, Castellini C et al (2017a) Antioxidant impact and ovary Δ-6 desaturase gene expression during pregnancy, milk fatty acid profile in rabbit does fed with fatty acids supplementation. In: Proceedings of the 71st congress of the society of nutrition physiology, vol 26. Society of Nutrition Physiology, University of Gottingen, p 16

  • Maranesi M, Petrucci L, Castellini C et al (2017b) Impact of linseed supplemented diet (alpha-linolenic acid) on productive/reproductive performance and lipid metabolic pathway of rabbits. In: International PSE symposium, new and old phytochemicals: their role in ecology, veterinary, and welfare, Francavilla al Mare, Chieti

  • Maranesi M, Petrucci L, Rebollar PG et al (2017c) Expression of leptin receptor in the uterus of pregnant rabbits fed a diet including flaxseed fatty acids. In: Paper presented at 21st European Society of veterinary and comparative nutrition congress. University of Cirencester, London

  • Marchioli R, Levantesi G (2013) n-3 PUFAs in cardiovascular disease. Int J Cardiol 20(170):S33–S38

    Article  Google Scholar 

  • Marei WF, Wathes DC, Fouladi-Nashta AA (2009) The effect of linolenic acid on bovine oocyte maturation and development. Biol Reprod 81:1064–1072

    Article  PubMed  CAS  Google Scholar 

  • Marion-Letellier R, Butler M, Dechelotte P et al (2008) Comparison of cytokine modulation by natural peroxisome proliferator-activated receptor gamma ligands with synthetic ligands in intestinal-like Caco-2 cells and human dendritic cells-potential for dietary modulation of peroxisome proliferator-activated receptor gamma in intestinal inflammation. Am J Clin Nutr 87:939–948

    Article  PubMed  CAS  Google Scholar 

  • Marion-Letellier R, Savoye G et al (2016) Fatty acids, eicosanoids and PPAR gamma. Eur J Pharmacol 785:44–49

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Fernández L, Laiglesia LM, Huerta AE et al (2015) Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome. Prostaglandins Lipid Mediat 121:24–41

    Article  CAS  Google Scholar 

  • Mattioli S, Ruggeri S, Sebastiani B et al (2017) Performance and egg quality of laying hens fed flaxseed: highlights on n-3 fatty acids, cholesterol, lignans and isoflavones. Animal 11:705–712

    Article  PubMed  CAS  Google Scholar 

  • Mattos R, Staples CR, Thatcher WW (2000) Effects of dietary fatty acids on reproduction in ruminants. Rev Reprod 5:38–45

    Article  PubMed  CAS  Google Scholar 

  • McCracken JA, Carlson JC, Glew ME et al (1972) Prostaglandin F2α identified as a luteolytic hormone in sheep. Nat N Biol 238:129–134

    Article  CAS  Google Scholar 

  • McEvoy TG, Coull GD, Broadbent PJ et al (2000) Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J Reprod Fertil 118:163–170

    Article  PubMed  CAS  Google Scholar 

  • McKeegan PJ, Sturmey RG (2011) The role of fatty acids in oocyte and early embryo development. Reprod Fertil Dev 24:59–67

    Article  PubMed  CAS  Google Scholar 

  • Minge CE, Robker RL, Norman RJ (2008) PPAR gamma: coordinating metabolic and immune contributions to female fertility. PPAR Res 2008:243791

  • Mirabi P, Chaichi MJ, Esmaeilzadeh S et al (2017) Does different BMI influence oocyte and embryo quality by inducing fatty acid in follicular fluid? Taiwan J Obstet Gynecol 56:159–164

    Article  PubMed  Google Scholar 

  • Mitre R, Cheminade C, Allaume P et al (2004) Oral intake of shark liver oil modifies lipid composition and improves motility and velocity of boar sperm. Theriogenology 62:1557–1566

    Article  PubMed  CAS  Google Scholar 

  • Moallem U, Neta N, Zeron Y et al (2015) Dietary alpha-linolenic acid from flaxseed oil or eicosapentaenoic and docosahexaenoic acids from fish oil differentially alter fatty acid composition and characteristics of fresh and frozen-thawed bull semen. Theriogenology 83:1110–1120

    Article  PubMed  CAS  Google Scholar 

  • Mourot J, Hermier D (2010) Lipids in monogastric animal meat. Reprod Nutr Dev 41:109–118

    Article  Google Scholar 

  • Mourvaki E, Cardinali R, Dal Bosco A et al (2010) Effects of flaxseed dietary supplementation on sperm quality and on lipid composition of sperm subfractions and prostatic granules in rabbit. Theriogenology 73:629–637

    Article  PubMed  CAS  Google Scholar 

  • Mu YM, Yanase T, Nishi Y et al (2000) lnsulin sensitizer, troglitazone, directly inhibits aromatase activity in human ovarian granulosa cells. Biochem Biophys Res Commun 271:710–713

    Article  PubMed  CAS  Google Scholar 

  • Muhlhausler BS, Ailhaud GP (2013) Omega-6 polyunsaturated fatty acids and the early origins of obesity. Curr Opin Endocrinol Diabetes Obes 20:56–61

    Article  PubMed  CAS  Google Scholar 

  • Murphy EM, Stanton C, Brien CO et al (2017) The effect of dietary supplementation of algae rich in docosahexaenoic acid on boar fertility. Theriogenology 90:78–87

    Article  PubMed  CAS  Google Scholar 

  • Naughton SS, Mathai ML, Hryciw DH et al (2016) Linoleic acid and the pathogenesis of obesity. Prostaglandins Lipid Mediat 125:90–99

    Article  CAS  Google Scholar 

  • Niswender GD, Juengel JL, Silva PJ et al (2000) Mechanisms controlling the the function and life span of the corpus luteum. Physiol Rev 80:1–29

    Article  PubMed  CAS  Google Scholar 

  • Parillo F, Catone G, Boiti C et al (2011) Immunopresence and enzymatic activity of nitric oxide synthases, cyclooxygenases and PGE2-9-ketoreductase and in vitro production of PGF2α, PGE2 and testosterone in the testis of adult and prepubertal alpaca (Lama pacos). Gen Comp Endocrinol 171:381–388

    Article  PubMed  CAS  Google Scholar 

  • Parillo F, Catone G, Gobbetti A et al (2013) Cell localization of ACTH, dopamine, and GnRH receptors and PPARγ in bovine corpora lutea during diestrus. Acta Sci Vet 41:el 129

    Google Scholar 

  • Perez Rigau A, Lindemann MD, Kornegay ET et al (1995) Role of dietary lipids on fetal tissue fatty acid composition and fetal survival in swine at 42 days of gestation. J Anim Sci 73:1372–1380

    Article  PubMed  CAS  Google Scholar 

  • Petit HV, Twagiramungu H (2006) Conception rate and reproductive function of dairy cows fed different fat sources. Theriogenology 66:1316–1324

    Article  PubMed  CAS  Google Scholar 

  • Petit HV, Germiquet C, Lebel D (2004) Effect of feeding whole, unprocessed sunflower seeds and flaxseed on milk production, milk composition, and prostaglandin secretion in dairy cows. J Dairy Sci 87:3889–3898

    Article  PubMed  CAS  Google Scholar 

  • Ponter AA, Parsy AE, Saadé M et al (2006) Effect of a supplement rich in linolenic acid added to the diet of post-partum dairy cows on ovarian follicle growth, and milk and plasma fatty acid compositions. Reprod Nutr Dev 46:19–29

    Article  PubMed  CAS  Google Scholar 

  • Poulos A, Darin Bennett A, White IG (1973) The phospholipid bound fatty acids and aldehydes of mammalian spermatozoa. Comp Biochem Physiol B 46:541–549

    Article  PubMed  CAS  Google Scholar 

  • Prates EG, Nunes JT, Pereira RM (2014) A role of lipid metabolism during cumulus-oocyte complex maturation: impact of lipid modulators to improve embryo production. Mediat Inflamm 2014:692067

    Article  CAS  Google Scholar 

  • Rebollar PG, García-García RM, Arias-Álvarez M et al (2014) Reproductive long-term effects, endocrine response and fatty acid profile of rabbit does fed diets supplemented with n-3 fatty acids. Anim Reprod Sci 146:202–209

    Article  PubMed  CAS  Google Scholar 

  • Robinson RS, Pushpakumara PG, Cheng Z et al (2002) Effects of dietary polyunsaturated fatty acids on ovarian and uterine function in lactating dairy cows. Reproduction 124:119–131

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez M, García-García RM, Arias-Álvarez M et al (2017) A diet supplemented with n-3 polyunsaturated fatty acids influences the metabolic and endocrine response of rabbit does and their offspring. J Anim Sci 95:2690–2700

    PubMed  Google Scholar 

  • Rodríguez M, García-García RM, Arias-Álvarez M et al (2018) Improvements in the conception rate, milk composition and embryo quality of rabbit does after dietary enrichment with n-3 polyunsaturated fatty acids. Animal 15:1–9

    Article  Google Scholar 

  • Romans JR, Johnson RC, Wulf D et al (1995) Effects of ground flaxseed in swine diets on pig performance and on physical and sensory characteristics of n-3 fatty acid content of pork. I. Dietary level of flaxseed. J Anim Sci 73:1982–1986

    Article  PubMed  CAS  Google Scholar 

  • Rooke JA, Sinclair AG, Ewen M (2001a) Changes in piglet tissue composition at birth in response to increasing maternal intake of long-chain n-3 polyunsaturated fatty acids are non-linear. Br J Nutr 86:461–470

    Article  PubMed  CAS  Google Scholar 

  • Rooke JA, Shao CC, Speake BK et al (2001b) Effects of feeding tuna oil on the lipid composition of pig spermatozoa and in vitro characteristics of semen. Reproduction 121:315–322

    Article  PubMed  CAS  Google Scholar 

  • Roura M, Catalá MG, Soto-Heras S et al (2017) Linoleic (LA) and linolenic (ALA) acid concentrations in follicular fluid of prepubertal goats and their effect on oocyte in vitro maturation and embryo development. Reprod Fertil Dev 6

  • Safarinejad MR (2011) Effect of omega-3 polyunsaturated fatty acid supplementation on semen profile and enzymatic anti-oxidant capacity of seminal plasma in infertile men with idiopathic oligoasthenoteratospermia: a double-blind, placebo-controlled, randomised study. Andrologia 43:38–47

    Article  PubMed  CAS  Google Scholar 

  • Samadian F, Towhidi A, Rezayazdi K et al (2010) Effects of dietary n -3 fatty acids on characteristics and lipid composition of ovine sperm. Animal 4:2017–2022

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Lazo L, Brisard D, Elis S (2014) Fatty acid synthesis and oxidation in cumulus cells support oocyte maturation in bovine. Mol Endocrinol 28:1502–1521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santos JE, Bilby TR, Thatcher WW et al (2008) Long chain fatty acids of diet as factors influencing reproduction in cattle. Reprod Domest Anim 43(Suppl 2):23–30

    Article  PubMed  Google Scholar 

  • Scaioli E, Liverani E, Belluzzi A (2017) The imbalance between n-6/n-3 polyunsaturated fatty acids and inflammatory bowel disease: a comprehensive review and future therapeutic perspectives. Int J Mol Sci 18:E2619

    Article  PubMed  Google Scholar 

  • Schoppee PD, Garmey JC, Veldhuis JD (2002) Putative activation of the peroxisome proliferator-activated receptor y impairs androgen and enhances progesterone biosynthesis in primary cultures of porcine theca cells. Biol Reprod 66:190–198

    Article  PubMed  CAS  Google Scholar 

  • Silvestre FT, Carvalho TS, Francisco N (2011) Effects of differential supplementation of fatty acids during the peripartum and breeding periods of Holstein cows: I. Uterine and metabolic responses, reproduction, and lactation. J Dairy Sci 94:189–204

    Article  PubMed  CAS  Google Scholar 

  • Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21:495–505

    Article  PubMed  CAS  Google Scholar 

  • Smith WL (2005) Cyclooxygenases, peroxide tone and the allure of fish oil. Curr Opin Cell Biol 17:174–182

    Article  PubMed  CAS  Google Scholar 

  • Song EA, Kim H (2016) Docosahexaenoic acid induces oxidative DNA damage and apoptosis, and enhances the chemosensitivity of cancer cells. Int J Mol Sci 17:E1257

    Article  PubMed  CAS  Google Scholar 

  • Stanfield KM, Khan KNM (2003) Localization of COX-2 in the male reproductive tract during sexual maturation. Inflammopharmacology 11:259–266

    Article  PubMed  CAS  Google Scholar 

  • Staples CR, Burke JM, Thatcher WW (1998) Influence of supplemental fats on reproductive tissues and performance of lactating cows. J Dairy Sci 81:856–871

    Article  PubMed  CAS  Google Scholar 

  • Stubbs CD, Smith AD (1984) The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta 779:89–137

    Article  PubMed  CAS  Google Scholar 

  • Sun GY, Simonyi A, Fritsche KL et al (2017) Docosahexaenoic acid (DHA): an essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot Essent Fat Acids S0952–3278(16):30213–30217

    Google Scholar 

  • Szostak-Wegierek D, Kłosiewicz-Latoszek L, Szostak WB et al (2013) The role of dietary fats for preventing cardiovascular disease: a review. Rocz Panstw Zakl Hig 64:263–269

    PubMed  CAS  Google Scholar 

  • Thompson LU, Boucher BA, Liu Z (2006) Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr Cancer 54:184–201

    Article  PubMed  CAS  Google Scholar 

  • Trujillo EP, Ks Beoughton (1995) Ingestion of n-3 polyunsaturated fatty acids and ovulation in rats. J Reprod Fert 105:197–203

    Article  CAS  Google Scholar 

  • Vahmani P, Fredeen AH, Glover KE (2013) Effect of supplementation with fish oil or microalgae on fatty acid composition of milk from cows managed in confinement or pasture systems. J Dairy Sci 96:6660–6670

    Article  PubMed  CAS  Google Scholar 

  • Van Tran L, Malla BA, Kumar S et al (2017) Polyunsaturated fatty acids in male ruminant reproduction-AReview. Asian-Australas J Anim Sci 30:622–637

    Article  PubMed  Google Scholar 

  • Veshkini A, Asadi H, Khadem AA (2015) Effect of Linolenic acid during in vitro maturation of ovine oocytes: embryonic developmental potential and mRNA abundances of genes involved in apoptosis. J Assist Reprod Genet 32:653–659

    Article  PubMed  PubMed Central  Google Scholar 

  • Veshkini A, Khadem AA, Mohammadi-Sangcheshmeh A (2016) Linolenic acid improves oocyte developmental competence and decreases apoptosis of in vitro-produced blastocysts in goat. Zygote 24:537–548

    Article  PubMed  CAS  Google Scholar 

  • Wakefield SL, Lane M, Schulz SJ et al (2008) Maternal supply of omega-3 polyunsaturated fatty acids alter mechanisms involved in oocyte and early embryo development in the mouse. Am J Physiol Endocrinol Metab 294:E425–E434

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Reinhart A, Welsh L et al (1999) Arachidonic acid regulation of steroidogenic acute regulatory (StAR) protein gene expression and steroid hormone production. FASEB J 1:A556

    Google Scholar 

  • Wannamethee SG, Jefferis BJ, Lennon L (2018) Serum conjugated linoleic acid and risk of incident heart failure in older men: the British regional heart study. J Am Heart Assoc 7:e006653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ward OP, Singh A (2005) Omega-3/6 fatty acids: Alternative sources of production. Process Biochem 40:3627–3652

    Article  CAS  Google Scholar 

  • Watanabe Y, Tatsuno I (2017) Omega-3 polyunsaturated fatty acids for cardiovascular diseases: present, past and future. Expert Rev Clin Pharmacol 10:865–873

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse KE, Hofmo PO, Tverdal A et al (2006) Within and between breed differences in freezing tolerance and plasma membrane fatty acid composition of boar sperm. Reproduction 131:887–894

    Article  PubMed  CAS  Google Scholar 

  • Waters SM, Child S, Creenan JM et al (2006) Effect of dietary omega-3 polyunsaturated fatty acids on uterine endometrial gene expression in cattle. In: 6th ARK-genomics farm animal functional genomics workshop, Cambridge, UK

  • Wathes DC, Abayasekara DR, Aitken RJ (2007) Polyunsaturated fatty acids in male and female reproduction. Biol Reprod 77:190–201

    Article  PubMed  CAS  Google Scholar 

  • Weylandt KH, Serini S, Chen YQ (2015) Omega-3 polyunsaturated fatty acids: the way forward in times of mixed evidence. Biomed Res Int 2015:143109

    PubMed  PubMed Central  Google Scholar 

  • Whitlock LA, Schingoethe DJ, Hippen AR et al (2002) Fish oil and extruded soybeans fed in combination increase conjugated linoleic acids in milk of dairy cows more than when fed separately. J Dairy Sci 85:234–243

    Article  PubMed  CAS  Google Scholar 

  • Whittemore CT, Kyriazakis I (2006) Whittemore’s Science and Practice of Pig Production Reproduction, 3rd edn. Blackwell Science Ltd., London

    Google Scholar 

  • Willbank MC, Ottobre JS (2003) Regulation of intraluteal production of prostaglandins. Reprod Biol Endocrinol 1:91

    Article  Google Scholar 

  • Wonnacott KE, Kwong WY, Hughes J et al (2010) Dietary omega-3 and -6 polyunsaturated fatty acids affect the composition and development of sheep granulosa cells, oocytes and embryos. Reproduction 139:57–69

    Article  PubMed  CAS  Google Scholar 

  • Xu HE, Lambert MH, Montana VG et al (1999) Molecular recognition of fatty acids by peroxisome proliferator–activated receptors. Mol Cell 3:397–403

    Article  PubMed  CAS  Google Scholar 

  • Zerani M, Boiti C, Dall’Aglio C et al (2005) Leptin receptor expression and in vitro leptin actions on prostaglandin release and nitric oxide synthase activity in the rabbit oviduct. J Endocrinol 185:319–325

    Article  PubMed  CAS  Google Scholar 

  • Zerani M, Dall’Aglio C, Maranesi M et al (2007) Intraluteal regulation of prostaglandin F2 alpha-induced prostaglandin biosynthesis in pseudopregnant rabbits. Reproduction 133:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Zerani M, Catone G, Quassinti L et al (2011) In vitro effects of gonadotropin-releasing hormone (GnRH) on Leydig cells of adult alpaca (Lama pacos) testis: GnRH receptor immunolocalization, testosterone and prostaglandin synthesis, and cyclooxygenase activities. Dom Anim Endocrinol 40:51–59

    Article  CAS  Google Scholar 

  • Zerani M, Catone G, Maranesi M et al (2012) Gonadotropin-releasing hormone I directly affects corpora lutea life-span in Mediterranean buffalo (Bubalus bubalis) during diestrus: presence and in vitro effects on enzymatic and hormonal activities. Biol Reprod 87:1–8

    Article  CAS  Google Scholar 

  • Zerani M, Maranesi M, Brecchia G et al (2013) Evidence for a luteotropic role of peroxisome proliferator-activated receptor gamma: expression and in vitro effects on enzymatic and hormonal activities in corpora lutea of pseudopregnant rabbits. Biol Reprod 188:62

    Google Scholar 

  • Zeron Y, Sklan D, Arav A et al (2002) Effect of polyunsaturated fatty acid supplementation on biophysical parameters and chilling sensitivity of ewe oocytes. Mol Reprod Dev 61:271–278

    Article  PubMed  CAS  Google Scholar 

  • Zhao G, Etherton TD, Martin KR (2005) Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells. Biochem Biophys Res Commun 336:909–917

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially funded by the BC Red-Water Foundation (Perugia, Italy), PFZM Kitchenbrown Trust (Matelica, Italy), and by “Fondazione Cassa Risparmio di Perugia” (Project Number: 2015.0373.021). The authors gratefully acknowledge the revision of the English text by Sheila Beatty.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margherita Maranesi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maranesi, M., Castellini, C., Dall’Aglio, C. et al. Effects of PUFAs on animal reproduction: male and female performances and endocrine mechanisms. Phytochem Rev 17, 801–814 (2018). https://doi.org/10.1007/s11101-018-9559-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-018-9559-z

Keywords

Navigation