Genus Retama: a review on traditional uses, phytochemistry, and pharmacological activities

  • A. J. León-González
  • I. Navarro
  • N. Acero
  • D. Muñoz Mingarro
  • C. Martín-Cordero
Article
  • 6 Downloads

Abstract

Plants of the genus Retama (Fabaceae) are used in traditional medicine of the Mediterranean Basin as an emetic, purgative, and vermifuge. Certain Retama species are also employed to treat a multitude of disorders, including diabetes, hepatitis, jaundice, sore throat, skin diseases, joint pain, rheumatism, fever, and inflammation. This review deals with updated information on the distribution, botanical characteristics, ethnopharmacology, phytochemistry, pharmacological activities, and toxicity of the Retama species in order to support their therapeutic potential and to provide an input for future research prospects. The Retama species are mainly employed as ethnomedicinal remedies in Mediterranean countries, including Algeria, Egypt, Italy, Lebanon, Libya, Morocco, and Spain. Previous phytochemical studies show a complex composition, rich in carbohydrates (galactomannans), polyols (pinitol), fatty acids, phenolic compounds (genistein, daidzein) and alkaloids (retamine, lupanine). The pharmacological activity of their various extracts has been widely studied, revealing, among others, the anti-microbial, anti-inflammatory, and anti-diabetic effects of these species. The potential toxicity of these medicinal plants has also been discussed. Although recent experimental evidence confirms the pharmacological interest of this genus, further studies are necessary.

Keywords

R. monosperma R. raetam R. sphaerocarpa Quinolizidine alkaloids Isoflavones 

Abbreviations

GLC–MS

Gas liquid chromatography mass spectrometry

MIC

Minimum inhibitory concentration

RP-HPLC

Reversed phase high performance liquid chromatography

HCMV

Human cytomegalovirus

MSSA

Methicillin sensitive Staphylococcus aureus

MRSA

Methicillin resistant Staphylococcus aureus

ROS

Reactive oxygen species

DPPH

1,1-Diphenyl-2-picrylhydrazyl

IC50

50% inhibitory concentration

TAC

Total antioxidant capacity

AGEs

Advanced glycation end products

SOD

Superoxide dismutase

GPx

Glutathione peroxidase

MDA

Malondialdehyde

NSAID

Non-steroidal anti-inflammatory drug

LOX

Lipoxygenase

TNBS

Trinitrobenzene sulfonic acid

TNF-α

Tumour necrosis factor alpha

COX

Cyclooxigenase

iNOS

Inducible nitric oxide synthase

Notes

Acknowledgements

Authors express their gratitude to Fundación Universitaria San Pablo-CEU and Banco de Santander for the financial support (PPC 20/2015).

References

  1. Abdalla MF, Saleh NAM (1983) Flavonoids of Retama raetam. J Nat Prod 46:755–756CrossRefGoogle Scholar
  2. Abdel Halim OB, Abdel Fattah H, Halim AF et al (1997) Comparative chemical and biological studies of the alkaloidal content of Lygos species and varieties growing in Egypt. Acta Pharm Hung 67(6):241–247PubMedGoogle Scholar
  3. Abdel-Halim OB (1995) (-)-6α-Hydroxylupanine, a lupin alkaloids from Lygos raetam var. sarcocarpa. Phytochemistry 40:1323–1325CrossRefGoogle Scholar
  4. Abdel-Halim OB, Sekine T, Saito K et al (1992) (+)- 12 Hydroxylupanine, a lupin alkaloids from Lygos raetam. Phytochemistry 31(9):3251–3253CrossRefGoogle Scholar
  5. Abdellaoui R, Yahyaoui F, Neffati M (2014) Population structure and genetic diversity of a medicinal plant species Retama raetam in Southern Tunisia. Pak J Biol Sci 17:182PubMedCrossRefGoogle Scholar
  6. Abouri M, El Mousadik A, Msanda F et al (2012) An ethnobotanical survey of medicinal plants used in the Tata Province, Morocco. Int J Med Plant Res 1:99–123Google Scholar
  7. Abu-Rabia A (2015) Indigenous medicine among the Bedouin in the Middle East. Berghahn Books, OxfordGoogle Scholar
  8. Akkal S, Louaar S, Benahmed M et al (2010) A new isoflavone glycoside from the aerial parts of Retama sphaerocarpa. Chem Nat Compd 46:719–721CrossRefGoogle Scholar
  9. Algandaby MM (2015) Assessment of acute and subacute toxic effects of the Saudi folk herb Retama raetam in rats. J Chin Med Assoc 78(12):691–701PubMedCrossRefGoogle Scholar
  10. Algandaby MM, Alghamdi HA, Ashour OM et al (2010) Mechanisms of the antihyperglycemic activity of Retama raetam in streptozotocin-induced diabetic rats. Food Chem Toxicol 48(8–9):2448–2453PubMedCrossRefGoogle Scholar
  11. Alghazeer R, El-Saltani H, Saleh N et al (2012) Antioxidant and antimicrobial properties of five medicinal Libyan plants extracts. Nat Sci 4:324Google Scholar
  12. Ali-Shtayeh MS, Yaghmour RM, Faidi YR et al (1998) Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area. J Ethnopharmacol 60(3):265–271PubMedCrossRefGoogle Scholar
  13. Al-Tubuly RA, Auzi AA, Al-Etri-Endi AA et al (2011) Effects of Retama raetam (Forssk.) Webb & Berthel. (Fabaceae) on the central nervous system in experimental animals. Arch Biol Sci 63(4):1015–1021CrossRefGoogle Scholar
  14. Awen BZS, Unnithan CR, Ravi S et al (2011) Essential oils of Retama raetam from Libya: chemical composition and antimicrobial activity. Nat Prod Res 25(9):927–933PubMedCrossRefGoogle Scholar
  15. Barakat N, Laudadio V, Cazzato E et al (2013) Potential contribution of Retama raetam (Forssk.) Webb & Berthel as a Forage Shrub in Sinai, Egypt. Arid Land Res Man 27:257–271CrossRefGoogle Scholar
  16. Belayachi L, Aceves-Luquero C, Merghoub N et al (2013) Screening of North African medicinal plant extracts for cytotoxic activity against tumor cell lines. Eur J Med Plants 3:310–332CrossRefGoogle Scholar
  17. Belayachi L, Aceves-Luquero C, Merghoub N et al (2014) Retama monosperma n-hexane extract induces cell cycle arrest and extrinsic pathway-dependent apoptosis in Jurkat cells. BMC Complement Altern Med 14:38PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bellakhdar J (1997) Contribution à l’étude de la pharmacopée traditionnelle au Maroc: la situation actuelle, les produits, les sources du savoir. Enquête ethnopharmacologique de terrain réalisée de 1969 à 1992. Doctoral dissertation, University of MetzGoogle Scholar
  19. Bellakhdar J, Claisse R, Fleurentin J et al (1991) Repertory of standard herbal drugs in the Moroccan pharmacopoea. J Ethnopharmacol 35:123–143PubMedCrossRefGoogle Scholar
  20. Belmokhtar Z, Harche MK (2012) Evaluation of genetic diversity in three species of Retama genus: R. monosperma (L) Boiss, R. raetam (Forssk) Webb and R. sphaerocarpa (L) Boiss. (Fabaceae) based on SDS-PAGE. Curr Res J Biol Sci 4:202–205Google Scholar
  21. Belmokhtar Z, Harche MK (2014) In vitro antioxidant activity of Retama monosperma (L.) Boiss. Nat Prod Res 28:2324–2329PubMedCrossRefGoogle Scholar
  22. Benbacer L, Merghoub N, El Btaouri H et al (2012) Antiproliferative Effect and induction of apoptosis by Inula viscosa L. and Retama monosperma L. extracts in human cervical cancer cells. In: Rajamanicjam R (ed) Topics on cervical cancer with an advocacy for prevention. InTech, LondonGoogle Scholar
  23. Benítez Cruz G (2007) El uso de las plantas a través de la cultura tradicional Lojeña. Fundación Ibn al-Jatib de Estudios de Cooperación Cultural. Granada 244–245Google Scholar
  24. Benítez G, González-Tejero MR, Molero-Mesa J (2010) Pharmaceutical ethnobotany in the western part of Granada province (southern Spain): ethnopharmacological synthesis. J Ethnopharmacol 129:87–105PubMedCrossRefGoogle Scholar
  25. Boudjelal A, Henchiri C, Sari M et al (2013) Herbalists and wild medicinal plants in M’Sila (North Algeria): an ethnopharmacology survey. J Ethnopharmacol 148(2):395–402PubMedCrossRefGoogle Scholar
  26. Boulila F, Depret G, Boulila A et al (2009) Retama species growing in different ecological-climatic areas of northeastern Algeria have a narrow range of rhizobia that form a novel phylogenetic clade within the Bradyrhizobium genus. Syst Appl Microbiol 32(4):245–255PubMedCrossRefGoogle Scholar
  27. Boussahel S, Cacciola F, Dahamna S et al (2017) Flavonoid profile, antioxidant and antiglycation properties of Retama sphaerocarpa fruits extracts. Nat Prod Res 24:1–9CrossRefGoogle Scholar
  28. Bremner P, Rivera D, Calzado MA et al (2009) Assessing medicinal plants from South-Eastern Spain for potential anti-inflammatory effects targeting nuclear factor-Kappa B and other pro-inflammatory mediators. J Ethnopharmacol 124(2):295–305PubMedCrossRefGoogle Scholar
  29. Cardoso D, Pennington RT, Queiroz LP et al (2013) Reconstructing the deep-branching relationships of the papilionoid legumes. S African J Bot 89:58–75CrossRefGoogle Scholar
  30. Conforti F, Statti G, Tundis R et al (2004) Antioxidant and cytotoxic activities of Retama raetam subsp. gussonei. Phytother Res 18:585–587PubMedCrossRefGoogle Scholar
  31. Derhali S, El Hamdani N, Fdil R et al (2016) Chemical composition of essential oils of Retama monosperma (L.) Boiss. from Morocco. Res J Pharm Biol Chem Sci 7(4):2102–2106Google Scholar
  32. Djeddi S, Karioti A, Yannakopoulou E et al (2013) Analgesic and antioxidant activities of Algerian Retama raetam (Forssk.) Webb & Berthel extracts. Rec Nat. Prod 7(3):169–176Google Scholar
  33. Eddouks M, Maghrani M, Louedec L et al (2007) Antihypertensive activity of the aqueous extract of Retama raetam Forssk leaves in spontaneously hypertensive rats. J Herb Pharmacother 7(2):65–77PubMedCrossRefGoogle Scholar
  34. Edziri H, Ammar S, Groh P et al (2007) Antimicrobial and cytotoxic activity of Marrubium alysson and Retama raetam grown in Tunisia. Pak J Biol Sci 10(10):1759–1762CrossRefGoogle Scholar
  35. Edziri H, Mastouri M, Ammar S et al (2008) Antimicrobial, antioxidant, and antiviral activities of Retama raetam (Forssk.) Webb flowers growing in Tunisia. World J Microbiol Biotech 24:2933–2940CrossRefGoogle Scholar
  36. Edziri H, Mastouri M, Chéraif I et al (2010) Chemical composition and antibacterial, antifungal and antioxidant activities of the flower oil of Retama raetam (Forssk.) Webb from Tunisia. Nat Prod Res 24:789–796PubMedCrossRefGoogle Scholar
  37. Edziri H, Mastouri M, Mahjoub MA et al (2012) Antibacterial, antifungal and cytotoxic activities of two flavonoids from Retama raetam flowers. Molecules 17:7284–7293PubMedCrossRefGoogle Scholar
  38. El Sherbeiny AEA, El Sissi HI, Nawar MA et al (1978) The flavonoids of seeds of Lygos raetam. Planta Med 34:335–336CrossRefGoogle Scholar
  39. El-Bahri L, Djegham M, Bellil H (1999) Retama raetam W: a poisonous plant of North Africa. Vet Hum Toxicol 41(1):33–35PubMedGoogle Scholar
  40. El-Beyrouthy M, Arnold N, Deleis-Dusollier A et al (2008) Plants used as remedies antirheumatic and antineuralgic in the traditional medicine of Lebanon. J Ethnopharmacol 120:315–334PubMedCrossRefGoogle Scholar
  41. El-Hamdani N, Fdil R (2015) Evaluation of fatty acids profile and mineral content of Retama monosperma (L.) Boiss. of Morocco. J Mater Environ Sci 6:538–545Google Scholar
  42. El-Hamdani N, Filali-Ansari N, El Abbouyi A et al (2016) Antifungal activity of the alkaloids extracts from aerial parts of Retama monosperma. Re J Pharm Biol Chem Sci 7(2):965–971Google Scholar
  43. El-Hilaly J, Hmammouchi M, Lyoussi B (2003) Ethnobotanical studies and economic evaluation of medicinal plants in Taounate province (Northern Morocco). J Ethnopharmacol 86:149–158PubMedCrossRefGoogle Scholar
  44. El-Mokasabi FM (2014) Floristic composition and traditional uses of plant species at Wadi Alkuf, Al-Jabal Al-Akhder, Libya. American-Eurasian J Agric Environ Sci 14:685–697Google Scholar
  45. El-Shazly A, Ateya AM, Witte L et al (1996) Quinolizidine alkaloid profiles of Retama raetam, R. sphaerocarpa and R. monosperma. Z Naturforsch C 51:301–308Google Scholar
  46. El-Toumy SA, Farrag AH, Ellithey MM et al (2009) Effect of plant derived-phenolic extracts on antioxidant enzyme activity and mucosal damage caused by indomethacin in rats. Planta Med 75:PH11Google Scholar
  47. El-Toumy SA, Farrag AH, Ellithey MM et al (2011) Effect of plant derived-phenolic extracts on antioxidant enzyme activity and mucosal damage caused by indomethacin in rats. J Pharm Res 4(1):189–192Google Scholar
  48. Gao Y, Zhang M, Wu T et al (2015) Effects of D-pinitol on insulin resistance through the PI3K/Akt signaling pathway in type 2 diabetes mellitus rats. J Agric Food Chem 3(26):6019–6026CrossRefGoogle Scholar
  49. GBIF Backbone Taxonomy. GBIF Secretariat. Checklist Dataset  https://doi.org/10.15468/39omei accessed via GBIF.org. Cited 11 Oct 2017
  50. González-Mauraza H, Martín-Cordero C, Alarcón-de-la-Lastra C et al (2014) Anti-inflammatory effects of Retama monosperma in acute ulcerative colitis in rats. J Physiol Biochem 70:163–172PubMedCrossRefGoogle Scholar
  51. González-Mauraza NH, León-González AJ, Espartero JL et al (2016) Isolation and quantification of pinitol, a bioactive cyclitol, in Retama spp. Nat Prod Commun 11:405–406PubMedGoogle Scholar
  52. Greuter W, Burdet HM, Long G (1989) Med-checklist: a critical inventory of vascular plants of the circum-mediterranean countries, vol 4. Conservatoire et Jardins botaniques de la Ville de Gèneve, SwitzerlandGoogle Scholar
  53. Hammouche-Mokrane N, León- González AJ, Navarro I et al (2017) Phytochemical profile and antibacterial activity of Retama raetam and R. sphaerocarpa cladodes from Algeria. Nat Prod Commun 12:1857–1860Google Scholar
  54. Harborne JB (1969) Chemosystematics of the Leguminosae. Flavonoid and isoflavonoid patterns in the tribe Genisteae. Phytochemistry 8:1449–1456CrossRefGoogle Scholar
  55. Hehmeyer I, Schönig H (2012) Herbal medicine in Yemen: traditional knowledge and practice, and their value for today’s world. Brill, LeidenGoogle Scholar
  56. Helmstädter A (2016) Ethnopharmacology in the work of Melville William Hilton-Simpson (1881–1938) historical analysis and current research opportunities. Pharmazie 71:352–360PubMedGoogle Scholar
  57. Heywood VH (1968) Lygos Adanson. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 2. Cambridge University Press, Cambridge EnglandGoogle Scholar
  58. Huang WC, Lai CL, Liang YT et al (2016) Phloretin attenuates LPS-induced acute lung injury in mice via modulation of the NF-κB and MAPK pathways. Int Immunopharmacol 40:98–105PubMedCrossRefGoogle Scholar
  59. Hudaib M, Mohammad M, Bustanji Y et al (2008) Ethnopharmacological survey of medicinal plants in Jordan, Mujib Nature Reserve and surrounding area. J Ethnopharmacol 120:63–71PubMedCrossRefGoogle Scholar
  60. Ishurd O, Kermagi A, Zgheel F (2004) Structural aspects of water-soluble galactomannans isolated from the seeds of Retama raetam. Carbohydr Polym 58:41–44CrossRefGoogle Scholar
  61. Kassem M, Mosharrafa SA, Saleh NA et al (2000) Two new flavonoids from Retama raetam. Fitoterapia 71:649–654PubMedCrossRefGoogle Scholar
  62. Kirkbride JH, Gunn CR, Weitzman AL (2003) Fruits and seeds of genera in the subfamily Faboideae (Fabaceae), vol 1. United States Department of Agriculture, BeltsvilleGoogle Scholar
  63. Koriem KM, Farrag AR, Badawy MA et al (2009) Role of some Egyptian medicinal plants against liver and kidney toxicity induced by cadmium chloride. Toxicol Mech Met 19(8):524–534CrossRefGoogle Scholar
  64. Koriem KM, Farrag AR, El-Toumy SA (2010) Beneficial effects of two Mediterranean medicinal plants on blood, liver, and kidney toxicity induced by formalin in rats. Biohealth Sci Bull 2(1):8–14Google Scholar
  65. León-González AJ (2012) Actividad antitumoral de plantas de Andalucía: Aislamiento de principios activos de Corema album (L.) D. Don. Thesis. Seville UniversityGoogle Scholar
  66. León-González AJ, Auger C, Schini-Kerth VB (2015) Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem Pharmacol 98(3):371–380PubMedCrossRefGoogle Scholar
  67. López-Lázaro M, Martín-Cordero C, Iglesias-Guerra F et al (1998) An isoflavone glucoside from Retama sphaerocarpa Boissier. Phytochemistry 48:401–402CrossRefGoogle Scholar
  68. López-Lázaro M, Martín-Cordero C, Ayuso MJ (1999) Flavonoids of Retama sphaerocarpa. Planta Med 65:777–778PubMedCrossRefGoogle Scholar
  69. López-Lázaro M, Martín-Cordero C, Cortés F et al (2000) Cytotoxic activity of flavonoids and extracts from Retama sphaerocarpa Boissier. Z Naturforsch C 55:40–43PubMedGoogle Scholar
  70. Louaar S, Akkal S, Bousetla A et al (2005) Phytochemical study of Retama sphaerocarpa. Chem Nat Compd 41:107–108CrossRefGoogle Scholar
  71. Louaar S, Akkal S, Laouer H, Guile D (2007) Flavonoids of Retama sphaerocarpa leaves and their antimicrobial activities. Chem Nat Compd 43:616–617CrossRefGoogle Scholar
  72. Lukačínová A, Mojžiš J, Beňačka R et al (2008) Structure-activity relationships of preventive effects of flavonoids in alloxan-induced diabetes mellitus. J An Feed Sci 17:411–421CrossRefGoogle Scholar
  73. Maghrani M, Lemhadri A, Jouad H et al (2003) Effect of the desert plant Retama raetam on glycaemia in normal and streptozotocin-induced diabetic rats. J Ethnopharmacol 87(1):21–25PubMedCrossRefGoogle Scholar
  74. Maghrani M, Lemhadri A, Zeggwagh NA et al (2004) Effect of Retama raetam on lipid metabolism in normal and recent-onset diabetic rats. J Ethnopharmacol 90(2–3):323–329PubMedCrossRefGoogle Scholar
  75. Maghrani M, Michel JB, Eddouks M (2005a) Hypoglycaemic activity of Retama raetam in rats. Phytother Res 19(2):125–128PubMedCrossRefGoogle Scholar
  76. Maghrani M, Zeggwagh NA, Haloui M et al (2005b) Acute diuretic effect of aqueous extract of Retama raetam in normal rats. J Ethnopharmacol 99(1):31–35PubMedCrossRefGoogle Scholar
  77. Mariem S, Hanen F, Inès J et al (2014) Phenolic profile, biological activities and fraction analysis of the medicinal halophyte. S Afr J Bot 94:114–121CrossRefGoogle Scholar
  78. Martín-Cordero C, Gil Serrano AM, Ayuso González MJ (1991) Variations des alcaloides de Retama sphaerocarpa Boissier. Plantes méd et phytoyher 25:157–160Google Scholar
  79. Martín-Cordero C, López-Lazaro M, Piñero J et al (2000a) Glucosylated isoflavones as DNA topoisomerase II poisons. J Enzyme Inhib 15(5):455–460PubMedCrossRefGoogle Scholar
  80. Martín-Cordero C, López-Lázaro M, Espartero JL et al (2000b) Retamatrioside, a new flavonol triglycoside from Retama sphaerocarpa. J Nat Prod 63:248–250PubMedCrossRefGoogle Scholar
  81. Martín-Cordero C, López Lázaro M, Gil-Serrano AM et al (1999) Novel flavonol glycoside from Retama sphaerocarpa Boissier. Phytochemistry 51:1129–1131CrossRefGoogle Scholar
  82. Martínez-Lirola MJ, González-Tejero MR, Molero J (1997) Investigaciones etnobotánicas en el Parque Natural de Cabo de Gata-Níjar (Almería). Sociedad Almeriense de Historia Natural y Junta de Andalucía, AlmeríaGoogle Scholar
  83. Merghoub N, Benbacer L, Amzazi S et al (2009) Cytotoxic effect of some Moroccan medicinal plant extracts on human cervical cell lines. J Med Plants Res 3:1045–1050Google Scholar
  84. Merghoub N, Benbacer L, El Btaouri H et al (2011) In vitro antiproliferative effect and induction of apoptosis by Retama monosperma L. extract in human cervical cancer cells. Cell Mol Biol 57(Suppl):1581–1591Google Scholar
  85. Miguel M, Bouchmaaa N, Aazza S (2014) Antioxidant, anti-inflammatory and anti-acetylcholinesterase activities of eleven extracts of Moroccan plants. Fresenius Environ Bull 23(6):1–14Google Scholar
  86. Mouhajir F (2002) Medicinal plants used by Berber and Arab peoples of Morocco: ethnopharmacology and phytochemistry. Thesis. British Columbia UniversityGoogle Scholar
  87. Muñoz Vallés S, Gallego Fernández JB, Cambrollé J (2013) The biological flora of coastal dunes and wetlands: Retama monosperma (L.) Boiss. J Coastal Res 29(5):1101–1110CrossRefGoogle Scholar
  88. Obón C, Rivera D, Verde A (2011) Plantas Medicinales en la Provincia de Albacete. Usos, creencias y leyendas. Zahora 28:1–119Google Scholar
  89. Omara EA, Shaffie NM, Et-Toumy SA, Aal WA (2009a) Histomorphometric evaluation of bone tissue exposed to experimental osteoporosis and treated with Retama raetam extract. J Appl Sci Res 5(7):706–716Google Scholar
  90. Omara EA, Nada SA, El-Toumy SA (2009b) Evaluation of hepatoprotective activity of the Retama raetam seeds on carbon tetrachloride-induced liver damage in rats. In: 57th international congress and annual meeting of the society for medicinal plant and natural product research abstracts. Planta Med vol 75, p PH 29Google Scholar
  91. Ould El Hadj M, Hadj-Mahammed M, Zabeirou H (2003) Place des plantes spontanées dans la médicine traditionnelle de la région de Ouargla (Sahara septentrional est). Cds 3:47–51Google Scholar
  92. Patten GS, Abeywardena MY, Bennett LE (2016) Inhibition of angiotensin converting enzyme, angiotensin II receptor blocking, and blood pressure lowering bioactivity across plant families. Crit Rev Food Sci Nutr 56(2):181–214PubMedCrossRefGoogle Scholar
  93. Rebbas K, Bounar R, Gharzouli R et al (2012) Plantes d’intérêt médicinale et écologique dans la région d’Ouanougha (M’sila, Algérie). Phytothérapie 10:131–142CrossRefGoogle Scholar
  94. Rivera D, Obón C, Cano F, Robledo A (1994) Introducción al mundo de las plantas medicinales de Murcia. Ayuntamiento de Murcia, MurciaGoogle Scholar
  95. Said O, Khalil K, Fulder S, Azaizeh H (2002) Ethnopharmacological survey of medicinal herbs in Israel, the Golan Heights and the West Bank region. J Ethnopharmacol 83:251–265PubMedCrossRefGoogle Scholar
  96. Schmid T, Turner D, Oberbaum M et al (2006) Respiratory failure in a neonate after folk treatment with broom bush (Retama raetam) extract. Pediatr Emerg Care 2(2):124–126CrossRefGoogle Scholar
  97. Sequeira M, Espírito-Santo MD, Aguiar C et al (2011) Checklist da Flora de Portugal (Continental, Açores e Madeira). Associação Lusitana de Fitossociologia, LisboaGoogle Scholar
  98. Steinhilber D (1999) 5-Lipoxygenase: a target for anti-inflammatory drugs revisited. Curr Med Chem 6:71–85PubMedGoogle Scholar
  99. Tahraoui A, El-Hilaly J, Israili ZH et al (2007) Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province). J Ethnopharmacol 110:105–117PubMedCrossRefGoogle Scholar
  100. Teixidor-Toneu I, Martin GJ, Ouhammou A (2016) An ethnomedicinal survey of a Tashelhit-speaking community in the High Atlas, Morocco. J Ethnopharmacol 188:96–110PubMedCrossRefGoogle Scholar
  101. Telli A, Esnault MA, Khelil AO (2016) An ethnopharmacological survey of plants used in traditional diabetes treatment in south-eastern Algeria (Ouargla province). J Arid Environ 127:82–92CrossRefGoogle Scholar
  102. The Plant List, Version 1.1, 2013. http://www.theplantlist.org. Cited 11 July 2017
  103. Tlili N, Mejri H, Lajnef HB et al (2015) Unexploited Thapsia garganica, Orlaya maritima, and Retama raetam seeds: potential sources of unsaturated fatty acid and natural antioxidants. J Am Oil Chem Soc 92:1175–1181CrossRefGoogle Scholar
  104. Touati R, Santos SA, Rocha SM et al (2015) Retama sphaerocarpa: an unexploited and rich source of alkaloids, unsaturated fatty acids and other valuable phytochemicals. Ind Crop Prod 69:238–243CrossRefGoogle Scholar
  105. Touati R, Santos SA, Rocha SM et al (2017) Phenolic composition and biological prospecting of grains and stems of Retama sphaerocarpa. Ind Crop Prod 95:244–255CrossRefGoogle Scholar
  106. Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84PubMedCrossRefGoogle Scholar
  107. Viegi L, Ghedira K (2014) Preliminary study of plants used in ethnoveterinary medicine in Tunisia and in Italy. Afr J Tradit Complement Altern Med 11:189–199PubMedPubMedCentralCrossRefGoogle Scholar
  108. Villar P, Cuesta B, Benito LF (2013) Retama monosperma (L.) Boiss y Retama sphaerocarpa (L.) Bois. In: Peman J, Navarro Carrillo RM, Nicolas JL, Pradad MA, Serrada R (eds) Producción y manejo de semillas y plantas forestales. Tomo II. Organismo Autónomo Parques Naturales, Madrid, pp 342–355Google Scholar
  109. Wong E (1966) Occurrence and biosynthesis of 4′,6-dihydroxyaurone in soybean. Phytochemistry 5(3):463–467CrossRefGoogle Scholar
  110. Wu Y, Pan Y, Sun C et al (2006) Structural analysis of an alkali-extractable polysaccharide from the seeds of Retama raetam ssp. gussonei. J Nat Prod 69:1109–1112PubMedCrossRefGoogle Scholar
  111. Xu WH, Al-Rehaily AJ, Yousaf M (2015) Two new flavonoids from Retama raetam. Helv Chim Acta 98:561–568CrossRefGoogle Scholar
  112. Yaniv Z, Dudai N (eds) (2014) Medicinal and aromatic plants of the middle-east, vol 2. Springer, Berlin, p 29Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • A. J. León-González
    • 1
    • 2
  • I. Navarro
    • 3
  • N. Acero
    • 4
  • D. Muñoz Mingarro
    • 5
  • C. Martín-Cordero
    • 2
  1. 1.Maimonides Institute of Biomedical Research of Cordoba (IMIBIC)CórdobaSpain
  2. 2.Department of PharmacologyFaculty of Pharmacy, Seville UniversitySevilleSpain
  3. 3.Department of Physical ChemistryFaculty of Pharmacy, Seville UniversitySevilleSpain
  4. 4.Pharmaceutical and Health Sciences DepartmentSan Pablo-CEU University, CEU UniversitiesBoadilla del Monte, MadridSpain
  5. 5.Chemistry and Biochemistry DepartmentSan Pablo-CEU University, CEU UniversitiesBoadilla del Monte, MadridSpain

Personalised recommendations