Skip to main content

Advertisement

Log in

Plant biodiversity: phytochemicals and health

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Biodiversity may be defined as the variability occuring among living organisms and affecting all species of animals and plants, their genetics and their environment. Biological diversity of plants also relies on the chemical diversity deriving from their specialized metabolites which possess a wide range of different chemical structures as a result of plant evolution. They are responsible for the plant ecological properties and are required for the plant-environment interactions. In addition, many of them display important pharmacological properties. In the recent years, the growing interest in using plant metabolites to treat diseases in humans and animals and the high request of health products originating from natural sources rather than synthetic has revived the research on plant biodiversity to identify new bioactive molecules. Based on our studies on the chemical and biological characterization of rare or less studied plant species, the present paper aims to describe a selection of botanical species with phytopharmaceutical importance in order to highlight the chemical polymorphism deriving from their biodiversity along with its implications on bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abdull Razis AF, Mohd Noor N (2013) Cruciferous vegetables: dietary phytochemicals for cancer prevention. APJCP 14:1565–1570

    PubMed  Google Scholar 

  • Aggarwal BB, Ichikawa H (2005) Molecular targets and anticancer potentail of indole-3-carbinol and its derivatives. Cell Cycle 4:1201–1215

    Article  PubMed  CAS  Google Scholar 

  • Alokam R, Jeankumar VU, Sridevi JP, Matikonda SS, Peddi S, Alvala M, Yogeeswari P, Siriam D (2014) Identification and structure-activity relationship study of carvacrol derivative as Mycobacterium tuberculosis chorismate mutase inhibitors. J Enz Inhibit Med Chem 29:547–554

    Article  CAS  Google Scholar 

  • Argentieri MP, Accogli R, Fanizzi FP, Avato P (2011) Glucosinolate profile of “mugnolo”, a variety of Brassica oleracea L. native to Southern Italy (Salento). Planta Med 77:287–292

    Article  PubMed  CAS  Google Scholar 

  • Argentieri MP, Macchia F, Papadia P, Fanizzi FP, Avato P (2012) Bioactive compounds from Capparis spinosa subsp. rupestris. INDCRO 36:65–69

    CAS  Google Scholar 

  • Argentieri MP, De Lucia B, Cristiano G, Avato P (2015a) Compositional analysis of Lavandula pinnata essential oils. NPC 11:287–290

    Google Scholar 

  • Argentieri MP, Levi M, Guzzo F, Avato P (2015b) Phytochemical analysis of Passiflora loefgrenii Vitta, a rich source of luteolin-derived flavonoids with antioxidant properties. JPP 67:1603–1612

    Article  PubMed  CAS  Google Scholar 

  • Avato P (1991) Essential oil of Thapsia garganica. Planta Med 57:585–586

    Article  PubMed  CAS  Google Scholar 

  • Avato P (1997) The genus Thapsia as source of bioactive compounds. In: Verotta L (ed) Virtual activity, real pharmacology. Different approaches to the search for bioactive compounds. Research Signpost, Trivandrum, pp 17–31

    Google Scholar 

  • Avato P, Argentieri MP (2015) Brassicaceae: a rich source of health improving phytochemicals. Phytochem Rev 14:1019–1033

    Article  CAS  Google Scholar 

  • Avato P, Smitt UW (2000) Composition of the essential oils from the roots of Thapsia maxima Miller and T. villosa L. JEOR 12:303–309

    Article  CAS  Google Scholar 

  • Avato P, Jacobsen N, Smitt UW (1992) Chemotaxonomy of Thapsia maxima Miller. Constituents of the essential oil of the fruits. JEOR 4:467–473

    Article  CAS  Google Scholar 

  • Avato P, Cornett C, Andersen A, Wagner Smitt U, Brøgger Christensen S (1993) Localization of the acyl groups in proazulene guaianolides from Thapsia transtagana and Thapsia garganica. J Nat Prod 56:411–415

    Article  CAS  Google Scholar 

  • Avato P, Trabace G, Smitt UW (1996a) Composition of the essential oils of fruits from polyploid types of Thapsia villosa L.: chemotaxonomic evaluation. JEOR 8:123–128

    Article  CAS  Google Scholar 

  • Avato P, Trabace G, Smitt UW (1996b) Essential oils from fruits of three types of Thapsia villosa. Phytochemistry 43:609–612

    Article  PubMed  CAS  Google Scholar 

  • Avato P, De Ruvo C, Cellamare S, Carotti A, Mazzoccoli M, Siro-Brigiani G (1998) Effect of Thapsia essential oils on bile composition in rats. Pharm Biol 36:335–340

    Article  CAS  Google Scholar 

  • Baser KH (2008) Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des 14:3106–3119

    Article  PubMed  CAS  Google Scholar 

  • Brøgger Christensen S, Mondrup Skytte D, Denmeade SR, Dionne G, Vuust Møller J, Nissen P, Isaacs JT (2009) A trojan horse in drug development: targeting of thapsigargin towards prostate cancer cells. ACAMC 9:276–294

    Article  Google Scholar 

  • Bundgaard Andersen T, Quiñonero López C, Manczak T, Martinez K, Toft Simonsen H (2015) Thapsigargin—from Thapsia to Mipsagargin. Molecules 20:6113–6127

    Article  CAS  Google Scholar 

  • Cacciatore I, Di Giulio M, Fornasari E, Di Stefano A, Cerasa LS, Marinelli L, Turkez H, Di Campli E, Di Bartolomeo S, Robuffo I, Cellini L (2015) Carvacrol codrugs: a new approach in the antimicrobial plan. PLoS ONE 10(4):1–20

    Article  CAS  Google Scholar 

  • Cartea ME, Lema M, Francisco M, Velasco P (2011) Basic information on vegetable Brassica crops. In: Sadowski J, Chittaranjan K (eds) Genetics, genomics and breeding of vegetable brassicas. Science Publishers, Enfield, pp 1–34

    Google Scholar 

  • Castle J, Lis-Balchin M (2002) History of usage of Lavandula species. In: Lis-Balchin M (ed) Lavender—the genus Lavandula. Taylor & Francis, London, pp 35–50

    Google Scholar 

  • Christensen SB, Andersen A, Lauridsen A, Moldt P, Smitt UW, Thastrup O (1992) Thapsigargin, a lead to design of drugs with the calcium pump as target. In: Krogsgaard-Larsen P, Christensen SB, Kofods U (eds) New leads and targets in drug research. Munksgaard, Copenhagen, pp 243–252

    Google Scholar 

  • Christensen SB, Andersen A, Smitt UW (1997) Sesquiterpenoids from Thapsia species and medicinal chemistry of the thapsigargins. Fortschr Chem Org Nat 71:129–167

    CAS  Google Scholar 

  • Cordell GA (2000) Biodiversity and drug discovery-a symbiotic relationship. Phytochem 55:463–480

    Article  CAS  Google Scholar 

  • Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100:72–79

    Article  PubMed  CAS  Google Scholar 

  • De Pascual M, Teresa J, Moran JR, Fernandez A, Grande M (1986) Hemiacetalic thapsane derivatives from Thapsia villosa var. minor. Phytochemistry 25:703–709

    Article  Google Scholar 

  • De Vincenzi M, Stammati A, De Vincenzi A, Silano M (2004) Consituents of aromatic plants: carvacrol. Fitoterapia 75:801–804

    Article  PubMed  CAS  Google Scholar 

  • Dhawan K, Dhawan S, Sharma A (2004) Passiflora: a review update. J Ethnopharmacol 94:1–23

    Article  PubMed  CAS  Google Scholar 

  • Doan NTQ, Paulsen ES, Sehgal P, Møller JV, Nissen P, Denmeade SR, Isaacs JT, Dionne CA, Cgristensen SB (2015) Targeting thapsigargin towards tumors. Steroids 97:2–7

    Article  PubMed  CAS  Google Scholar 

  • Elbarbry F, Elrody N (2011) Potential health of sulforaphane: a review of the experimental, clinical and epidemiological evidences and underlying mechanisms. J Med Plant Res 5:473–484

    CAS  Google Scholar 

  • Fabricant DS, Farnsworth NR (2001) The value of plant used in traditional medicine for drug discovery. Environ Health Perspect 109:69–75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fiori J, Gotti R, Valgimigli L, Cavrini V (2008) Guaiazulene in health care products: determination by GC-MS and HPLC-DAD and photostability test. JPBA 47:710–715

    CAS  Google Scholar 

  • Fuentes F, Paredes-Gonzales X, Kong A-NT (2015) Dietary glucosinolates sulforaphane, phenethyl isothiocyanate, indole-3-carbinol/3,3′-diindolylmethane: anti-oxidative stress/inflammation, Nrf2, epigenetics/epigenomics and in vivo cancer chemopreventive efficacy. Curr Pharmacol Rep 1:179–196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guarrera M, Turbino L, Rebora A (2001) The anti-inflammatory activity of azulene. JEADV 15:486–487

    PubMed  CAS  Google Scholar 

  • Hänsel R, Keller K, Rimpler H, Hagers Scheider G (1994) Handbuch der Pharmazeutischen Praxis. Springer, Berlin

    Book  Google Scholar 

  • Hotta M, Nakata R, Katsukawa M, Hori K, Takahashi S, Inoue H (2010) Carvacrol, a component of thyme oil, activates PPARα and γ and suppresses COX-2 expression. J Lipid Res 51:132–139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ingale AG, Hivrale AU (2010) Pharmacological studies of Passiflora sp. and their bioactive compounds. Afr J Plant Sci 4:417–426

    CAS  Google Scholar 

  • Karkabounas S, Kostoula OK, Daskalou T, Veltsistas P, Karamopuzis M, Zelovitis I, Metsios A, Lekkas P, Evangelou AM, Kotsis N, Skoufos I (2006) Anticarcinogenic and antiplatelet effects of carvacrol. Exp Oncol 28:121–125

    PubMed  CAS  Google Scholar 

  • Kronbak R, Duus F, Vang O (2010) Effect of 4-methoxyindole-3-carbinol on the proliferation of colon cancer cells in vitro, when treated alone or in combination with indole-3-carbinol. JAFC 58:8543–8549

    Google Scholar 

  • Leonti M (2011) The future is written: impact of scripts on the cognition, selection, knowledge and transmission of medicinal plant use and its implications for ethnobotany and ethnopharmacology. J Ethnopharmacol 134:542–555

    Article  PubMed  Google Scholar 

  • Lima Mda S, Quintans-Junior LJ, de Santana WA, Martins Kaneto CM, Pereira Soares MB, Villareal CF (2013) Anti-inflammatory effects of carvacrol: evidence for a key role of interleukin-10. Eur J Pharmacol 699:112–117

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Shi R, Wan X, Shen H-M (2008) Luteolin, a flavonoid with potentials for cancer prevention and therapy. Curr Cancer Drug Targets 8:634–646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lis-Balchin M (2002a) Chemical composition of essential oils from different species, hybrids and cultivars of Lavandula. In: Lis-Balchin M (ed) Lavender—the genus Lavandula. Taylor & Francis, London, pp 251–262

    Google Scholar 

  • Lis-Balchin M (ed) (2002b) Lavender—the genus Lavandula. Taylor & Francis, London

    Google Scholar 

  • López-Lázaro M (2009) Distribution and biological activities of the flavonoid luteolin. Mini-Rev Med Chem 9:31–59

    Article  PubMed  Google Scholar 

  • Marrelli M, Loizzo MR, Nicoletti M, Menichini F, Conforti F (2014) In vitro investigation of the potential health benefits of wild Mediterranean dietary plants as anti-obesity agents with a-amylase and pancreatic lipase inhibitory activieties. J Sci Food Agric 94:2217–2224

    Article  PubMed  CAS  Google Scholar 

  • Marrelli M, Argentieri MP, Avato P, Menichini F, Conforti F (2016) Inhibitory effect on lipid absorption and variability of chemical constituents from Capparis sicula subsp. sicula and Capparis orientalis. Chem Biodivers 13:755–761

    Article  PubMed  CAS  Google Scholar 

  • Mezzoug N, Elhadri A, Dallouh A, Amkiss S, Skali NS, Abrini J, Zhiri A, Baudoux D, Diallo B, El Jaziri M, Idaomar M (2007) Investigation of the mutagenic and antimutagenic effects of Origanum compactum essential oil and some of its constituents. Mutat Res 629:100–110

    Article  PubMed  CAS  Google Scholar 

  • Miroddi M, Calapai G, Navarra M, Minciullo PL, Gangemi S (2013) Passiflora incarnata L.: ethnopharmacology, clinical application, safety and evaluation of clinical trials. J Ethnopharmacol 150:791–804

    Article  PubMed  CAS  Google Scholar 

  • Patel SS, Soni H, Mishra K, Singhai AK (2011) Recent updates on the genus Passiflora: a review. Int J Res Phytochem Phramacol 1:1–16

    CAS  Google Scholar 

  • Pullaiah T, Bahadur B, Krishnamurthy KV (2015) Plant biodiversity. In: Bahadur B (ed) Plant biology and biotechnology: plant diversity, organization, function and improvement, vol 1. Springer India, New Delhi, pp 177–195

    Chapter  Google Scholar 

  • Ramanatha Rao V, Hodgkin T (2002) Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tissue Org Cult 68:1–19

    Article  Google Scholar 

  • Rasmussen SK, Avato P (1998) Characterization of chromosomes and genome organization of Thapsia garganica L. by localizations of rRNA genes using fluorescent in situ hybridization. Hereditas 129:231–239

    Article  PubMed  CAS  Google Scholar 

  • Robertson E (2008) Medicinal plants at risk. Nature’s pharmacy, our treasure chest: why we must conserve our natural heritage—native plant conservation campaign report. Center for Biological Diversity, Tucson, US. http://www.biologicaldiversity.org/publications/papers/Medicinal_Plants_042008_lores.pdf. Accessed 21 Jan 2017

  • Shirai Y, Fujita Y, Hashimoto R, Ohi K, Yamamori H, Yasuda Y, Ishima T, Suganuma H, Ushida Y, Takeda M, Hashimoto K (2015) Dietary intake of sulforaphane-rich broccoli sprout extracts during juvenile and adolescence can prevent phencyclidine-induced cognitive deficits and adulthood. PLoS ONE 10(6):1–22

    Article  CAS  Google Scholar 

  • Smitt UW (1995) A chemotaxonomic investigation of Thapsia villosa L., Apiaceae (Umbelliferae). Bot J Lin Soc 119:367–377

    Google Scholar 

  • Smitt UW, Moldt P, Christensen SB (1986) Structure of a pro-1,4-dimethylazulene guaianolide from Thapsia garganica L. Acta Chem Scand Ser B 40:711–714

    Article  Google Scholar 

  • Suntres ZE, Coccimiglio J, Alipour M (2013) The bioactivity and toxicological actions of carvacrol. Crit Rev Food Sci Nutr 55:304–318

    Article  CAS  Google Scholar 

  • Tasiu I (2015) Rethinking Ginkgo biloba L. medicinal uses and conservation. Pharmacogn Rev 9:140–148

    Article  Google Scholar 

  • Trabace L, Avato P, Mazzoccoli M, Siro-Brigiani G (1994) Choleretic activity of Thapsia chem I, II and III in rats: comparison with terpenoids constituents and peppermint oil. Phytother Res 8:305–307

    Article  CAS  Google Scholar 

  • Trabace L, Zotti M, Morgese MG, Tucci P, Colaianna M, Schiavone S, Avato P, Cuomo V (2011) Estrous cycle affects the neurochemical and neurobehavioral profile of carvacrol-treated female rats. Toxicol Appl Pharmacol 255:169–175

    Article  PubMed  CAS  Google Scholar 

  • Upson T (2002) The taxonomy of the genus Lavandula L. In: Lis-Balchin M (ed) Lavender—the genus Lavandula. Lis- Taylor & Francis, London, pp 2–34

    Google Scholar 

  • Upson T, Andrews S, Harriott G (2004) The genus Lavandula. Timber Press, UK

    Google Scholar 

  • Wagner Smitt U, Cornett C, Andersen A, Brøgger Christensen S, Avato P (1990) New proazulene guaianolides from Thapsia villosa. J Nat Prod 53:1479–1484

    Article  Google Scholar 

  • Weitzel C, Røsted N, Spalik K, Toft Simonsen H (2014) Resurrecting deadly carrots: towards a revision of Thapsia (Apiaceae) based on phylogenetic analysis of nrITS sequences and chemical profiles. Bot J Lin Soc 174:620–636

    Article  Google Scholar 

  • Weldegerima B (2009) Review on the importance of documenting ethnopharmacological information on medicinal plants. Afr J Pharm Pharmacol 3:400–403

    Google Scholar 

  • Yu H, Zhang ZL, Chen J, Pei A, Hua F, Qian X, He J, Liu CF, Xu X (2012) Carvacrol, a food-additive, provides neuroprotection on focal cerebral ischemia/reperfusion injury in mice. PLoS ONE 7(3):e33584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zotti M, Colaianna M, Morgese MG, Tucci P, Schiavone S, Avato P, Trabace L (2013) Carvacrol: from ancient flavoring to neuromodulatory agent. Molecules 18:6161–6172

    Article  PubMed  CAS  Google Scholar 

  • Zuccolotto SM, Fagundes C, Reginatto FH, Ramos FA, Castellanos L, Duque C, Schenkel EP (2011) Analysis of C-glycosyl flavonoids from South American Passiflora species by HPLCDAD and HPLC-MS. Phytochem Anal 23:232–239

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinarosa Avato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avato, P., Argentieri, M. Plant biodiversity: phytochemicals and health. Phytochem Rev 17, 645–656 (2018). https://doi.org/10.1007/s11101-018-9549-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-018-9549-1

Keywords