Phytochemistry Reviews

, Volume 17, Issue 3, pp 509–534 | Cite as

Naphthoquinone pigments from sea urchins: chemistry and pharmacology

  • Alexander N. ShikovEmail author
  • Olga N. Pozharitskaya
  • Anna S. Krishtopina
  • Valery G. Makarov


Due to their wide distribution, chemical diversity and scientifically confirmed pharmacological properties, sea urchin pigments have evoked renewed interest as a promising source material for the development of drugs that might be useful in clinical practice for the treatment of various human diseases. This review discusses advances in the chemistry, isolation, stability, and pharmacological and clinically proven activities of naphthoquinone pigments from sea urchins, as well as their safety uses. Recent decades have also witnessed studies concerning the anti-allergic, antidiabetic, antihypertensive, anti-inflammatory, antioxidant, cardioprotective, and hypocholesterolemic potential of pigments. Dimeric pigments are believed to be more active and largely responsible for observed pharmacological effects. The summarized data on observed pharmacological activity, coupled with a low toxicity profile, strongly support the view that naphthoquinone pigments could be potentially used in the development of agents possessing therapeutic benefits.


Anhydroethylidene-trihydroxynaphthazarin Echinochrome Ethylidene-trihydroxynaphthazarin Spinochrome Isolation Stability Effects 


  1. Agafonova IG, Bogdanovich RN, Kolosova NG (2015) Assessment of nephroprotective potential of histochrome during induced arterial hypertension. Bull Exp Biol Med 160(2):223–227CrossRefPubMedGoogle Scholar
  2. Ageenko NV, Kiselev KV, Dmitrenok PS, Odintsova NA (2014) Pigment cell differentiation in sea urchin blastula-derived primary cell cultures. Mar Drugs 12(7):3874–3891CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amarowicz R, Synowiecki J, Shahidi F (1994) Sephadex LH-20 separation of pigments from shells of red sea urchin (Strongylocentrotus franciscanus). Food Chem 51:227–229CrossRefGoogle Scholar
  4. Amarowicz R, Synowiecki J, Shahidi F (2012) Chemical composition of shells from red (Strongylocentrotus franciscanus) and green (Strongylocentrotus droebachiensis) sea urchin. Food Chem 133:822–826CrossRefGoogle Scholar
  5. Anderson HA, Mathieson JW, Thomson RH (1969) Distribution of spinochrome pigments in echinoids. Comp Biochem Physiol 28:333–345CrossRefPubMedGoogle Scholar
  6. Anufriev VP, Novikov VL, Maximov OB et al (1998) Synthesis of some hydroxynaphthazarins and their cardioprotective effects under ischemia-reperfusion in vivo. Bioorg Med Chem Lett 8:587–592CrossRefPubMedGoogle Scholar
  7. Asfandiarov NL, Pshenichnyuk SA, Nafikova EP et al (2016) Dissociative electron attachment to some spinochromes: fragment anion formation. Int J Mass Spectrom 412:26–37CrossRefGoogle Scholar
  8. Blunt JW, Munro MH (eds) (2007) Dictionary of marine natural products with CD-ROM. CRC Press, Boca RatonGoogle Scholar
  9. Brasseur L, Hennebert E, Fievez L et al (2017) The roles of spinochromes in four shallow water tropical sea urchins and their potential as bioactive pharmacological agents. Mar Drugs 15(6):179CrossRefPubMedCentralGoogle Scholar
  10. Buimov GA, Maksimov IV, Perchatkin VA et al (2002) Effect of the bioantioxidant histochrome on myocardial injury in reperfusion therapy on patients with myocardial infarction. Ter Arkh 74(8):12–16PubMedGoogle Scholar
  11. Chang CW, Moore RE, Scheuer PJ (1964) The structure of spinochrome M. J Am Chem Soc 86:2959–2961CrossRefGoogle Scholar
  12. Egorov EA, Alekhina VA, Volobueva TM et al (1999) Histochrome, a new antioxidant, in the treatment of ocular disease. Ann Ophthalmol 115:34–35Google Scholar
  13. Gibson AW, Burke RD (1985) The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus. Dev Biol 107:414–419CrossRefPubMedGoogle Scholar
  14. Giga Y, Sutoh K, Ikai A (1985) A new multimeric hemagglutinin from the coelomic fluid of the sea urchin Anthocidaris crassispina. Biochem 24(16):4461–4467CrossRefGoogle Scholar
  15. Glazunov VP, Berdyshev DV, Novikov VL (2014) DFT study of mechanisms of the antioxidant effect of natural polyhydroxy-1, 4-naphthoquinones. Reactions of echinamines A and B, metabolites of sea urchin Scaphechinus mirabilis, with hydroperoxyl radical. Rus Chem Bull 63(9):1993–1999CrossRefGoogle Scholar
  16. Goodwin TW, Srisukh S (1950) A study of the pigments of the sea-urchins, Echinus esculentus L. and Paracentrotus lividus Lamarck. Biochem J 47:69–76CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gough J, Sutherland MD (1964) The structure of spinochrome B. Tetrahedron Lett 5:269–275CrossRefGoogle Scholar
  18. Gough JH, Sutherland MD (1967) Marine pigments. VII. 3-Acetyl-2, 5, 6, 7-tetrahydroxy-1, 4 naphthoquinone, a new spinochrome from Salmacis sphaeroides (Lovén). Austr J Chem 20(8):1693–1697CrossRefGoogle Scholar
  19. Guseva MR, Beslaneyeva MB (2010) Clinical rationale for the efficiency of using the Russian antioxidant agent Histochrome. Ann Ophthalmol 126(3):37–40Google Scholar
  20. Hatate H, Murata H, Hama Y et al (2002) Antioxidative activity of spinochromes extracted from shells of sea urchins. Fish Sci 68:1641–1642CrossRefGoogle Scholar
  21. Hou Y, Shavandi A, Carne A et al (2016) Marine shells: potential opportunities for extraction of functional and health-promoting materials. Crit Rev Environ Sci Technol 46:1047–1116CrossRefGoogle Scholar
  22. Jeong SH, Kim HK, Song IS et al (2014a) Echinochrome A protects mitochondrial function in cardiomyocytes against cardiotoxic drugs. Mar Drugs 12(5):2922–2936CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jeong SH, Kim HK, Song IS et al (2014b) Echinochrome a increases mitochondrial mass and function by modulating mitochondrial biogenesis regulatory genes. Mar Drugs 12(8):46024615CrossRefGoogle Scholar
  24. Kehas AJ, Theoharides KA, Gilbert JJ (2005) Effect of sunlight intensity and albinism on the covering response of the Caribbean sea urchin, Tripneustes ventricosus. Mar Biol 146:1111–1117CrossRefGoogle Scholar
  25. Kim HK, Youm JB, Jeong SH et al (2015) Echinochrome A regulates phosphorylation of phospholamban Ser16 and Thr17 suppressing cardiac SERCA2A Ca2+ reuptake. Pflugers Arch Eur J Physiol 467(10):2151–2163CrossRefGoogle Scholar
  26. Kol’tsova EA, Krasovskaya NP (2009) Quinoid pigments from the sea urchin Toxopneustes pileolus. Chem Nat Compd 45:427–428CrossRefGoogle Scholar
  27. Koltsova EA, Boguslavskaya LV, Maximov OB (1981) On the functions of quinonoid pigments in sea-urchin embryos. Int J Invertebr Reprod 4:17–23CrossRefGoogle Scholar
  28. Kol’tsova EA, Chumak GN, Maksimov OB (1977) Quinoid pigments of echinodermata III. Minor pigments of the sea urchin Strongylocentrotus nudus. Chem Nat Compd 13:174–177CrossRefGoogle Scholar
  29. Kol’tsova EA, Denisenko VA, Maksimov OB (1978) Quinoid pigments of echinodermata V. Pigments of the sea urchin Strongylocentrotus dröebachiensis. Chem Nat Compd 14:371–374CrossRefGoogle Scholar
  30. Kovaleva MA, Ivanova SA, Makarova MN et al (2013) Effect of a complex preparation of sea urchin shells on blood glucose level and oxidative stress parameters in type II diabetes model. Eksp Klin Farmakol 76(8):27–30PubMedGoogle Scholar
  31. Krishtopina AS, Urakova IN, Pozharitskaya ON et al (2017) Optimization of extraction of polyhydroxynaphtoquinone from shell of sea urchins Strongylocentrotus droebachiensis. Pharm Chem J 51:407–410CrossRefGoogle Scholar
  32. Krivoshapko ON, Popov AM, Artiukov AA, Kostetskii E (2011) Particularities of corrective action of polar lipids and bioantioxidants from sea hydrobionts at imbalances of lipid and carbohydrate metabolism. Biomeditsinskaia khimiia 58(2):89–198Google Scholar
  33. Kuwahara R, Hatate H, Yuki T et al (2009) Antioxidant property of polyhydroxylated naphthoquinone pigments from shells of purple sea urchin Anthocidaris crassispina. LWT Food Sci Technol 42:1296–1300CrossRefGoogle Scholar
  34. Kuwahara R, Hatate H, Chikami A et al (2010) Quantitative separation of antioxidant pigments in purple sea urchin shells using a reversed-phase high performance liquid chromatography. LWT Food Sci Technol 43:1185–1190CrossRefGoogle Scholar
  35. Kuzuya H, Ikuta K, Nagatsu T (1973) Inhibition of dopamine-β-hydroxylase by spinochrome A and echinochrome A, naphthoquinone pigments of echinoids. Biochem Pharmacol 22(21):2772–2774CrossRefGoogle Scholar
  36. Lakeev YV, Kosykh VA, Kosenkov EI et al (1992) Effect of natural and synthetic antioxidants (polyhydroxynaphthaquinones) on cholesterol metabolism in cultured rabbit hepatocytes. Bull Exp Biol Med 114(5):1611–1614CrossRefGoogle Scholar
  37. Lebedev AV, Levitskaya EL, Tikhonova EV, Ivanova MV (2001) Antioxidant properties, autooxidation, and mutagenic activity of echinochrome A compared with its etherified derivative. Biochemistry (Moscow) 66:885–893CrossRefGoogle Scholar
  38. Lebedev AV, Ivanova MV, Ruuge EK (2003) How do calcium ions induce free-radical oxidation of hydroxy-1,4-naphthoquinone? Ca2+ stabilizes the naphthosemiquinone anion-radical of echinochrome A. Arch Biochem Biophys 413:191–198CrossRefPubMedGoogle Scholar
  39. Lebedev AV, Ivanova MV, Levitsky DO (2005) Echinochrome, a naturally occurring iron chelator and free radical scavenger in artificial and natural membrane systems. Life Sci 76:863–875CrossRefPubMedGoogle Scholar
  40. Lee SR, Pronto JRD, Sarankhuu BE et al (2014) Acetylcholinesterase inhibitory activity of pigment echinochrome A from sea urchin Scaphechinus mirabilis. Mar Drugs 12(6):35603573CrossRefGoogle Scholar
  41. Lennikov A, Kitaichi N, Noda K et al (2014) Amelioration of endotoxin-induced uveitis treated with the sea urchin pigment echinochrome in rats. Mol Vis 20:171–177PubMedPubMedCentralGoogle Scholar
  42. Li DM, Zhou DY, Zhu BW et al (2013) Extraction, structural characterization and antioxidant activity of polyhydroxylated 1, 4-naphthoquinone pigments from spines of sea urchin Glyptocidaris crenularis and Strongylocentrotus intermedius. Eur Food Res Technol 237:331–339CrossRefGoogle Scholar
  43. Li C, Blencke HM, Haug T, Stensvåg K (2015) Antimicrobial peptides in echinoderm host defense. Dev Comp Immunol 49(1):190–197CrossRefPubMedGoogle Scholar
  44. Liu C, Lin Q, Gao Y et al (2007) Characterization and antitumor activity of a polysaccharide from Strongylocentrotus nudus eggs. Carbohydr Polym 67(3):313–318CrossRefGoogle Scholar
  45. MacMunn CA (1883) Studies in animal chromatology. Proc Birm Philos Soc 3:380–407Google Scholar
  46. Marimuthu K, Gunaselvam P, Rahman MA et al (2015) Antibacterial activity of ovary extract from sea urchin Diadema setosum. Eur Rev Med Pharmacol Sci 19:1895–1899PubMedGoogle Scholar
  47. Mathieson JW, Thomson RH (1971). Naturally occurring quinones. Part XVIII. New spinochromes from Diadema antillarum, Spatangus purpureus, and Temnopleurus toreumaticus. J Chem Soc C Org153–160Google Scholar
  48. Mischenko NP, Fedoreyev SA, Pokhilo ND et al (2005) Echinamines A and B, first aminated hydroxynaphthazarins from the sea urchin Scaphechinus mirabilis. J Nat Prod 68:1390–1393CrossRefPubMedGoogle Scholar
  49. Mishchenko NP, Fedoreev SA, Bagirova VL (2003) Histochrome: a new original domestic drug. Pharm Chem J 37:48–52CrossRefGoogle Scholar
  50. Mishchenko NP, Vasileva EA, Fedoreyev SA (2014) Mirabiquinone, a new unsymmetrical binaphthoquinone from the sea urchin Scaphechinus mirabilis. Tetrahedron Lett 55:59675969CrossRefGoogle Scholar
  51. Mizutani K, Nagatsu T, Asashima M, Kinoshita S (1972) Inhibition of tyrosine hydroxylase by naphthoquinone pigments of echinoids. Biochem Pharma 21:2463–2468CrossRefGoogle Scholar
  52. Mohamed AS, Soliman AM, Marie MAS (2016) Mechanisms of echinochrome potency in modulating diabetic complications in liver. Life Sci 151:41–49CrossRefPubMedGoogle Scholar
  53. Moore RE, Singh H, Scheuer PJ (1966) Isolation of eleven new spinochromes from echinoids of the genus Echinothrix. J Org Chem 31:3645–3660CrossRefGoogle Scholar
  54. Moore RE, Singh H, Scheuer PJ (1968) A pyranonaphthazarin pigment from the sea urchin Echinothrix diadema. Tetrahedron Lett 9:4581–4583CrossRefGoogle Scholar
  55. Ollinger K, Brunmark A (1991) Effect of hydroxy substituent position on 1, 4-naphthoquinone toxicity to rat hepatocytes. J Biol Chem 266(32):21496–21503PubMedGoogle Scholar
  56. Pelageev DN, Anufriev VP (2016) Synthesis of mirabiquinone A: a biquinone from the sea urchin Scaphechinus mirabilis and related compounds. Synthesis 48:761–764CrossRefGoogle Scholar
  57. Pereira DM, Valentão P, Andrade PB (2014) Marine natural pigments: chemistry, distribution and analysis. Dyes Pigm 111:124–134CrossRefGoogle Scholar
  58. Powell C, Hughes AD, Kelly MS et al (2014) Extraction and identification of antioxidant polyhydroxynaphthoquinone pigments from the sea urchin, Psammechinus miliaris. LWT Food Sci Technol 59:455–460CrossRefGoogle Scholar
  59. Pozharitskaya ON, Ivanova SA, Shikov AN, Makarov VG (2013a) Evaluation of free radicalscavenging activity of sea urchin pigments using HPTLC with post-chromatographic derivatization. Chromatographia 76:1353–1358CrossRefGoogle Scholar
  60. Pozharitskaya ON, Shikov AN, Makarova MN et al (2013b) Antiallergic effects of pigments isolated from green sea urchin (Strongylocentrotus droebachiensis) shells. Planta Med 79:1698–1704CrossRefPubMedGoogle Scholar
  61. Pozharitskaya ON, Shikov AN, Laakso I et al (2015a) Bioactivity and chemical characterization of gonads of green sea urchin Strongylocentrotus droebachiensis from Barents Sea. J Funct Foods 17:227–234CrossRefGoogle Scholar
  62. Pozharitskaya ON, Shikov AN, Makarova MN et al (2015b) Effects of the standard extract from green sea urchin gonads on metabolic syndrome model. Eksp Klin Farmakol 78(5):13–18Google Scholar
  63. Register of medicinal preparations of Russia RLS (2017) Accessed 2017
  64. Salas-Rojas M, Galvez-Romero G, Anton-Palma B et al (2014) The coelomic fluid of the sea urchin Tripneustes depressus shows antiviral activity against Suid herpesvirus type 1 (SHV-1) and rabies virus (RV). Fish Shellfish Immunol 36(1):158–163CrossRefPubMedGoogle Scholar
  65. Seo DY, McGregor RA, Noh SJ et al (2015) Echinochrome A improves exercise capacity during short-term endurance training in rats. Mar Drugs 13(9):5722–5731CrossRefPubMedPubMedCentralGoogle Scholar
  66. Service M, Wardlaw AC (1984) Echinochrome-A as a bactericidal substance in the coelomic fluid of Echinus esculentus (L.). Comp Biochem Physiol Part B Comp Biochem 79(2):161–165CrossRefGoogle Scholar
  67. Shang XH, Liu XY, Zhang JP et al (2014) Traditional Chinese medicine—sea urchin. Mini Rev Med Chem 14(6):537–542CrossRefPubMedGoogle Scholar
  68. Shikov AN, Ossipov VI, Martiskainen O et al (2011) The offline combination of thin-layer chromatography and high-performance liquid chromatography with diode array detection and micrOTOF-Q mass spectrometry for the separation and identification of spinochromes from sea urchin (Strongylocentrotus droebachiensis) shells. J Chromatogr A 1218:9111–9114CrossRefPubMedGoogle Scholar
  69. Shikov AN, Ossipov VI, Karonen M et al (2017) Comparative stability of dimeric and monomeric pigments extracted from sea urchin Strongylocentrotus droebachiensis. Nat Prod Res 31(15):1747–1751CrossRefPubMedGoogle Scholar
  70. Shvilkin AV, Serebriakov LI, Tskitishvili OV et al (1991) Effect of echinochrom on experimental myocardial reperfusion injury. Kardiologiia 31(11):79–81PubMedGoogle Scholar
  71. Singh H, Moore RE, Scheuer PJ (1967) The distribution of quinone pigments in echinoderms. Experientia 23(8):624–626CrossRefPubMedGoogle Scholar
  72. Soleimani S, Yousefzadi M, Rezadoost H, Bioki NA (2016) Identification and antioxidant of polyhydroxylated naphthoquinone pigments from sea urchin pigments of Echinometra mathaei. Med Chem Res 25(7):1476–1483CrossRefGoogle Scholar
  73. Soliman AM, Mohamed AS, Marie MAS (2016) Effect of echinochrome on body weight, musculoskeletal system and lipid profile of male diabetic rats. Austin J Endocrinol Diabetes 3(2):ID1045Google Scholar
  74. Stekhova SI, Shentsova EB, Kol’tsova EB, Kulesh NI (1988) Antimicrobial activity of polyhydroxynaphthoquinones from sea urchins. Antibiot Khimioter 33(11):831833Google Scholar
  75. Stevens M, Ruxton GD (2011) Linking the evolution and form of warning coloration in nature. Proc R Soc B Biol Sci 279:417–426CrossRefGoogle Scholar
  76. Talalaeva OS, Mishchenko NP, Bryukhanov VM et al (2012) The influence of histochrome on exudative and proliferative phases of the experimental inflammation. Bull Sib Branch RAMS 32(4):28–31Google Scholar
  77. Talalaeva OS, Mishchenko NP, Briukhanov VM et al (2013) Identification of histochrome metabolism products in urine for studying drug pharmacokinetics. Eksperimental’naia i klinicheskaia farmakologiia 77(4):29–32Google Scholar
  78. Talcott RE, Smith MT, Giannini DD (1985) Inhibition of microsomal lipid peroxidation by naphthoquinones: structure–activity relationships and possible mechanisms of action. Arch Biochem Biophys 241(1):88–94CrossRefPubMedGoogle Scholar
  79. Tedeeva NS, Melnikov VY, Dogadova LP (2014) Using of histochrom in ophthalmology. Pac Med J 4:17–20Google Scholar
  80. Thomson RH (1971) Naturally occurring quinones, 2nd edn. Academic Press, London and New YorkGoogle Scholar
  81. Tsibulskiy AV, Artyukov AA, Popov AM, Krivoshapko ON (2012) Estimation of toxicity manifestations in organ, hematological and biochemical indicators at exposure to high doses of echinochrome-1,4 naphtoquinone preparation extracted from sea urchins Scaphechinus mirabilis. Toxicol Rev 5(116):18–22Google Scholar
  82. Tsybulsky AV, Popov AM, Artiukhov AA et al (2013) The effects of preparation”Histochrome” in biochemical parameters of blood for patients with cardiopathologies. Biomeditsinskaia khimiia 60(1):115–124CrossRefGoogle Scholar
  83. Urakova IN, Pozharitskaya ON, Makarov VG (2012) Scavenging effects of hydrolisates obtained from the sea urchins coelomic fluid. Rev Clin Pharmacol Med Therapy 10(2):111–112CrossRefGoogle Scholar
  84. Utkina NK, Shchedrin AP, Maksimov OB (1976) A new binaphthoquinone from Strongylocentrotus intermedius. Chem Nat Compd 12:387–389CrossRefGoogle Scholar
  85. Vasileva EA, Mishchenko NP, Zadorozhny PA, Fedoreyev SA (2016) New aminonaphthoquinone from the sea urchins Strongylocentrotus pallidus and Mesocentrotus nudus. Nat Product Commun 11:821–824Google Scholar
  86. Vasileva EA, Mishchenko NP, Fedoreyev SA (2017) Diversity of polyhydroxynaphthoquinone pigments in North Pacific sea urchins. Chem Biodivers 14(9):e1700182CrossRefGoogle Scholar
  87. Wang H, Wang M, Chen J et al (2011) A polysaccharide from Strongylocentrotus nudus eggs protects against myelosuppression and immunosuppression in cyclophosphamide-treated mice. Int Immunopharmacol 11(11):1946–1953CrossRefPubMedGoogle Scholar
  88. Yakubovskaya AY, Pokhilo ND, Mishchenko NP, Anufriev VF (2007) Spinazarin and ethylspinazarin, pigments of the sea urchin Scaphechinus mirabilis. Russ Chem Bull 56:819–822CrossRefGoogle Scholar
  89. Yoshida M (1959) Naphthaquinone pigments in Psammechinus miliaris (Gmelin). J Mar Biol Assoc UK 38(03):455–460CrossRefGoogle Scholar
  90. Zakirova AN, Lebedev AV, Kukharchuk VV et al (1996) The antioxidant histochrome: Its effect on lipid peroxidation and the blood rheological properties in patients with unstable stenocardia. Ter Arkh 68(8):12–14PubMedGoogle Scholar
  91. Zakirova AN, Ivanova MV, Golubiatnikov VB et al (1997) Pharmacokinetics and clinical efficacy of histochrome in patients with acute myocardial infarction. Eksp Klin Farmakol 60(6):21–24PubMedGoogle Scholar
  92. Zhou DY, Qin L, Zhu BW et al (2011) Extraction and antioxidant property of polyhydroxylated naphthoquinone pigments from spines of purple sea urchin Strongylocentrotus nudus. Food Chem 129:1591–1597CrossRefGoogle Scholar
  93. Zhou DY, Zhu BW, Wang XD et al (2012) Stability of polyhydroxylated 1, 4-naphthoquinone pigment recovered from spines of sea urchin Strongylocentrotus nudus. Int J Food Sci Technol 47:1479–1486CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Saint-Petersburg Institute of PharmacyKuzmolovo P 245Russia

Personalised recommendations