Skip to main content

Advertisement

Log in

Moving beyond the ubiquitous: the diversity and biosynthesis of specialty compounds in plant cuticular waxes

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Cuticular waxes coat aerial plant surfaces to protect tissues against biotic and abiotic stress. The waxes are complex mixtures of fatty-acid-derived lipids formed on modular biosynthetic pathways, with varying chain lengths and oxygen functional groups. The waxes of most plant species contain C26–C32 alcohols, aldehydes, alkanes, and fatty acids together with their alkyl esters, and comparisons between diverse wax mixtures have revealed matching chain length distributions between some of these compound classes. Based on such patterns, the biosynthetic pathways leading to the ubiquitous wax constituents were hypothesized early on, and most of these pathway hypotheses have since been confirmed by biochemical and molecular genetic studies in model species. However, the most abundant wax compounds on many species, including many important crop species, contain secondary functional groups and thus their biosynthesis differs at least in part from the ubiquitous wax compounds with which they co-occur. Here, we survey the chemical structures of these species-specific specialty wax compounds based on a comprehensive CAS SciFinder search and then review relevant reports on wax compositions to help develop and refine hypotheses for their biosynthesis. Across the plant kingdom, specialty wax compounds with one, two, and three secondary functional groups have been identified, with most studies focusing on Angiosperms. Where multiple specialty wax compounds were reported, they frequently occurred as homologous series and/or mixtures of isomers. Among these, it is now possible to recognize series of homologs with predominantly odd- or even-numbered chain lengths, and mixtures of isomers with functional groups on adjacent or on alternating carbon atoms. Using these characteristic molecular geometries of the co-occurring specialty compounds, they can be categorized and, based on the common structural patterns, mechanisms of biosynthesis may be predicted. It seems highly likely that mixtures of isomers with secondary functions on adjacent carbons arise from oxidation catalyzed by P450 enzymes, while mixtures of isomers with alternating group positions are formed by malonate condensation reactions mediated by polyketide synthase or ketoacyl-CoA synthase enzymes, or else by the head-to-head condensation of long-chain acyls. Though it is possible that some enzymes leading to ubiquitous compounds also participate in specialty wax compound biosynthesis, comparisons between co-occurring ubiquitous and specialty wax compounds strongly suggest that, at least in some species, dedicated specialty wax compound machinery exists. This seems particularly true for the diverse species in which specialty wax compounds, most notably nonacosan-10-ol, hentriacontan-16-one (palmitone), and very-long-chain β-diketones, accumulate to high concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The presence of a compound in multiple species of the same genus is denoted in the tables with the species abbreviation as “xx”, here for example representing multiple Brassica species as “B.xx”.

Abbreviations

VLC:

Very-long-chain

TCN:

Total carbon number

R:

Head group oxidation state

CoA:

Coenzyme A

ACP:

Acyl carrier protein

KAS:

Ketoacyl-ACP synthase

KAR:

Ketoacyl-ACP reductase

HAD:

Hydroxyacyl-ACP dehydratase

EAR:

Enoyl-ACP reductase

FAE:

Fatty acid elongase

KCS:

Ketoacyl-CoA synthase

KCR:

Ketoacyl-CoA reductase

HCD:

Hydroxyacyl-CoA dehydratase

ECR:

Enoyl-CoA reductase

RED:

Reductase

EST:

Esterase

FAR:

Fatty acyl reductase

AD:

Aldehyde decarbonylase

WS:

Wax ester synthase

FA:

Fatty acid

FAS:

Fatty acid synthase

PKS:

Polyketide synthase

References

  • Abou-Donia AH, Toaima SM, Hammoda HM, Shawky E, Kinoshita E, Takayama H (2008) Phytochemical and biological investigation of Hymenocallis littoralis Salisb. Chem Biodivers 5:332–340

    CAS  PubMed  Google Scholar 

  • Agar G, Adiguzel A, Baris O, Gulluce M, Sahin F (2008) Phenotypic and genetic variation of some Salvia species grown in eastern Anatolia region of Turkey. Asian J Chem 20:3935–3944

    CAS  Google Scholar 

  • Akihisa T, Oinuma H, Tamura T, Kasahara Y, Kumaki K, Yasikawa K, Takido M (1994) Erythro-hentriacontane-6,8-diol and 11 other alkane-6,8-diols from Carthamus tinctorius. Phytochemistry 36:105–108

    CAS  Google Scholar 

  • Akihisa T, Nozaki A, Inoue Y, Yasikawa K, Kasahara Y, Motohashi S, Kumaki K, Tokutake N, Takido M, Tamura T (1997) Alkane diols from flower petals of Carthamus tinctorius. Phytochemistry 45:725–728

    CAS  Google Scholar 

  • Ali M (2012) Tetrahydroisoquinolic acid derivatives from the seeds of Mucuna pruriens. Der Pharm Lett 4:1607–1611

    Google Scholar 

  • Bach L, Michaelson LV, Haslam R, Bellec Y, Gissot L, Marion J, Da Costa M, Boutin J-P, Miquel M, Tellier F, Domergue F, Markham JE, Beaudoin F, Napier JA, Faure J-D (2008) The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad Sci 105:14727–14731

    CAS  PubMed  Google Scholar 

  • Baker EA, Hunt GM (1979) Secondary alcohols from Fragaria leaf waxes. Phytochemistry 18:1059–1060

    CAS  Google Scholar 

  • Barnathan G, Bourgougnon N, Kornprobst J-M (1998) Methoxy fatty acids isolated from the red alga, Schizymenia dubyi. Phytochemistry 47:761–765

    CAS  Google Scholar 

  • Beaudoin F, Wu X, Li F, Haslam RP, Markham JE, Zheng H, Napier JA, Kunst L (2009) Functional characterization of the Arabidopsis β-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase. Plant Physiol 150:1174–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berg VS (1985) Physical, chemical and spectral properties of leaf surfaces of Berberis aquifolium (Pursh.). Plant Cell Environ 8:631–638

    CAS  Google Scholar 

  • Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure J-D, Haslam RP, Napier JA, Lessire R, Joubès J (2012) Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell 24:1–14

    Google Scholar 

  • Blokker P, Schouten S, De Leeuw JW, Sinninghe Damsté JS, van den Ende H (1999) Molecular structure of the resistant biopolymer in zygospore cell walls of Chlamydomonas monoica. Planta 207:539–543

    CAS  Google Scholar 

  • Bohlmann F, Jakupovic J, Schuster A (1983) 8-hydroxypegolettiolide, a sesquiterpene lactone with a new carbon skeleton and further constituents from Pegolettia senegalensis. Phytochemistry 22:1637–1644

    CAS  Google Scholar 

  • Brouwer P, van der Werf A, Schluepmann H, Reichart G-J, Nierop KGJ (2015) Lipid yield and composition of Azolla filiculoides and the implications for biodiesel production. Bioenergy Res 9:369–377

    Google Scholar 

  • Buschhaus C, Herz H, Jetter R (2007) Chemical composition of the epicuticular and intracuticular wax layers on adaxial sides of Rosa canina leaves. Ann Bot 100:1557–1564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buschhaus C, Peng C, Jetter R (2013) Very-long-chain 1,2- and 1,3-bifunctional compounds from the cuticular wax of Cosmos bipinnatus petals. Phytochemistry 91:249–256

    CAS  PubMed  Google Scholar 

  • Busta L, Jetter R (2017) Structure and biosynthesis of branched wax compounds on wild type and wax biosynthesis mutants of Arabidopsis thaliana. Plant Cell Physiol 58:1059–1074

    CAS  PubMed  Google Scholar 

  • Busta L, Budke JM, Jetter R (2016a) Identification of β-hydroxy fatty acid esters and primary, secondary-alkanediol esters in cuticular waxes of the moss Funaria hygrometrica. Phytochemistry 121:38–49

    CAS  PubMed  Google Scholar 

  • Busta L, Hegebarth D, Kroc E, Jetter R (2016b) Changes in cuticular wax coverage and composition on developing Arabidopsis leaves are influenced by wax biosynthesis gene expression levels and trichome density. Planta 245:297–311

    PubMed  Google Scholar 

  • Cervantes D, Eigenbrode SD, Ding H-J, Bosque-Perez N (2002) Oviposition responses by Hessian fly, Mayetiola destructor, to wheats varying in surface waxes. J Chem Ecol 28:193–210

    CAS  PubMed  Google Scholar 

  • Chibnall AC, Piper SH (1934) The metabolism of plant and insect waxes. Biochem J 28:2209–2219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu W, Gao H, Cao S, Fang X, Chen H, Xiao S (2017) Composition and morphology of cuticular wax in blueberry (Vaccinium spp.) fruits. Food Chem 219:436–442

    CAS  PubMed  Google Scholar 

  • Dhar DN, Munjal RC (1976) Chemical examination of the fruits of Platanus orientalis. Planta Med 29:75–76

    Google Scholar 

  • Dierickx PJ (1973) New β-diketones from Buxus sempervirens. Phytochemistry 12:1498–1499

    CAS  Google Scholar 

  • Eigenbrode SD, Pillai SK (1998) Neonate Plutella xylostella responses to surface wax components of a resistant cabbage (Brassica oleracea). J Chem Ecol 24:1611–1627

    CAS  Google Scholar 

  • Eigenbrode SD, Espelie K, Shelton AM (1991) Behavior of neonate diamondback moth larvae [Plutella xylostella (L.)] on leaves and on extracted leaf waxes of resistant and susceptible cabbages. J Chem Ecol 17:1691–1704

    CAS  PubMed  Google Scholar 

  • Ensikat HJ, Ditsche-Kuru P, Neinhuis C, Barthlott W (2011) Superhydrophobicity in perfection: the outstanding properties of the Lotus leaf. Beilstein J Nanotechnol 2:152–161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans D, Knights A, Ritchie AL (1975) β-diketones in Rhododendron waxes. Phytochemistry 14:2447–2451

    CAS  Google Scholar 

  • Franich RA, Wells LG, Holland PT (1978) Epicuticular wax of Pinus radiata needles. Phytochemistry 17:1617–1623

    CAS  Google Scholar 

  • Franich RA, Gowar AP, Volkman JK (1979) Secondary diols of Pinus radiata needle epicuticular wax. Phytochemistry 18:1563–1564

    CAS  Google Scholar 

  • Franich RA, Goodin SJ, Volkman JK (1985) Alkyl esters from Pinus radiata foliage epicuticular wax. Phytochemsitry 24:2949–2952

    CAS  Google Scholar 

  • Freeman B, Albrigo LG, Biggs RH (1979) Cuticular waxes of developing leaves and fruit of blueberry, Vaccinium ashei Reade cv. Bluegem. J Am Soc Hortic Sci 104:398–403

    Google Scholar 

  • Garg SN, Siddiqui MS, Agarwal SK (1992) New fatty acid esters and hydroxy ketones from fruits of Laurus nobilis. J Nat Prod 55:1315–1319

    CAS  Google Scholar 

  • Gelin F, Volkman JK, de Leeuw JW, Sinninghe Damsté JS (1997) Mid-chain hydroxy long-chain fatty acids in microalgae from the genus Nannochloropsis. Phytochemistry 45:641–646

    CAS  Google Scholar 

  • Gharbo SA, Saleh MRI, Shukry EMA (1962) Phytochemical investigation of Thesium humile Vahl. Planta Med 17:124–125

    Google Scholar 

  • Goodwin SM, Rashotte AM, Rahman M, Feldmann KA, Jenks MA (2005) Wax constituents on the inflorescence stems of double eceriferum mutants in Arabidopsis reveal complex gene interactions. Phytochemistry 66:771–780

    CAS  PubMed  Google Scholar 

  • Goswami A, Shukla YN, Thakur RS (1981) Aliphatic compounds from Hyoscyamus muticus. Phytochemistry 20:1315–1317

    CAS  Google Scholar 

  • Greer S, Wen M, Bird D, Wu X, Samuels L, Kunst L, Jetter R (2007) The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiol 145:653–667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gülz P-G, Müller E, Schmitz K, Marner FJ, Güth S (1992) Chemical composition and surface structures of epicuticular leaf waxes of Ginkgo biloba, Magnolia grandiflora and Liriodendron tulipifera. Z Naturforsch 47c:516–526

    Google Scholar 

  • Gunstone FD, Holliday JA, Scrimgeour CM (1977) The long-chain oxo acids (argemonic acid) in Argemone mexicana seed oil. Chem Phys Lipids 20:331–335

    CAS  Google Scholar 

  • Günthardt-Goerg MS (1986) Epicuticular wax of needles of Pinus cembra, Pinus sylvestris and Picea abies. Eur J For Pathol 16:400–408

    Google Scholar 

  • Guo Y, Busta L, Jetter R (2017) Cuticular wax coverage and composition differ among organs of Taraxacum officinale. Plant Physiol Biochem 115:372–379

    CAS  PubMed  Google Scholar 

  • Gupta MM, Verma RK, Akhila A (1986) Oxo acids and branched fatty acid esters from rhizomes of Costus speciosus. Phytochemistry 25:1899–1902

    CAS  Google Scholar 

  • Hannoufa A, McNevin J, Lemieux B (1993) Epicuticular waxes of eceriferum mutants of Arabidopsis thaliana. Phytochemistry 33:851–855

    CAS  Google Scholar 

  • Heinzen H, Moyna P (1988) Surface waxes from seeds of Hordeum vulgare. Phytochemistry 27:429–431

    CAS  Google Scholar 

  • Hen-Avivi S, Savin O, Racovita RC, Lee WS, Adamski N, Weithorn E, Levi M, Vautrin S, Bergès H, Friedlander G, Alkan N, Uauy C, Kanyuka K, Jetter R, Distelfeld A, Aharoni A (2016) A metabolic gene cluster in the wheat W1 and the barley Cer-cqu loci determines β-diketone biosynthesis and glaucousness. Plant Cell 28:1440–1460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holloway PJ, Brown GA (1977) The ketol constituents of Brassica epicuticular waxes. Chem Phys Lipids 19:1–13

    CAS  Google Scholar 

  • Holloway PJ, Jeffree CE, Baker EA (1976) Structural determination of secondary alcohols from plant epicuticular waxes. Phytochemistry 15:1768–1770

    CAS  Google Scholar 

  • Horvat RJ, Chapman GW Jr, Robertson JA, Meredith FI, Scorza R, Callahan AM, Morgens P (1990) Comparison of the volatile compounds from several commercial peach cultivars. J Agric Food Chem 38:234–237

    CAS  Google Scholar 

  • Howard RW, Baker JE (2003) Cuticular hydrocarbons and wax esters of the ectoparasitoid Habrobracon hebetor: ontogenetic, reproductive, and nutritional effects. Arch Insect Biochem Physiol 53:1–18

    CAS  PubMed  Google Scholar 

  • Idstein H, Herres W, Schreier P (1984) High resolution gas chromatography-mass spectrometry and -fourier transform infrared analysis of Cherimoya (Annona cherimolia, Mill.) Volatiles. J Agric Food Chem 32:383–389

    CAS  Google Scholar 

  • Jackson LL (1971) β-diketone, alcohol and hydrocarbons of barley surface lipids. Phytochemistry 10:487–490

    CAS  Google Scholar 

  • Jetter R (2000) Long-chain alkanediols from Myricaria germanica leaf cuticular waxes. Phytochemistry 55:169–176

    CAS  PubMed  Google Scholar 

  • Jetter R, Riederer M (1995) In vitro reconstitution of epicuticular wax crystals: formation of tubular aggregates by long-chain secondary alkanediols. Bot Acta 108:111–120

    CAS  Google Scholar 

  • Jetter R, Riederer M (1996) Cuticular waxes from the leaves and fruit capsules of eight Papaveraceae species. Can J Bot 430:419–430

    Google Scholar 

  • Jetter R, Riederer M (1999a) Long-chain alkanediols, ketoaldehydes, ketoalcohols and ketoalkyl esters in the cuticular waxes of Osmunda regalis fronds. Phytochemistry 52:907–915

    CAS  Google Scholar 

  • Jetter R, Riederer M (1999b) Homologous long-chain δ-lactones in leaf cuticular waxes of Cerinthe minor. Phytochemistry 50:1359–1364

    CAS  Google Scholar 

  • Jetter R, Riederer M (2000) Composition of cuticular waxes on Osmunda regalis fronds. J Chem Ecol 26:399–412

    CAS  Google Scholar 

  • Jetter R, Riederer M, Seyer A, Mioskowski C (1996) Homologous long-chain alkanediols from Papaver leaf cuticular waxes. Phytochemistry 42:1617–1620

    CAS  Google Scholar 

  • Jetter R, Kunst L, Samuels AL (2006) Composition of plant cuticular waxes. In: Riederer M, Mueller C (eds) Biology of the plant cuticle. Blackwell, Oxford, pp 145–181

    Google Scholar 

  • Jovanović O, Radulović N, Palić R, Zlatković B (2009) Volatiles of Minuartia recurva (All.) Schinz et Thell. subsp. recurva (Caryophyllaceae) from Serbia. J Essent Oil Res 21:429–432

    Google Scholar 

  • Khan Z, Ali M, Bagri P (2010) A new steroidal glycoside and fatty acid esters from the stem bark of Tectona grandis Linn. Nat Prod Res 24:1059–1068

    CAS  PubMed  Google Scholar 

  • Khan SA, Kumar S, Mujeeb M, Maqsood AM (2014) Isolation of aliphatic carbonyl hydrocarbons and in vitro antioxidant activity of Silybum marianum seeds. Int J Interdiscip Multidiscip Stud 1:15–20

    Google Scholar 

  • Koch K, Ensikat H-J (2008) The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 39:759–772

    CAS  PubMed  Google Scholar 

  • Koch K, Dommisse A, Barthlott W (2006) Chemistry and crystal growth of plant wax tubules of Lotus (Nelumbo nucifera) and Nasturtium (Tropaeolum majus) leaves on technical substrates. Cryst Growth Des 6:2571–2578

    CAS  Google Scholar 

  • Kolattukudy PE (1966) Biosynthesis of wax in Brassica oleracea. Relation of fatty acids to wax. Biochemistry 5:2265–2275

    CAS  PubMed  Google Scholar 

  • Kolattukudy PE (1968) Tests whether a head-to-head condensation mechanism occurs in the biosynthesis of n-hentriacontane, the paraffin of spinach and pea leaves. Plant Physiol 43:1466–1470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolattukudy PE (1970) Plant waxes. Lipids 1(5):259

    Google Scholar 

  • Kolattukudy PE, Jaeger RH, Robinson R (1968) Biogenesis of nonacosan-15-one in Brassica oleracea: dual mechanisms in the synthesis of long-chain compounds. Nature 219:1038–1040

    CAS  Google Scholar 

  • Lai C, Kunst L, Jetter R (2007) Composition of alkyl esters in the cuticular wax on inflorescence stems of Arabidopsis thaliana cer mutants. Plant J 50:189–196

    CAS  PubMed  Google Scholar 

  • Laseter JL, Weber DJ, Oro J (1968) Characterization of cabbage leaf lipids: n-alkanes, ketone, and fatty acids. Phytochemistry 7:1005–1008

    CAS  Google Scholar 

  • Li F, Wu X, Lam P, Bird D, Zheng H, Samuels L, Jetter R, Kunst L (2008) Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol 148:97–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liolios CC, Sotiroudis GT, Chinou I (2009) Fatty acids, sterols, phenols and antioxidant activity of Phoenix theophrasti fruits growing in Crete, Greece. Plant Foods Hum Nutr 64:52–61

    CAS  PubMed  Google Scholar 

  • Macey MJK, Barber HN (1970) Chemical genetics of wax formation on leaves of Pisum sativum. Phytochemistry 9:5–12

    CAS  Google Scholar 

  • Mahmood A, Ahmed R, Kosar S (2009) Phytochemical screening and biological activities of the oil components of Prunus domestica Linn. J Saudi Chem Soc 13:273–277

    CAS  Google Scholar 

  • Maier CG-A, Post-Beittenmiller D (1998) Epicuticular wax on leek in vitro developmental stages and seedlings under varied growth conditions. Plant Sci 134:53–67

    Google Scholar 

  • Matsuzaki T, Koiwai A (1988) Antioxidative β-diketones in stigma lipids of tobacco. Agric Biol Chem 52:2341–2342

    CAS  Google Scholar 

  • McNevin JP, Woodward W, Hannoufa A, Feldmann KA, Lemieux B (1993) Isolation and characterization of eceriferum (cer) mutants induced by T-DNA insertions in Arabidopsis thaliana. Genome 36:610–618

    CAS  PubMed  Google Scholar 

  • Mehta BK, Nigam V, Nigam R, Singh A (2011) Gas chromatography mass spectrometry (GC-MS) analysis of the hexane extract of the Syzygium cumini bark. J Med Plants Res 6:4163–4166

    Google Scholar 

  • Meusel I, Neinhuis C, Markstädter C, Barthlott W (2000) Chemical composition and recrystallization of epicuticular waxes: coiled rodlets and tubules. Plant Biol 2:462–470

    CAS  Google Scholar 

  • Mikkelsen JD (1979) Structure and biosynthesis of β-diketones in barley spike epicuticular wax. Carlsberg Res Commun 44:133–147

    CAS  Google Scholar 

  • Millar A, Kunst L (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12:121–131

    CAS  PubMed  Google Scholar 

  • Mladenova K, Stoianova-Ivanova B, Camaggi CM (1977) Phytochemistry 16:269–272

    CAS  Google Scholar 

  • Morant M, Jørgensen K, Schaller H, Pinot F, Møller BL, Werck-Reichhart D, Bak S (2007) CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell 19:1473–1487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muckensturm B, Foechterlen D, Reduron JP, Danton P, Hildenbrand M (1997) Phytochemical and chemotaxonomic studies of Foeniculum vulgare. Biochem Syst Ecol 25:353–358

    CAS  Google Scholar 

  • Nagalakshmi MAH, Murthy KSR (2015) Phytochemical profile of crude seed oil of Wrightia tinctoria R. BR. and Wrightia arborea (DENNST.) MABB. by GC-MS. Int J Pharm Sci Rev Res 31:46–51

    CAS  Google Scholar 

  • Naz I, Khan MR (2013) Nematicidal activity of nonacosane-10-ol and 23α-homostigmast-5-en-3β-ol isolated from the roots of Fumaria parviflora (Fumariaceae). J Agric Food Chem 61:5689–5695

    CAS  PubMed  Google Scholar 

  • Neinhuis C, Jetter R (1995) Epicuticular wax of Polytrichales sporophytes. J Bryol 18:399–406

    Google Scholar 

  • Netting AG, Macey MJK (1971) The composition of ketones and secondary alcohols from Brassica oleracea waxes. Phytochemistry 10:1917–1920

    CAS  Google Scholar 

  • Nikolić B, Tešević V, Ðorđević I, Todosijević M, Jadranin M, Bojović S, Marin PD (2013) Variability of n-alkanes and nonacosan-10-ol in natural populations of Picea omorika. Chem Biodivers 10:473–483

    PubMed  Google Scholar 

  • Nirmal SA, Kolhe NM, Pal SC, Mandal S (2008) Nonpolar compounds from Canna indica rhizomes. Facta Univ Ser Phys Chem Technol 6:141–144

    CAS  Google Scholar 

  • Osawa T, Namiki M (1988) Natural antioxidants isolated from Eucalyptus leaf waxes. J Agric Food Chem 36:673–676

    Google Scholar 

  • Percy KE, Manninen S, Häberle K-H, Heerdt C, Werner H, Henderson GW, Matyssek R (2009) Effect of 3 years’ free-air exposure to elevated ozone on mature Norway spruce (Picea abies (L.) Karst.) needle epicuticular wax physicochemical characteristics. Environ Pollut 157:1657–1665

    CAS  PubMed  Google Scholar 

  • Pereira SI, Freire CSR, Neto CP, Silvestre AJD, Silva AMS (2005) Chemical composition of the epicuticular wax from the fruits of Eucalyptus globulus. Phytochem Anal 369:364–369

    Google Scholar 

  • Peschel S, Franke R, Schreiber L, Knoche M (2007) Composition of the cuticle of developing sweet cherry fruit. Phytochemistry 68:1017–1025

    CAS  PubMed  Google Scholar 

  • Pino JA, Marbot R, Aguero J (2002) Volatile components of geneps (Melicocca bijuga L.) fruit. J Essent Oil Res 14:247–248

    CAS  Google Scholar 

  • Piovetti L, Yani A, Combaut T, Diara A (1981) Waxes of Cupressus dupreziana and Cupressus sempervirens. Phytochemistry 20:1135–1136

    CAS  Google Scholar 

  • Racovita RC, Jetter R (2016a) Identification of In-Chain-Functionalized Compounds and Methyl-Branched Alkanes in Cuticular Waxes of Triticum aestivum cv. Bethlehem. PLoS One 11(11):e0165827

    PubMed  PubMed Central  Google Scholar 

  • Racovita RC, Jetter R (2016b) Identification of Polyketides in the Cuticular Waxes of Triticum aestivum cv. Bethlehem. Lipids 51:1–25

    Google Scholar 

  • Racovita RC, Peng C, Awakawa T, Abe I, Jetter R (2014) Very-long-chain 3-hydroxy fatty acids, 3-hydroxy fatty acid methyl esters and 2-alkanols from cuticular waxes of Aloe arborescens leaves. Phytochemistry 113:183–194

    PubMed  Google Scholar 

  • Racovita RC, Hen-Avivi S, Fernandez-Moreno J-P, Granell A, Aharoni A, Jetter R (2016) Composition of cuticular waxes coating flag leaf blades and peduncles of Triticum aestivum cv. Bethlehem. Phytochemistry 130:182–192

    CAS  PubMed  Google Scholar 

  • Rashotte AM, Jenks MA, Nguyen TD, Feldmann KA (1997) Epicuticular wax variation in ecotypes of Arabidopsis thaliana. Phytochemistry 45:251–255

    CAS  PubMed  Google Scholar 

  • Reis MG, de Faria AD, Dos Santos IA, Amaral Maria do Carmo E, Marsaioli AJ (2007) Byrsonic acid—the clue to floral mimicry involving oil-producing flowers and oil-collecting bees. J Chem Ecol 33:1421–1429

    CAS  PubMed  Google Scholar 

  • Rhee Y, Hlousek-Radojcic A, Ponsamuel J, Liu D, Post-Beittenmiller D (1998) Epicuticular wax accumulation and fatty acid elongation activities are induced during leaf development of leeks. Plant Physiol 116:901–911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rottler A-M, Schulz S, Ayasse M (2013) Wax lipids signal nest identity in bumblebee colonies. J Chem Ecol 39:67–75

    CAS  PubMed  Google Scholar 

  • Rowland O, Zheng H, Hepworth SR, Lam P, Jetter R, Kunst L (2006) CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol 142:866–877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid HH, Band PC (1971) Naturally occurring long-chain β-hydroxyketones. J Lipid Res 12:198–202

    CAS  PubMed  Google Scholar 

  • Schneider LM, Adamski NM, Christensen CE, Stuart DB, Vautrin S, Hansson M, Uauy C, Wettstein-knowles P Von (2016) The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes. J Exp Bot 67:2715–2730

    CAS  PubMed Central  Google Scholar 

  • Schulz S, Arsene C, Tauber M, McNeil JN (2000) Composition of lipids from sunflower pollen (Helianthus annuus). Phytochemistry 54:325–336

    CAS  PubMed  Google Scholar 

  • Seipold L, Gerlach G, Wessjohann L (2004) A new type of floral oil from Malpighia coccigera (Malpighiaceae) and chemical considerations on the evolution of oil flowers. Chem Biodivers 1:1519–1528

    CAS  PubMed  Google Scholar 

  • Shanker KS, Kanjilal S, Rao BVSK, Kishore KH, Misra S, Prasad RBN (2007) Isolation and antimicrobial evaluation of isomeric hydroxy ketones in leaf cuticular waxes of Annona squamosa. Phytochem Anal 18:7–12

    CAS  PubMed  Google Scholar 

  • Shepherd T, Robertson GW, Griffiths DW, Bircht ANE, Duncan G (1995) Effects of environment on the composition of epicuticular wax from kale and swede. Phytochemistry 40:407–417

    CAS  Google Scholar 

  • Shukla Y, Thakur R (1984) Aliphatic constituents from Dubozsia myoporoides. Phytochemistry 23:799–801

    CAS  Google Scholar 

  • Siddiqui AA, Wani SM, Rajesh R, Alagarsamy V (2005) Isolation and hypotensive activity of five new phytoconstituents from chloroform extract of flowers of Hibiscus rosasinensis Linn. Indian J Chem 44:806–811

    Google Scholar 

  • Singh RS, Pandey HS (2006) Two new long chain compounds from Bauhinia variegata Linn. Indian J Chem 45B:2151–2153

    CAS  Google Scholar 

  • Singh N, Verma M (2005) Two new lipid constituents of Nigella sativa (Seeds). Indian J Chem 44:1742–1744

    Google Scholar 

  • Singh BN, Pandit V, Verma M, Mehta BK (2002) GC- MS study of Nigella sativa (seeds) fatty oil. Grasas Aceites 53(2):173–174

    CAS  Google Scholar 

  • Speelman EN, Reichart GJ, de Leeuw JW, Rijpstra WIC, Sinninghe Damsté JS (2009) Biomarker lipids of the freshwater fern Azolla and its fossil counterpart from the Eocene Arctic Ocean. Org Geochem 40:628–637

    CAS  Google Scholar 

  • Steinbauer MJ, Schiestl FP, Davies NW (2004) Monoterpenes and epicuticular waxes help female autumn gum moth differentiate between waxy and glossy Eucalyptus and leaves of different ages. J Chem Ecol 30:1117–1142

    CAS  PubMed  Google Scholar 

  • Steinbauer MJ, Davies NW, Gaertner C, Derridj S (2009) Epicuticular waxes and plant primary metabolites on the surfaces of juvenile Eucalyptus globulus and E. nitens (Myrtaceae) leaves. Aust J Bot 57:474–485

    CAS  Google Scholar 

  • Stevens PF (2001) Angiosperm Phylogeny Website. Version 12, July 2012

  • Stoianova-Ivanova B, Mladenova K, Popow S (1971) The composition and structure of ketones from rose bud and rose flower waxes. Phytochemistry 10:1391–1393

    CAS  Google Scholar 

  • Sumathykutty MA, Rao JM (1991) 8-hentriacontanol and other constituents from Piper attenuatum. Phytochemistry 30:13–14

    Google Scholar 

  • Szafranek BM, Synak EE (2006) Cuticular waxes from potato (Solanum tuberosum) leaves. Phytochemistry 67:80–90

    CAS  PubMed  Google Scholar 

  • Tulloch AP (1971) Diesters of diols in wheat leaf wax. Lipids 6:641–644

    CAS  Google Scholar 

  • Tulloch AP (1976a) Epicuticular wax of Agropyron smithii leaves. Phytochemistry 15:1153–1156

    CAS  Google Scholar 

  • Tulloch AP (1976b) Epicuticular wax of Agropyron intermedium. Phytochemistry 15:1153–1156

    CAS  Google Scholar 

  • Tulloch AP (1982) Epicuticular wax of Eragrostis curvula. Phytochemistry 21:661–664

    CAS  Google Scholar 

  • Tulloch AP (1983) Epicuticular waxes from Agropyron dasystachyum, Agropyron riparium and Agropyron elongatum. Phytochemistry 22:1605–1613

    CAS  Google Scholar 

  • Tulloch AP, Bergter L (1981) Epicuticular wax of Juniperus scopulorum. Phytochemistry 20:2711–2716

    CAS  Google Scholar 

  • Tulloch AP, Hoffman LL (1971) Leaf wax of durum wheat. Phytochemistry 10:871–876

    CAS  Google Scholar 

  • Tulloch AP, Hoffman LL (1974) Epicuticular waxes of Secale cereale and Triticale hexaploide leaves. Phytochemistry 13:2535–2540

    CAS  Google Scholar 

  • Tulloch AP, Hoffman LL (1975) Hydroxy β-diketone from leaf wax of Festuca ovina. Phytochemistry 14(5):1463

    CAS  Google Scholar 

  • Tulloch AP, Hoffman LL (1977) Composition of epicuticular waxes of some grasses. Can J Bot 55:853–857

    CAS  Google Scholar 

  • Tulloch AP, Hoffman LL (1979) Epicuticular waxes of Andropogon hallii and A. scoparius. Phytochemistry 18:267–271

    CAS  Google Scholar 

  • Tulloch A, Hoffman L (1980) Epicuticular wax of Panicum virgatum. Phytochemistry 19:837–839

    CAS  Google Scholar 

  • Tulloch AP, Weenink RO (1969) Composition of the leaf wax of Little Club wheat. Can J Chem 47:3119–3126

    CAS  Google Scholar 

  • Ukiya M, Akihisa T, Tokuda H, Koike K, Takayasu J, Okuda H, Kimura Y, Nikaido T, Nishino H (2003) Isolation, structural elucidation, and inhibitory effects of terpenoid and lipid constituents from sunflower pollen on Epstein-Barr virus early antigen induced by tumor promoter, TPA. J Agric Food Chem 51:2949–2957

    CAS  PubMed  Google Scholar 

  • Ulubelen A (1970) Constituents of the leaves and the stems of Clematis vitalba. Phytochemistry 9:233–234

    CAS  Google Scholar 

  • Ulubelen A, Baytop T (1973) Hydrocarbons and triterpenes of the leaves of Euonymus latifolius. Phytochemistry 12:1824

    CAS  Google Scholar 

  • Verardo G, Pagani E, Geatti P, Martinuzzi P (2003) A thorough study of the surface wax of apple fruits. Anal Bioanal Chem 376:659–667

    CAS  PubMed  Google Scholar 

  • Verma RK, Gupta MM (1988) Lipid constituents of Tridax procumbens. Phytochemistry 27:459–463

    CAS  Google Scholar 

  • Vermeer CP, Nastold P, Jetter R (2003) Homologous very-long-chain 1,3-alkanediols and 3-hydroxyaldehydes in leaf cuticular waxes of Ricinus communis L. Phytochemistry 62:433–438

    CAS  PubMed  Google Scholar 

  • Villaverde JJ, Domingues RMA, Freire CSR, Silvestre AJD, Neto CP, Ligero P, Vega A (2009) Miscanthus x giganteus extractives: a source of valuable phenolic compounds and sterols. J Agric Food Chem 57:3626–3631

    CAS  PubMed  Google Scholar 

  • Volkman JK, Barrett SM, Dunstan GA, Jeffrey SW (1992) C30-C32 alkyl diols and unsaturated alcohols in microalgae of the class Eustigmatophyceae. Org Geochem 18:131–138

    CAS  Google Scholar 

  • von Wettstein-Knowles P (1995) Biosynthesis and genetics of waxes. In: Hamilton RJ (ed) Waxes: chemistry, molecular biology and functions. The Oily Press, Dundee, pp 91–129

    Google Scholar 

  • Wen M, Jetter R (2007) Very-long-chain hydroxyaldehydes from the cuticular wax of Taxus baccata needles. Phytochemistry 68:2563–2569

    CAS  PubMed  Google Scholar 

  • Wen M, Jetter R (2009) Composition of secondary alcohols, ketones, alkanediols, and ketols in Arabidopsis thaliana cuticular waxes. J Exp Bot 60:1811–1821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen M, Au J, Gniwotta F, Jetter R (2006a) Very-long-chain secondary alcohols and alkanediols in cuticular waxes of Pisum sativum leaves. Phytochemistry 67:2494–2502

    CAS  PubMed  Google Scholar 

  • Wen M, Buschhaus C, Jetter R (2006b) Nanotubules on plant surfaces: chemical composition of epicuticular wax crystals on needles of Taxus baccata L. Phytochemistry 67:1808–1817

    CAS  PubMed  Google Scholar 

  • Yang X, Dai X, Guo H, Geng S, Wang G (2013) Petrodiesel-like straight chain alkane and fatty alcohol production by the microalga Chlorella sorokiniana. Bioresour Technol 136:126–130

    CAS  PubMed  Google Scholar 

  • Yeats TH, Rose JKC (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yildizhan S, van Loon J, Sramkova A, Ayasse M, Arsene C, ten Broeke C, Schulz S (2009) Aphrodisiac pheromones from the wings of the small cabbage white and large cabbage white butterflies, Pieris rapae and Pieris brassicae. ChemBioChem 10:1666–1677

    CAS  PubMed  Google Scholar 

  • Yu G, Nguyen TTH, Guo Y, Schauvinhold I, Auldridge ME, Bhuiyan N, Ben-Israel I, Iijima Y, Fridman E, Noel JP, Pichersky E (2010) Enzymatic functions of wild tomato methylketone synthases 1 and 2. Plant Physiol 154:67–77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Rowland O, Kunst L (2005) Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17:1467–1481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y-B, Ye R-R, Lu X-F, Lin P-C, Yang S-B, Yue P-P, Zhang C-X, Peng M (2009) GC–MS analysis of liposoluble constituents from the stems of Cynomorium songaricum. J Pharm Biomed Anal 49:1097–1100

    CAS  PubMed  Google Scholar 

  • Zhou G, Yao X, Tang Y, Yang N, Pang H, Mo X, Zhu S, Su S, Qian D, Jin C, Qin Y, Duan J (2012) Two new nonacosanetriols from Ginkgo biloba sarcotesta. Chem Phys Lipids 165:731–736

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank S. Hessam M. Mehr for expertise in preliminary data analysis using d3.js libraries that made great contributions to the development of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Jetter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busta, L., Jetter, R. Moving beyond the ubiquitous: the diversity and biosynthesis of specialty compounds in plant cuticular waxes. Phytochem Rev 17, 1275–1304 (2018). https://doi.org/10.1007/s11101-017-9542-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-017-9542-0

Keywords

Navigation