BacHBerry: BACterial Hosts for production of Bioactive phenolics from bERRY fruits

Abstract

BACterial Hosts for production of Bioactive phenolics from bERRY fruits (BacHBerry) was a 3-year project funded by the Seventh Framework Programme (FP7) of the European Union that ran between November 2013 and October 2016. The overall aim of the project was to establish a sustainable and economically-feasible strategy for the production of novel high-value phenolic compounds isolated from berry fruits using bacterial platforms. The project aimed at covering all stages of the discovery and pre-commercialization process, including berry collection, screening and characterization of their bioactive components, identification and functional characterization of the corresponding biosynthetic pathways, and construction of Gram-positive bacterial cell factories producing phenolic compounds. Further activities included optimization of polyphenol extraction methods from bacterial cultures, scale-up of production by fermentation up to pilot scale, as well as societal and economic analyses of the processes. This review article summarizes some of the key findings obtained throughout the duration of the project.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Notes

  1. 1.

    See: https://itunes.apple.com/us/app/berrymaker-dna-soda-factory/id1163115116?ls=1&mt=8.

  2. 2.

    See: https://play.google.com/store/apps/details?id=com.biofaction.berrymaker.

Abbreviations

4CL:

4-coumaryl-CoA ligase

AD:

Alzheimer’s disease

ANS:

Anthocyanidin synthase

ALS:

Amyotrophic lateral sclerosis; anthocyanidin synthase

ANR:

Anthocyanidin reductase

C3′H:

p-coumaroyl shikimate/quinate 3′-hydroxylase

C4H:

Cinnamate 4-hydroxylase

CBD:

Convention on biological diversity

CaN:

Calcineurin

CDRE:

Calcineurin-dependent responsive element

CHI:

Chalcone isomerase

CHR:

Chalcone reductase

CHS:

Chalcone synthase

CPR:

Cytochrome-P450 reductase

CVs:

Column volumes

CYP:

Cytochromes P450

DFR:

Dihydroflavonol 4-reductase

F3H:

Flavanone 3-hydroxylase

F3′H:

Flavonoid 3′-hydroxylase

F3′5′H:

Flavonoid 3′-5′-hydroxylase

FLS:

Flavonol synthase

FNS:

Flavone synthase

FP7:

European Commission’s the Seventh Framework programme

GFP:

Green fluorescent protein

GRAS:

Generally regarded as safe

HCT:

Hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase

HD:

Huntington’s disease

HPLC:

High-performance liquid chromatography

LAR:

Leucoanthocyanidin reductase

LC-MS:

Liquid-chromatography mass-spectrometry

NDs:

Neurodegenerative diseases

NFAT:

Nuclear Factor of Activated T-cells

NFκB:

Nuclear Factor κB

NP-ABS:

The Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization

OMT:

O-methyltransferase

PAL:

Phenylalanine ammonia-lyase

PCA:

Principal component analysis

PD:

Parkinson’s disease

PLS:

Partial least squares

RNA-seq:

RNA sequencing technology

STS:

Stilbene synthase

SVR:

Support vector regression

TAL:

Tyrosine ammonia-lyase

UFGT:

Flavonoid 3-O-glucosyltransferase

References

  1. Andrade R, Wannagat M, Klein CC et al (2016) Enumeration of minimal stoichiometric precursor sets in metabolic networks. Algorithms Mol Biol 11:25. doi:10.1186/s13015-016-0087-3

    PubMed  PubMed Central  Article  Google Scholar 

  2. Aranaz I, Acosta N, Mengíbar MN et al (2016) InFiQuS: making the best of leftovers. In: de María PD (ed) Industrial biorenewables: a practical viewpoint. Wiley, Hoboken, pp 363–364

    Google Scholar 

  3. Bak S, Olsen CE, Halkier BA, Møller BL (2000) Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in Dhurrin biosynthesis. Plant Physiol 123:1437–1448. doi:10.1104/pp.123.4.1437

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Becker J, Wittmann C (2012) Bio-based production of chemicals, materials and fuels—Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 23:631–640. doi:10.1016/j.copbio.2011.11.012

    CAS  PubMed  Article  Google Scholar 

  5. Becker J, Armstrong G, Vandermerwe M et al (2003) Metabolic engineering of for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res 4:79–85. doi:10.1016/S1567-1356(03)00157-0

    CAS  PubMed  Article  Google Scholar 

  6. Beekwilder J, Wolswinkel R, Jonker H et al (2006) Production of resveratrol in recombinant microorganisms. Appl Environ Microbiol 72:5670–5672. doi:10.1128/AEM.00609-06

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Bergdahl B, Sonnenschein N, Machado D et al (2015) Genome-scale models. In: Villadsen J (ed) Fundamental bioengineering. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 143–182

    Google Scholar 

  8. Bhan N, Xu P, Khalidi O, Koffas MAG (2013) Redirecting carbon flux into malonyl-CoA to improve resveratrol titers: proof of concept for genetic interventions predicted by OptForce computational framework. Chem Eng Sci 103:109–114. doi:10.1016/j.ces.2012.10.009

    CAS  Article  Google Scholar 

  9. Bharadwaj P, Martins R, Macreadie I (2010) Yeast as a model for studying Alzheimer’s disease. FEMS Yeast Res 10:961–969. doi:10.1111/j.1567-1364.2010.00658.x

    CAS  PubMed  Article  Google Scholar 

  10. Blomstedt CK, Gleadow RM, O’Donnell N et al (2012) A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Plant Biotechnol J 10:54–66. doi:10.1111/j.1467-7652.2011.00646.x

    PubMed  Article  CAS  Google Scholar 

  11. Bodvard K, Jörhov A, Blomberg A et al (2013) The yeast transcription factor Crz1 is activated by light in a Ca2+/calcineurin-dependent and PKA-independent manner. PLoS ONE 8:e53404. doi:10.1371/journal.pone.0053404

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Borrill P, Ramirez-Gonzalez R, Uauy C (2016) expVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol 170:2172–2186. doi:10.1104/pp.15.01667

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647–657. doi:10.1002/bit.10803

    CAS  PubMed  Article  Google Scholar 

  14. Burkovski A (ed) (2008) Corynebacteria: genomics and molecular biology. Caister Academic Press, Poole

    Google Scholar 

  15. Caldas J, Vinga S, Nordmann A et al (2014) Global meta-analysis of transcriptomics studies. PLoS ONE 9:e89318. doi:10.1371/journal.pone.0089318

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. Camont L, Cottart C-H, Rhayem Y et al (2009) Simple spectrophotometric assessment of the trans-/cis-resveratrol ratio in aqueous solutions. Anal Chim Acta 634:121–128. doi:10.1016/j.aca.2008.12.003

    CAS  PubMed  Article  Google Scholar 

  17. Cao W, Ma W, Zhang B et al (2016) Improved pinocembrin production in Escherichia coli by engineering fatty acid synthesis. J Ind Microbiol Biotechnol 43:557–566. doi:10.1007/s10295-015-1725-3

    CAS  PubMed  Article  Google Scholar 

  18. Carvalho E, Franceschi P, Feller A et al (2013) A targeted metabolomics approach to understand differences in flavonoid biosynthesis in red and yellow raspberries. Plant Physiol Biochem PPB 72:79–86. doi:10.1016/j.plaphy.2013.04.001

    CAS  PubMed  Article  Google Scholar 

  19. Catalgol B, Batirel S, Taga Y, Ozer NK (2012) Resveratrol: French paradox revisited. Front Pharmacol 3:141. doi:10.3389/fphar.2012.00141

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Chaovanalikit A, Thompson MM, Wrolstad RE (2004) Characterization and quantification of anthocyanins and polyphenolics in blue honeysuckle (Lonicera caerulea L.). J Agric Food Chem 52:848–852. doi:10.1021/JF030509O

    CAS  PubMed  Article  Google Scholar 

  21. Chen X, Zhou L, Tian K et al (2013) Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production. Biotechnol Adv 31:1200–1223. doi:10.1016/j.biotechadv.2013.02.009

    CAS  PubMed  Article  Google Scholar 

  22. Choi O, Wu C-Z, Kang SY et al (2011) Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli. J Ind Microbiol Biotechnol 38:1657–1665. doi:10.1007/s10295-011-0954-3

    CAS  PubMed  Article  Google Scholar 

  23. Costa RS, Veríssimo A, Vinga S et al (2014) Ki MoSys: a web-based repository of experimental data for KInetic MOdels of biological SYStems. BMC Syst Biol 8:85. doi:10.1186/s12918-014-0085-3

    PubMed  PubMed Central  Article  Google Scholar 

  24. Costa RS, Hartmann A, Vinga S (2016) Kinetic modeling of cell metabolism for microbial production. J Biotechnol 219:126–141. doi:10.1016/j.jbiotec.2015.12.023

    CAS  PubMed  Article  Google Scholar 

  25. Cox M, Rydberg J (2004) Introduction to solvent extraction. In: Rydberg J, Cox M, Musikas C, Choppin GR (eds) Solvent extraction principles and practice, 2nd edn. Marcel Decker Inc, New York

    Google Scholar 

  26. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta Gen Subj 1830:3670–3695. doi:10.1016/j.bbagen.2013.02.008

    CAS  Article  Google Scholar 

  27. Dobson R, Gray V, Rumbold K (2012) Microbial utilization of crude glycerol for the production of value-added products. J Ind Microbiol Biotechnol 39:217–226. doi:10.1007/s10295-011-1038-0

    CAS  PubMed  Article  Google Scholar 

  28. Duarte K, Rocha-Santos TAP, Freitas AC, Duarte AC (2012) Analytical techniques for discovery of bioactive compounds from marine fungi. TrAC Trends Anal Chem 34:97–110. doi:10.1016/j.trac.2011.10.014

    CAS  Article  Google Scholar 

  29. Dumont FJ (2000) FK506, an immunosuppressant targeting calcineurin function. Curr Med Chem 7:731–748

    CAS  PubMed  Article  Google Scholar 

  30. Duwat P, Sourice S, Cesselin B et al (2001) Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J Bacteriol 183:4509–4516. doi:10.1128/JB.183.15.4509-4516.2001

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Dvora H, Koffas MAG (2013) Microbial production of flavonoids and terpenoids. In: McNeil B, Archer D, Giavasis I, Harvey L (eds) Microbial production of food ingredients, enzymes and nutraceuticals. Woodhead Publishing, Oxford, pp 234–261

    Google Scholar 

  32. Eggeling L, Bott M (eds) (2005) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton

    Google Scholar 

  33. European Parlament (2014) Regulation (EU) no 511/2014 of the European parliament and of the council of 16 April 2014 on compliance measures for users from the Nagoya Protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization in the union. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0511&from=EN. Accessed 07 Sept 2017

  34. Falcone Ferreyra ML, Rius SP, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222. doi:10.3389/fpls.2012.00222

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Fernandes A, Vinga S, Kern A et al (2016) Improving protein expression prediction using extra features and ensemble averaging. PLoS ONE 11:e0150369. doi:10.1371/journal.pone.0150369

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Figueira I, Menezes R, Macedo D, et al. (2017) Polyphenols beyond barriers: a glimpse into the brain. Curr Neuropharmacol. 15:562–594. doi:10.2174/1570159X14666161026151545

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Fredes C, Yousef GG, Robert P et al (2014) Anthocyanin profiling of wild maqui berries (Aristotelia chilensis [Mol.] Stuntz) from different geographical regions in Chile. J Sci Food Agric 94:2639–2648. doi:10.1002/jsfa.6602

    CAS  PubMed  Article  Google Scholar 

  38. Frelet-Barrand A, Boutigny S, Moyet L et al (2010) Lactococcus lactis, an alternative system for functional expression of peripheral and intrinsic arabidopsis membrane proteins. PLoS ONE 5:e8746. doi:10.1371/journal.pone.0008746

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. Funakoshi-Tago M, Nakamura K, Tago K et al (2011) Anti-inflammatory activity of structurally related flavonoids, Apigenin, Luteolin and Fisetin. Int Immunopharmacol 11:1150–1159. doi:10.1016/j.intimp.2011.03.012

    CAS  PubMed  Article  Google Scholar 

  40. Garcia G, Santos CND, Menezes R (2016) High-throughput yeast-based reporter assay to identify compounds with anti-inflammatory potential. Methods Mol Biol 1449:441–452. doi:10.1007/978-1-4939-3756-1_29

    CAS  PubMed  Article  Google Scholar 

  41. Gaspar P, Carvalho AL, Vinga S et al (2013) From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol Adv 31:764–788. doi:10.1016/j.biotechadv.2013.03.011

    CAS  PubMed  Article  Google Scholar 

  42. Ghosh D, Scheepens A (2009) Vascular action of polyphenols. Mol Nutr Food Res 53:322–331. doi:10.1002/mnfr.200800182

    CAS  PubMed  Article  Google Scholar 

  43. Giusti MM, Wrolstad RE (2003) Acylated anthocyanins from edible sources and their applications in food systems. Biochem Eng J 14:217–225. doi:10.1016/S1369-703X(02)00221-8

    CAS  Article  Google Scholar 

  44. Goldberg E (1997) Handbook of downstream processing. Springer, London

    Google Scholar 

  45. Goszcz K, Deakin SJ, Duthie GG et al (2015) Antioxidants in cardiovascular therapy: panacea or false hope? Front Cardiovasc Med 2:29. doi:10.3389/fcvm.2015.00029

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. Grand View Research Inc. (2016) Polyphenols market analysis by product (grape seed, green tea, apple), by application (functional food, functional beverages, dietary supplements) and segment forecasts to 2024. http://www.grandviewresearch.com/industry-analysis/polyphenols-market-analysis. Accessed 07 Sept 2017

  47. Häkkinen SH, Kärenlampi SO, Heinonen IM et al (1999) Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem 47:2274–2279. doi:10.1021/JF9811065

    PubMed  Article  CAS  Google Scholar 

  48. Halvorsen BL, Carlsen MH, Phillips KM et al (2006) Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States. Am J Clin Nutr 84:95–135

    CAS  PubMed  Article  Google Scholar 

  49. Hartmann U, Sagasser M, Mehrtens F et al (2005) Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol 57:155–171. doi:10.1007/s11103-004-6910-0

    CAS  PubMed  Article  Google Scholar 

  50. Hartmann A, Lemos JM, Costa RS et al (2015a) Identification of switched ARX models via convex optimization and expectation maximization. J Process Control 28:9–16. doi:10.1016/j.jprocont.2015.02.003

    CAS  Article  Google Scholar 

  51. Hartmann A, Lemos JM, Vinga S (2015b) Modeling multiple experiments using regularized optimization: a case study on bacterial glucose utilization dynamics. Comput Biol Med 63:301–309. doi:10.1016/j.compbiomed.2014.08.027

    CAS  PubMed  Article  Google Scholar 

  52. Hartmann A, Neves AR, Lemos JM, Vinga S (2016) Identification and automatic segmentation of multiphasic cell growth using a linear hybrid model. Math Biosci 279:83–89. doi:10.1016/j.mbs.2016.06.013

    PubMed  Article  Google Scholar 

  53. Heldt H-W, Piechulla B (2011) Plant biochemistry, 4th edn. Elsevier, London

    Google Scholar 

  54. Hellström JK, Törrönen AR, Mattila PH (2009) Proanthocyanidins in common food products of plant origin. J Agric Food Chem 57:7899–7906. doi:10.1021/jf901434d

    PubMed  Article  CAS  Google Scholar 

  55. Hernández I, Molenaar D, Beekwilder J et al (2007) Expression of plant flavor genes in Lactococcus lactis. Appl Environ Microbiol 73:1544–1552. doi:10.1128/AEM.01870-06

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. Herrmann K, Nagel CW (1989) Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit Rev Food Sci Nutr 28:315–347. doi:10.1080/10408398909527504

    CAS  PubMed  Article  Google Scholar 

  57. Hujanen M, Linko S, Linko Y-Y, Leisola M (2001) Optimisation of media and cultivation conditions for L (+)(S)-lactic acid production by Lactobacillus casei NRRL B-441. Appl Microbiol Biotechnol 56:126–130. doi:10.1007/s002530000501

    CAS  PubMed  Article  Google Scholar 

  58. Jain N, Ramawat KG (2013) Nutraceuticals and antioxidants in prevention of diseases. In: Ramawat KG, Merillon J-M (eds) Natural products. Springer, Berlin, pp 2559–2580

    Google Scholar 

  59. Jash SK, Mondal S (2014) Bioactive flavonoid fisetin—a molecule of pharmacological interest. Signpost Open Access J Org Biomol Chem 2:89–128

    Google Scholar 

  60. Jeandet P, Bessis R, Gautheron B (1991) The production of resveratrol (3,5,4′-trihydroxystilbene) by grape berries in different developmental stages. Am J Enol Vitic 42:41–46

    CAS  Google Scholar 

  61. Jendresen CB, Stahlhut SG, Li M et al (2015) Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae. Appl Environ Microbiol 81:4458–4476. doi:10.1128/AEM.00405-15

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Jojima T, Inui M, Yukawa H (2013) Biorefinery applications of Corynebacterium glutamicum. In: Yukawa H, Inui M (eds) Corynebacterium glutamicum: biology and biotechnology. Springer, Berlin, pp 149–172

    Google Scholar 

  63. Jones JA, Vernacchio VR, Sinkoe AL et al (2016) Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab Eng 35:55–63. doi:10.1016/j.ymben.2016.01.006

    CAS  PubMed  Article  Google Scholar 

  64. Josuttis M, Verrall S, Stewart D et al (2013) Genetic and environmental effects on tannin composition in strawberry (Fragaria × ananassa) cultivars grown in different European locations. J Agric Food Chem 61:790–800. doi:10.1021/jf303725g

    CAS  PubMed  Article  Google Scholar 

  65. Ju S, Tardiff DF, Han H et al (2011) A yeast model of FUS/TLS-dependent cytotoxicity. PLoS Biol 9:e1001052. doi:10.1371/journal.pbio.1001052

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Julien-Laferrière A, Bulteau L, Parrot D et al (2016) A combinatorial algorithm for microbial consortia synthetic design. Sci Rep 6:29182. doi:10.1038/srep29182

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  67. Kallscheuer N, Vogt M, Kappelmann J et al (2016a) Identification of the phd gene cluster responsible for phenylpropanoid utilization in Corynebacterium glutamicum. Appl Microbiol Biotechnol 100:1871–1881. doi:10.1007/s00253-015-7165-1

    CAS  PubMed  Article  Google Scholar 

  68. Kallscheuer N, Vogt M, Marienhagen J (2016b) A novel synthetic pathway enables microbial production of polyphenols independent from the endogenous aromatic amino acid metabolism. ACS Synth Biol. doi:10.1021/acssynbio.6b00291

    PubMed  Article  Google Scholar 

  69. Kallscheuer N, Vogt M, Stenzel A et al (2016c) Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones. Metab Eng 38:47–55. doi:10.1016/j.ymben.2016.06.003

    CAS  PubMed  Article  Google Scholar 

  70. Kallscheuer N, Vogt M, Bott M, Marienhagen J (2017) Functional expression of plant-derived O-methyltransferase, flavanone 3-hydroxylase, and flavonol synthase in Corynebacterium glutamicum for production of pterostilbene, kaempferol, and quercetin. J Biotechnol. doi:10.1016/j.jbiotec.2017.01.006

    Article  PubMed  Google Scholar 

  71. Kårlund A, Moor U, Sandell M, Karjalainen R (2014) The impact of harvesting, storage and processing factors on health-promoting phytochemicals in berries and fruits. Processes 2:596–624. doi:10.3390/pr2030596

    Article  CAS  Google Scholar 

  72. Kasiotis KM, Pratsinis H, Kletsas D, Haroutounian SA (2013) Resveratrol and related stilbenes: their anti-aging and anti-angiogenic properties. Food Chem Toxicol 61:112–120. doi:10.1016/j.fct.2013.03.038

    CAS  PubMed  Article  Google Scholar 

  73. Katz M, Durhuus T, Smits HP, Förster J (2011) Patent: Production of metabolites, no. WO2011147818 (A2). https://worldwide.espacenet.com/publicationDetails/biblio?CC=WO&NR=2011147818A2&KC=A2&FT=D. Accessed 07 Sept 2017

  74. Kim HJ, Chang EJ, Cho SH et al (2002) Antioxidative activity of resveratrol and its derivatives isolated from seeds of Paeonia lactiflora. Biosci Biotechnol Biochem 66:1990–1993. doi:10.1271/bbb.66.1990

    CAS  PubMed  Article  Google Scholar 

  75. Koesnandar A, Nishio N, Nagai S (1990) Stimulation by cysteine on growth of Clostridium thermoaceticum in minimal medium. Appl Microbiol Biotechnol 32:711–714. doi:10.1007/BF00164746

    CAS  Article  Google Scholar 

  76. Kortmann M, Kuhl V, Klaffl S, Bott M (2015) A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level. Microb Biotechnol 8:253–265. doi:10.1111/1751-7915.12236

    CAS  PubMed  Article  Google Scholar 

  77. Kritzer JA, Hamamichi S, McCaffery JM et al (2009) Rapid selection of cyclic peptides that reduce α-synuclein toxicity in yeast and animal models. Nat Chem Biol 5:655–663. doi:10.1038/nchembio.193

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Krobitsch S, Lindquist S (2000) Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc Natl Acad Sci USA 97:1589–1594. doi:10.1073/PNAS.97.4.1589

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Krömer JO, Sorgenfrei O, Klopprogge K et al (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186:1769–1784. doi:10.1128/JB.186.6.1769-1784.2004

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  80. Kuipers OP, Beerthuyzen MM, Siezen RJ et al (1993) Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem 216:281–291. doi:10.1111/j.1432-1033.1993.tb18143.x

    CAS  PubMed  Article  Google Scholar 

  81. Kuipers OP, de Ruyter PGG, Kleerebezem M, de Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21. doi:10.1016/S0168-1656(98)00100-X

    CAS  Article  Google Scholar 

  82. Kula M, Majdan M, Głód D, Krauze-Baranowska M (2016) Phenolic composition of fruits from different cultivars of red and black raspberries grown in Poland. J Food Compos Anal 52:74–82. doi:10.1016/j.jfca.2016.08.003

    CAS  Article  Google Scholar 

  83. Kunji ERS, Chan KW, Slotboom DJ et al (2005) Eukaryotic membrane protein overproduction in Lactococcus lactis. Curr Opin Biotechnol 16:546–551. doi:10.1016/j.copbio.2005.08.006

    CAS  PubMed  Article  Google Scholar 

  84. Kwiatkowski TJ, Bosco DA, LeClerc AL et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208. doi:10.1126/science.1166066

    CAS  PubMed  Article  Google Scholar 

  85. Lahtinen S, Ouwehand AC, Salminen S, von Wright A (eds) (2011) Lactic acid bacteria: microbiological and functional aspects, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  86. Landete JM (2011) Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and health. Food Res Int 44:1150–1160. doi:10.1016/j.foodres.2011.04.027

    CAS  Article  Google Scholar 

  87. Lenihan JR, Tsuruta H, Diola D et al (2008) Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies. Biotechnol Prog 24:1026–1032. doi:10.1002/btpr.27

    CAS  PubMed  Article  Google Scholar 

  88. Li H, Qiu T, Huang G et al (2010) Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb Cell Fact 9:85. doi:10.1186/1475-2859-9-85

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  89. Li X, Sun H, Pei J et al (2012) De novo sequencing and comparative analysis of the blueberry transcriptome to discover putative genes related to antioxidants. Gene 511:54–61. doi:10.1016/j.gene.2012.09.021

    CAS  PubMed  Article  Google Scholar 

  90. Linares DM, Kok J, Poolman B (2010) Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies. J Bacteriol 192:5806–5812. doi:10.1128/JB.00533-10

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. Liu Y-B, Long M-X, Yin Y-J et al (2013) Physiological roles of mycothiol in detoxification and tolerance to multiple poisonous chemicals in Corynebacterium glutamicum. Arch Microbiol 195:419–429. doi:10.1007/s00203-013-0889-3

    CAS  PubMed  Article  Google Scholar 

  92. Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690. doi:10.1126/science.1217412

    CAS  PubMed  Article  Google Scholar 

  93. Luo J, Nishiyama Y, Fuell C et al (2007) Convergent evolution in the BAHD family of acyl transferases: identification and characterization of anthocyanin acyl transferases from Arabidopsis thaliana. Plant J 50:678–695. doi:10.1111/j.1365-313X.2007.03079.x

    CAS  PubMed  Article  Google Scholar 

  94. Määttä KR, Kamal-Eldin A, Törrönen R (2001) Phenolic compounds in berries of black, red, green, and white currants (Ribes sp.). Antioxid Redox Signal 3:981–993. doi:10.1089/152308601317203521

    PubMed  Article  Google Scholar 

  95. Määttä KR, Kamal-Eldin A, Törrönen AR (2003) High-performance liquid chromatography (HPLC) analysis of phenolic compounds in berries with diode array and electrospray ionization mass spectrometric (MS) detection: Ribes species. J Agric Food Chem 51:6736–6744. doi:10.1021/JF0347517

    PubMed  Article  Google Scholar 

  96. MacDonald MJ, D’Cunha GB (2007) A modern view of phenylalanine ammonia lyase. Biochem Cell Biol 85:273–282. doi:10.1139/O07-018

    CAS  PubMed  Article  Google Scholar 

  97. Machado D, Herrgård MJ, Rocha I (2015) Modeling the contribution of allosteric regulation for flux control in the central carbon metabolism of E. coli. Front Bioeng Biotechnol 3:154. doi:10.3389/fbioe.2015.00154

    PubMed  PubMed Central  Article  Google Scholar 

  98. Maeda S, Gasson MJ (1986) Cloning, expression and location of the Streptococcus lactis gene for phospho-β-d-galactosidase. Microbiology 132:331–340. doi:10.1099/00221287-132-2-331

    CAS  Article  Google Scholar 

  99. Maher P (2009) Modulation of multiple pathways involved in the maintenance of neuronal function during aging by fisetin. Genes Nutr 4:297–307. doi:10.1007/s12263-009-0142-5

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. Maher P, Dargusch R, Ehren JL et al (2011) Fisetin lowers methylglyoxal dependent protein glycation and limits the complications of diabetes. PLoS ONE 6:e21226. doi:10.1371/journal.pone.0021226

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. Manganaris GA, Goulas V, Vicente AR, Terry LA (2014) Berry antioxidants: small fruits providing large benefits. J Sci Food Agric 94:825–833. doi:10.1002/jsfa.6432

    CAS  PubMed  Article  Google Scholar 

  102. Marhuenda J, Alemán MD, Gironés-Vilaplana A et al (2016) Phenolic composition, antioxidant activity, and in vitro availability of four different berries. J Chem 2016:1–7. doi:10.1155/2016/5194901

    Article  CAS  Google Scholar 

  103. Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163:166–178. doi:10.1016/j.jbiotec.2012.06.001

    CAS  PubMed  Article  Google Scholar 

  104. Mazur SP, Sønsteby A, Nes A et al (2014) Effects of post-flowering environmental variation along an altitudinal gradient on chemical composition of “Glen Ample” Red Raspberry (Rubus idaeus L.). Eur J Hortic Sci 79:267–277

    Google Scholar 

  105. McDougall G, Martinussen I, Stewart D (2008) Towards fruitful metabolomics: high throughput analyses of polyphenol composition in berries using direct infusion mass spectrometry. J Chromatogr B 871:362–369. doi:10.1016/j.jchromb.2008.06.032

    CAS  Article  Google Scholar 

  106. Menezes R, Tenreiro S, Macedo D et al (2015) From the baker to the bedside: yeast models of Parkinson’s disease. Microb Cell 2:262–279. doi:10.15698/mic2015.08.219

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Miladinović B, Kostić M, Šavikin K et al (2014) Chemical profile and antioxidative and antimicrobial activity of juices and extracts of 4 black currants varieties (Ribes nigrum L.). J Food Sci 79:C301–C309. doi:10.1111/1750-3841.12364

    PubMed  Article  CAS  Google Scholar 

  108. Milivojević J, Maksimović V, Nikolić M et al (2011) Chemical and antioxidant properties of cultivated and wild Fragaria and Rubus berries. J Food Qual 34:1–9. doi:10.1111/j.1745-4557.2010.00360.x

    Article  CAS  Google Scholar 

  109. Miller-Fleming L, Giorgini F, Outeiro TF (2008) Yeast as a model for studying human neurodegenerative disorders. Biotechnol J 3:325–338. doi:10.1002/biot.200700217

    CAS  PubMed  Article  Google Scholar 

  110. Milreu PV, Klein CC, Cottret L et al (2014) Telling metabolic stories to explore metabolomics data: a case study on the yeast response to cadmium exposure. Bioinformatics 30:61–70. doi:10.1093/bioinformatics/btt597

    CAS  PubMed  Article  Google Scholar 

  111. Morgera E, Tsioumani E, Buck M (2014) Unraveling the Nagoya protocol. Brill, Leiden

    Google Scholar 

  112. Moulton GG (2014) Fed-batch fermentation. Woodhead Publishing, Cambridge

    Google Scholar 

  113. Moyer RA, Hummer KE, Finn CE et al (2001) Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: vaccinium, Rubus, and Ribes. J Agric Food Chem 50:519–525. doi:10.1021/JF011062R

    Article  Google Scholar 

  114. Neves AR, Pool WA, Kok J et al (2005) Overview on sugar metabolism and its control in Lactococcus lactis—the input from in vivo NMR. FEMS Microbiol Rev 29:531–554. doi:10.1016/j.fmrre.2005.04.005

    CAS  PubMed  Article  Google Scholar 

  115. NMRO (UK) (2015) The Nagoya protocol on access and benefit sharing of genetic resources: compliance and guidance (ABS). https://www.gov.uk/guidance/abs. Accessed 07 Sept 2017

  116. O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Ann Rev Neurosci 34:185–204. doi:10.1146/annurev-neuro-061010-113613

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  117. Oliveira AP, Nielsen J, Förster J (2005) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol 5:39. doi:10.1186/1471-2180-5-39

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  118. Outeiro TF, Lindquist S (2003) Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 302:1772–1775. doi:10.1126/science.1090439

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. Palmieri N, Forleo MB, Salimei E (2017) Environmental impacts of a dairy cheese chain including whey feeding: an Italian case study. J Clean Prod 140:881–889. doi:10.1016/j.jclepro.2016.06.185

    Article  Google Scholar 

  120. Pan M-G, Xiong Y, Chen F (2013) NFAT gene family in inflammation and cancer. Curr Mol Med 13:543–554

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. Pandey RP, Parajuli P, Koffas MAG, Sohng JK (2016) Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology. Biotechnol Adv 34:634–662. doi:10.1016/j.biotechadv.2016.02.012

    CAS  PubMed  Article  Google Scholar 

  122. Paredes-López O, Cervantes-Ceja ML, Vigna-Pérez M, Hernández-Pérez TT (2010) Berries: improving human health and healthy aging, and promoting quality life—a review. Plant Foods Human Nutr 65:299–308. doi:10.1007/s11130-010-0177-1

    Article  CAS  Google Scholar 

  123. Pátek M, Nešvera J (2013) Promoters and plasmid vectors of Corynebacterium glutamicum. In: Yukawa H, Inui M (eds) Corynebacterium glutamicum: biology and biotechnology, 23rd edn. Springer, Berlin, pp 51–88

    Google Scholar 

  124. Patil K, Rocha I, Förster J et al (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinform 6:308. doi:10.1186/1471-2105-6-308

    Article  CAS  Google Scholar 

  125. Pauli GF, Chen S-N, Friesen JB et al (2012) Analysis and purification of bioactive natural products: the AnaPurNa study. J Nat Prod 75:1243–1255. doi:10.1021/np300066q

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. Pedersen MB, Gaudu P, Lechardeur D et al (2012) Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Ann Rev Food Sci Technol 3:37–58. doi:10.1146/annurev-food-022811-101255

    CAS  Article  Google Scholar 

  127. Pei L, Schmidt M (2016) Sustainable assessment on using bacterial platform to produce high-added-value products from berries through metabolic engineering. In: Singh S (ed) Systems biology application in synthetic biology. Springer, New Delhi, pp 71–78

    Google Scholar 

  128. Pontes DS, de Azevedo MSP, Chatel J-M et al (2011) Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Protein Expr Purif 79:165–175. doi:10.1016/j.pep.2011.06.005

    CAS  PubMed  Article  Google Scholar 

  129. Prescott TAK, Ariño J, Kite GC, Simmonds MSJ (2012) Inhibition of human calcineurin and yeast calcineurin-dependent gene expression by Jasminum humile leaf and root extracts. J Ethnopharmacol 140:293–297. doi:10.1016/j.jep.2012.01.020

    CAS  PubMed  Article  Google Scholar 

  130. Prince K, Smith M (2004) Protein purification protocols. In: Cutler P (ed) Protein purification protocols. Humana Press, Totowa, pp 463–480

    Google Scholar 

  131. Quideau S, Deffieux D, Douat-Casassus C, Pouységu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed 50:586–621. doi:10.1002/anie.201000044

    CAS  Article  Google Scholar 

  132. Rani MU, Appaiah A (2011) Optimization of culture conditions for bacterial cellulose production from Gluconacetobacter hansenii UAC09. Ann Microbiol 61:781–787. doi:10.1007/s13213-011-0196-7

    CAS  Article  Google Scholar 

  133. Rasmussen SE, Frederiksen H, Struntze Krogholm K, Poulsen L (2005) Dietary proanthocyanidins: occurrence, dietary intake, bioavailability, and protection against cardiovascular disease. Mol Nutr Food Res 49:159–174. doi:10.1002/mnfr.200400082

    CAS  PubMed  Article  Google Scholar 

  134. Ratnam BVV, Narasimha Rao M, Damodar Rao M et al (2003) Optimization of fermentation conditions for the production of ethanol from sago starch using response surface methodology. World J Microbiol Biotechnol 19:523–526. doi:10.1023/A:1025174731814

    CAS  Article  Google Scholar 

  135. Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526. doi:10.1016/0140-6736(92)91277-F

    CAS  PubMed  Article  Google Scholar 

  136. Ro D-K, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943. doi:10.1038/nature04640

    CAS  PubMed  Article  Google Scholar 

  137. Ruiz A, Hermosín-Gutiérrez I, Mardones C et al (2010) Polyphenols and antioxidant activity of calafate (Berberis microphylla) fruits and other native berries from Southern Chile. J Agric Food Chem 58:6081–6089. doi:10.1021/jf100173x

    CAS  PubMed  Article  Google Scholar 

  138. Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80:1483–1521

    CAS  PubMed  Article  Google Scholar 

  139. Santos CNS, Koffas M, Stephanopoulos G (2011) Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng 13:392–400. doi:10.1016/j.ymben.2011.02.002

    CAS  PubMed  Article  Google Scholar 

  140. SCBD (2011) Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological diversity. https://www.cbd.int/abs/doc/protocol/nagoya-protocol-en.pdf. Accessed 07 Sept 2017

  141. Secretary of State (UK) (2015) Nagoya protocol (compliance) regulations 2015. http://www.legislation.gov.uk/uksi/2015/821/pdfs/uksi_20150821_en.pdf. Accessed 07 Sept 2017

  142. Segrè D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA 99:15112–15117. doi:10.1073/pnas.232349399

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  143. Shen X, Liu S (2005) Key enzymes of the protocatechuate branch of the β-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum. Sci China Ser C Life Sci 48:241–249. doi:10.1007/BF03183617

    CAS  Article  Google Scholar 

  144. Shen X-H, Zhou N-Y, Liu S-J (2012) Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium? Appl Microbiol Biotechnol 95:77–89. doi:10.1007/s00253-012-4139-4

    CAS  PubMed  Article  Google Scholar 

  145. Shinfuku Y, Sorpitiporn N, Sono M et al (2009) Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microb Cell Fact 8:43. doi:10.1186/1475-2859-8-43

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  146. Shults CW (2006) Lewy bodies. Proc Natl Acad Sci USA 103:1661–1668. doi:10.1073/pnas.0509567103

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  147. Simeonidis E, Price ND (2015) Genome-scale modeling for metabolic engineering. J Ind Microbiol Biotechnol 42:327–338. doi:10.1007/s10295-014-1576-3

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. Song AA, Abdullah JO, Abdullah MP et al (2014) Engineering the lactococcal mevalonate pathway for increased sesquiterpene production. FEMS Microbiol Lett 355:177–184. doi:10.1111/1574-6968.12469

    CAS  PubMed  Article  Google Scholar 

  149. Stahlhut SG, Siedler S, Malla S et al (2015) Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli. Metab Eng 31:84–93. doi:10.1016/j.ymben.2015.07.002

    CAS  PubMed  Article  Google Scholar 

  150. Stanford NJ, Millard P, Swainston N (2015) RobOKoD: microbial strain design for (over)production of target compounds. Front Cell Dev Biol 3:17. doi:10.3389/fcell.2015.00017

    PubMed  PubMed Central  Article  Google Scholar 

  151. Stavang JA, Freitag S, Foito A et al (2015) Raspberry fruit quality changes during ripening and storage as assessed by colour, sensory evaluation and chemical analyses. Sci Hortic (Amst) 195:216–225. doi:10.1016/j.scienta.2015.08.045

    CAS  Article  Google Scholar 

  152. Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456. doi:10.1016/S1369-5266(00)00199-0

    CAS  PubMed  Article  Google Scholar 

  153. Su LJ, Auluck PK, Outeiro TF et al (2010) Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson’s disease models. Dis Model Mech 3:194–208. doi:10.1242/dmm.004267

    CAS  PubMed  Article  Google Scholar 

  154. Suh Y, Afaq F, Johnson JJ, Mukhtar H (2008) A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF-B-signaling pathways. Carcinogenesis 30:300–307. doi:10.1093/carcin/bgn269

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  155. Tardiff DF, Tucci ML, Caldwell KA et al (2012) Different 8-hydroxyquinolines protect models of TDP-43 protein, α-synuclein, and polyglutamine proteotoxicity through distinct mechanisms. J Biol Chem 287:4107–4120. doi:10.1074/jbc.M111.308668

    CAS  PubMed  Article  Google Scholar 

  156. Tayarani-Najaran Z, Mousavi SH, Tajfard F et al (2013) Cytotoxic and apoptogenic properties of three isolated diterpenoids from Salvia chorassanica through bioassay-guided fractionation. Food Chem Toxicol 57:346–351. doi:10.1016/j.fct.2013.03.037

    CAS  PubMed  Article  Google Scholar 

  157. Tepper N, Shlomi T (2010) Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics 26:536–543. doi:10.1093/bioinformatics/btp704

    CAS  PubMed  Article  Google Scholar 

  158. Tohge T, Nishiyama Y, Hirai MY et al (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235. doi:10.1111/j.1365-313X.2005.02371.x

    CAS  PubMed  Article  Google Scholar 

  159. Törrönen R (2009) Sources and health effects of dietary ellagitannins. In: Quideau S (ed) Chemistry and biology of ellagitannins: an underestimated class of bioactive plant polyphenols. World Scientific Publishing, Singapore, pp 298–319

    Google Scholar 

  160. Vagiri M, Ekholm A, Öberg E et al (2013) Phenols and ascorbic acid in black currants (Ribes nigrum L.): variation due to genotype, location, and year. J Agric Food Chem 61:9298–9306. doi:10.1021/jf402891s

    CAS  PubMed  Article  Google Scholar 

  161. van Summeren-Wesenhagen PV, Marienhagen J (2015) Metabolic engineering of Escherichia coli for the synthesis of the plant polyphenol pinosylvin. Appl Environ Microbiol 81:840–849. doi:10.1128/AEM.02966-14

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  162. Vance C, Rogelj B, Hortobágyi T et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211. doi:10.1126/science.1165942

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. Vazquez-Albacete D, Cavaleiro AM, Christensen U et al (2016) An expression tag toolbox for microbial production of membrane bound plant cytochromes P450. Biotechnol Bioeng. doi:10.1002/bit.26203

    PubMed  Article  Google Scholar 

  164. Vera J, González-Alcón C, Marín-Sanguino A, Torres N (2010) Optimization of biochemical systems through mathematical programming: methods and applications. Comput Oper Res 37:1427–1438. doi:10.1016/j.cor.2009.02.021

    Article  Google Scholar 

  165. Veríssimo A, Bassard J-E, Julien-Laferrière A, et al. (2017) MassBlast: A workflow to accelerate RNA-seq and DNA database analysis. bioRxiv 131953. doi:10.1101/131953

  166. Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20. doi:10.1093/mp/ssp106

    CAS  PubMed  Article  Google Scholar 

  167. Waldo GS, Standish BM, Berendzen J, Terwilliger TC (1999) Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol 17:691–695. doi:10.1038/10904

    CAS  PubMed  Article  Google Scholar 

  168. Wang Y, Bhuiya MW, Zhou R, Yu O (2015) Pterostilbene production by microorganisms expressing resveratrol O-methyltransferase. Ann Microbiol 65:817–826. doi:10.1007/s13213-014-0922-z

    CAS  Article  Google Scholar 

  169. Wang J, Guleria S, Koffas MA, Yan Y (2016a) Microbial production of value-added nutraceuticals. Curr Opin Biotechnol 37:97–104. doi:10.1016/j.copbio.2015.11.003

    PubMed  Article  CAS  Google Scholar 

  170. Wang Y, Zhu J, Meng X et al (2016b) Comparison of polyphenol, anthocyanin and antioxidant capacity in four varieties of Lonicera caerulea berry extracts. Food Chem 197:522–529. doi:10.1016/j.foodchem.2015.11.006

    CAS  PubMed  Article  Google Scholar 

  171. Watts KR, Ratnam J, Ang K-H et al (2010) Assessing the trypanocidal potential of natural and semi-synthetic diketopiperazines from two deep water marine-derived fungi. Bioorganic Med Chem 18:2566–2574. doi:10.1016/j.bmc.2010.02.034

    CAS  Article  Google Scholar 

  172. Weckwerth W (2003) Metabolomics in systems biology. Ann Rev Plant Biol 54:669–689. doi:10.1146/annurev.arplant.54.031902.135014

    CAS  Article  Google Scholar 

  173. Weller MG (2012) A unifying review of bioassay-guided fractionation, effect-directed analysis and related techniques. Sensors 12:9181–9209. doi:10.3390/s120709181

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  174. Wen Z, Minton NP, Zhang Y et al (2016) Enhanced solvent production by metabolic engineering of a twin-clostridial consortium. Metab Eng. doi:10.1016/j.ymben.2016.10.013

    PubMed  Article  Google Scholar 

  175. Xu P, Ranganathan S, Fowler ZL et al (2011) Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab Eng 13:578–587. doi:10.1016/j.ymben.2011.06.008

    CAS  PubMed  Article  Google Scholar 

  176. Xu P, Wang W, Li L et al (2013) Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli. ACS Chem Biol. doi:10.1021/cb400623m

    PubMed Central  Article  PubMed  Google Scholar 

  177. Yang X, Summerhurst DK, Koval SF et al (2001) Isolation of an antimicrobial compound from Impatiens balsamina L. using bioassay-guided fractionation. Phytother Res 15:676–680. doi:10.1002/ptr.906

    CAS  PubMed  Article  Google Scholar 

  178. Yu C, Cao Y, Zou H, Xian M (2011) Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Microbiol Biotechnol 89:573–583. doi:10.1007/s00253-010-2970-z

    CAS  PubMed  Article  Google Scholar 

  179. Zadernowski R, Naczk M, Nesterowicz J (2005) Phenolic acid profiles in some small berries. J Agric Food Chem 53:2118–2124. doi:10.1021/JF040411P

    CAS  PubMed  Article  Google Scholar 

  180. Zelle RM, de Hulster E, Kloezen W et al (2010) Key process conditions for production of C(4) dicarboxylic acids in bioreactor batch cultures of an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol 76:744–750. doi:10.1128/AEM.02396-09

    CAS  PubMed  Article  Google Scholar 

  181. Zhang H, Matsuda H, Yamashita C et al (2009) Hydrangeic acid from the processed leaves of Hydrangea macrophylla var. thunbergii as a new type of anti-diabetic compound. Eur J Pharmacol 606:255–261. doi:10.1016/j.ejphar.2009.01.005

    CAS  PubMed  Article  Google Scholar 

  182. Zheng J, Ding C, Wang L et al (2011) Anthocyanins composition and antioxidant activity of wild Lycium ruthenicum Murr. from Qinghai–Tibet Plateau. Food Chem 126:859–865. doi:10.1016/j.foodchem.2010.11.052

    CAS  Article  Google Scholar 

  183. Zomorrodi AR, Suthers PF, Ranganathan S, Maranas CD (2012) Mathematical optimization applications in metabolic networks. Metab Eng 14:672–686. doi:10.1016/j.ymben.2012.09.005

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the European Union’s Seventh Framework Programme (BacHBerry, Project No. FP7-613793, and FP7-PEOPLE-2013-COFUND, Project No. FP7-609405) for the financial support. AD, RF, MHHN, PG, SGS, and JF would also like to acknowledge the Novo Nordisk Foundation. We express our gratitude to Dr. Martha Cyert (Stanford School of Medicine, EUA), Dr. Hitoshi Shimoi (National Research Institute of Brewing, Japan) and Dr. Yoshio Araki (Graduate School of Biosphere Science, Hiroshima University, Japan) for providing the yeast strain YAA5. We also thank Dr. Ian Macraedie, RMIT University, Australia) for providing the plasmid p416_GPDpr-GFP-A42.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexey Dudnik.

Additional information

This article is written by the BacHBerry consortium (www.bachberry.eu) and represents the collective effort of all participating institutions. The authors are therefore listed in alphabetical order.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Supplementary material 2 (DOCX 29 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dudnik, A., Almeida, A.F., Andrade, R. et al. BacHBerry: BACterial Hosts for production of Bioactive phenolics from bERRY fruits. Phytochem Rev 17, 291–326 (2018). https://doi.org/10.1007/s11101-017-9532-2

Download citation

Keywords

  • Berries
  • Bioprospecting
  • Microbial cell factories
  • Polyphenols
  • Sustainable production