Phytochemistry Reviews

, Volume 16, Issue 5, pp 1009–1022 | Cite as

Endophytic fungi as novel sources of biopesticides: the Macaronesian Laurel forest, a case study

  • Maria Fe Andrés
  • Carmen Elisa Diaz
  • Cristina Giménez
  • Raimundo Cabrera
  • Azucena González-Coloma


Endophytes fungi have been widely bioprospected to find new drugs and drug leads including antimicrobial agents and antifungals. However, an important role in host plant protection has been suggested for their presence and their metabolites. Therefore, nematicidal and insecticidal effects of their metabolites should be expected. In this review, the literature data available on insecicidal and nematicidal compounds identified from fungal endophytes are presented. Additionally we present a recent study on the endophytic biodiversity of a unique paleoflora, the Macaronesian laurel forest, in the light of their role in plant protection.


Bioactive metabolites Nematicidal activity Insecticidal activity Endophytes Biodiversity 



This work has been supported by grant CTQ2015-64049-C3-1-R (MINECO/FEDER), Spain.


  1. Aboal JR, Arévalo JR, Fernández A (2005) Allometric relationships of different tree species and stand above ground biomass in the Gomera laurel forest (Canary Islands). Flora 200:264–274CrossRefGoogle Scholar
  2. Ai W, Wei X, Lin X, Sheng L, Wang Z et al (2014) Guignardins A–F, spirodioxy naphthalenes from the endophytic fungus Guignardia sp. KcF8 as a new class of PTP1B and SIRT1 inhibitors. Tetrahedron 70(35):5806–5814CrossRefGoogle Scholar
  3. Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16CrossRefGoogle Scholar
  4. Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845PubMedCrossRefGoogle Scholar
  5. Andolfi A, Boari A, Evidente M, Cimmino A et al (2015) Gulypyrones A and B and phomentrioloxins B and C produced by diaporthe gulyae, a potential mycoherbicide for saffron thistle (Carthamus lanatus). J Nat Prod 78(4):623–629PubMedCrossRefGoogle Scholar
  6. Anke H, Sterner O (1997) Nematicidal metabolites from higher fungi. Curr Org Chem 1:361–374Google Scholar
  7. Athman SY, Dubois T, Viljoen A, Labuschagne N et al (2006) In vitro antagonism of endophytic Fusarium oxysporum isolates against the burrowing nematode Radopholus similis. Nematology 8:627–636CrossRefGoogle Scholar
  8. Azevedo JL, Maccheroni W, Pereira JO, Araujo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:40–65CrossRefGoogle Scholar
  9. Bhagat J, Kaur A, Kaur R, Yadav AK, Sharma V, Chadha BS (2016) Cholinesterase inhibitor (Altenuene) from an endophytic fungus Alternaria alternata: optimization, purification and characterization. J Appl Microbiol 121:1015–1025PubMedCrossRefGoogle Scholar
  10. Breen JP (1994) Acremonium-endophyte interactions with enhanced plant resistance to insects. Ann Rev Entomol 39:401–423CrossRefGoogle Scholar
  11. Buckel I, Molitor D, Liermann JC, Sandjo LP et al (2013) Phytotoxic dioxolanone-type secondary metabolites from Guignardia bidwellii. Phytochemistry 89:96–103PubMedCrossRefGoogle Scholar
  12. Carroll G (1991) Fungal associates of woody plants as insect antagonists in leaves and stems. In: Barbosa P, Krischik VA, Jones CG (eds) Microbial mediation of plant-herbivore interactions. Wiley, New York, pp 253–271Google Scholar
  13. Chaeprasert S, Piapukiew J, Whalley AJS, Sihanonth P (2010) Endophytic fungi from mangrove plant species of Thailand: their antimicrobial and anticancer potentials. Bot Mar 53(6):555–564CrossRefGoogle Scholar
  14. Chen C, Liu X, Zhang W, Zang L et al (2015) Sesquiterpenoids isolated from an endophyte fungus Diaporthe sp. RSC Adv 5(23):17559–17565CrossRefGoogle Scholar
  15. Cimmino A, Andolfi A, Zonno MC, Boari A et al (2013) Phomentrioloxin, a fungal phytotoxin with potential herbicidal activity, and its derivatives: a structure-activity relationship study. J Agric Food Chem 61(40):9645–9649PubMedGoogle Scholar
  16. Cimmino A, Mathieu V, Masi M, Baroncelli R et al (2016) Higginsianins A and B, two diterpenoid α-pyrones produced by Colletotrichum higginsianum, with in vitro cytostatic activity. J Nat Prod 79(1):116–125PubMedCrossRefGoogle Scholar
  17. Clay K (1996) Interactions among fungal endophytes, grasses and herbivores. Res Popul Ecol 38:191–201CrossRefGoogle Scholar
  18. Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127PubMedCrossRefGoogle Scholar
  19. Compant S, Saikkonen K, Mitter B, Campisano A et al (2016) Editorial special issue: soil, plants and endophytes. Plant Soil 405:1–11CrossRefGoogle Scholar
  20. Daisy BH, Strobel GA, Castillo U, Ezra D et al (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148:3737–3741PubMedCrossRefGoogle Scholar
  21. Davis A, Carroll AR, Andrews KT, Boyle GM et al (2010) Pestalactams A–C: novel caprolactams from the endophytic fungus Pestalotiopsis sp. Org Biomol Chem 8(8):1785–1790PubMedCrossRefGoogle Scholar
  22. Degenkolb T, Vilcinskas A (2016) Metabolites from nematophagous fungi and nematicidal natural products from fungi as alternatives for biological control. Part II: metabolites from nematophagous basidiomycetes and non-nematophagous fungi. Appl Microbiol Biotechnol 100:3813–3824PubMedPubMedCentralCrossRefGoogle Scholar
  23. Evidente A, Rodeva R, Andolfi A, Stoyanova Z et al (2011) Phytotoxic polyketides produced by Phomopsis foeniculi, a strain isolated from diseased bulgarian fennel. Eur J Plant Pathol 130(2):173–182CrossRefGoogle Scholar
  24. Faeth SH, Shochat E (2010) Inherited microbial symbionts in a native grass increase herbivore abundance and alter diversity and community structure. Ecology 91:1329–1343PubMedCrossRefGoogle Scholar
  25. Feng X, Yu W, Zhou F, Chen J, Shen P (2016) A novel small molecule compound diaporine inhibits breast cancer cell proliferation via promoting ROS generation. Biomed Pharmacother 83:1038–1047PubMedCrossRefGoogle Scholar
  26. Ferrari B, Castilho P, Tomi F, Rodrigues AI et al (2005) Direct identification and quantitative determination of costunolide and dehydrocostuslactone in the fixed oil of Laurus novocanariensis by 13C-NMR spectroscopy. Phytochem Anal 16(2):104–107PubMedCrossRefGoogle Scholar
  27. Findlay JA, Buthelezi S, Li G, Seveck M (1997) Insect toxins from an endophytic fungus from wintergreen. J Nat Prod 60(11):1214–1215CrossRefGoogle Scholar
  28. Fraga BM, Terrero D (1996) Alkene-γ-lactones and avocadofurans from Persea indica: a revision of the structure of majorenolide and related lactones. Phytochemistry 41(1):229–232CrossRefGoogle Scholar
  29. Fraga BM, González-Coloma A, Gutiérrez C, Terrero D (1997) Insect antifeedant isoryanodane diterpenes from Persea indica. J Nat Prod 60(9):880–883CrossRefGoogle Scholar
  30. Fraga BM, Terrero D, Gutiérrez C, González-Coloma A (2001) Minor diterpenes from Persea indica: their antifeedant activity. Phytochemistry 56(4):315–320PubMedCrossRefGoogle Scholar
  31. Furtado R, Baptista J, Lima E, Paiva L et al (2014) Chemical composition and biological activities of laurus essential oils from different macaronesian islands. Biochem Syst Ecol 55:333–341CrossRefGoogle Scholar
  32. Giménez C, Cabrera R, Reina M, González-Coloma A (2007) Fungal endophytes and their role in plant protection. Curr Org Chem 11:707–720CrossRefGoogle Scholar
  33. Gonzalez-Coloma A, Escoubas P, Reina M, Mizutani J (1994) Antifeedant and insecticidal activity of endemic Canarian Lauraceae. Appl Entomol Zool 29(2):292–296CrossRefGoogle Scholar
  34. González-Coloma A, Terrero D, Perales A, Escoubas P, Fraga BM (1996) Insect antifeedant ryanodane diterpenes from Persea indica. J Agric Food Chem 44(1):296–300CrossRefGoogle Scholar
  35. González-Coloma A, Gutiérrez C, Hübner H, Achenbach H et al (1999) Selective insect antifeedant and toxic action of ryanoid diterpenes. J Agric Food Chem 47(10):4419–4424PubMedCrossRefGoogle Scholar
  36. González-Coloma A, Diaz CE, Andres MF, Fraga M et al (2016) Biocidal products and use thereof for controlling phytopathogens and pest organism that harm plants. PCT Patent WO 2016/034751 A1, March 2016Google Scholar
  37. Gu Y, Wang Y, Ma X, Wang C et al (2015) Greater taxol yield of fungus Pestalotiopsis hainanensis from dermatitic scurf of the giant panda (Ailuropoda melanoleuca). Appl Biochem Biotechnol 175(1):155–165PubMedCrossRefGoogle Scholar
  38. Hallman J, Sikora RA (1994) In vitro and in vivo control of Meloidogyne incognita with culture filtrates from non-pathogenic Fusarium oxysporum on tomato. J Nematol 26:1–2Google Scholar
  39. Hsiao Y, Cheng M, Chang H, Wu M et al (2016) Six new metabolites produced by Colletotrichum aotearoa 09F0161, an endophytic fungus isolated from Bredia oldhamii. Nat Prod Res 30(3):251–258PubMedCrossRefGoogle Scholar
  40. Huter OF (2011) Use of natural products in the crop protection industry. Phytochem Rev 10:185–194CrossRefGoogle Scholar
  41. Hwang IH, Swenson DC, Gloer JB, Wicklow DT (2016) Disseminins and spiciferone analogues: polyketide-derived metabolites from a fungicolous isolate of Pestalotiopsis disseminata. J Nat Prod 79(3):23–530CrossRefGoogle Scholar
  42. Ito A, Kumagai I, Maruyama M, Maeda H et al (2016) Homopetasinic acid isolated from Diaporthe sp. strain 1308-05. Tetrahedron Lett 57(10):1117–1119CrossRefGoogle Scholar
  43. Jalgaonwala RE, Mohite BV, Mahajan RT (2011) A review: natural products from plant associated endophytic fungi. J Microbiol Biotech Res 1(2):21–32Google Scholar
  44. Jani AJ, Faeth SH, Gardner D (2010) Asexual endophytes and associated alkaloids alter arthropod community structure and increase herbivore abundances on a native grass. Ecol Lett 13:106–117PubMedCrossRefGoogle Scholar
  45. Jia Y, Wei M, Chen H, Guan F et al (2015) (+)- And (–)-pestaloxazine A, a pair of antiviral enantiomeric alkaloid dimers with a symmetric spiro[oxazinane-piperazinedione] skeleton from Pestalotiopsis sp. Org Lett 17(17):4216–4219PubMedCrossRefGoogle Scholar
  46. Kaul S, Ahmed M, Sharma T, Dhar MK (2014) Unlocking the myriad benefits of endophytes: an overview. In: Kharwar RN et al (eds) Microbial diversity and biotechnology in food security. Springer, New Delhi, pp 41–57Google Scholar
  47. Kaur T, Kaur S, Kaur J, Kaur A (2016) Larvicidal and growth inhibitory effects of endophytic Aspergillus niger on a polyphagous pest. Spodoptera Litura Phytoparasit 44:465–476CrossRefGoogle Scholar
  48. Kharwar RN, Mishra A, Sharma VK, Kumar J, Singh DK (2014) Diversity and biopotential of endophytic fungal flora isolated from eight medicinal plants of Uttar Pradesh, India. In: Goutam J, Kharwar RN et al (eds) Microbial diversity and biotechnology in food security. Springer, New Delhi, pp 23–39Google Scholar
  49. Kim TY, Jang JY, Jeon SJ, Lee HW et al (2016) Nematicidal activity of kojic acid produced by Aspergillus oryzae against Meloidogyne incognita. J Microbiol Biotechnol 26(8):1383–1391PubMedCrossRefGoogle Scholar
  50. Köpcke B, Johansson M, Sterner O, Anke H (2002) Biologically active secondary metabolites from the ascomycete A111-95. 1. Production, isolation and biological activities. J Antibiotics 55:36–40CrossRefGoogle Scholar
  51. Kumar S, Kaushik N (2012) Metabolites of endophytic fungi as novel source of biofungicide: a review. Phytochem Rev 11:507–522CrossRefGoogle Scholar
  52. Kumar S, Aharwal RP, Shukla H, Rajak RC, Sandhu SS (2014) Endophytic fungi: as a source of antimicrobials bioactive compounds. World J Pharm Pharm Sci 3:179–1197Google Scholar
  53. Kusari S, Verma VC, Lamshoeft M, Spiteller M et al (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:287–293CrossRefGoogle Scholar
  54. Kwon HR, Son SW, Han HR, Cho GJ et al (2007) Nematicidal activity of bikaverin and fusaric acid isolated from Fusarium oxysporum against pine wood nematode, Bursaphelenchus xylophilus. J Plant Pathol 23:318–321CrossRefGoogle Scholar
  55. Lane GA, Christensen MJ, Miles CO (2000) Coevolution of fungal endophytes with grasses: the significance of secondary metabolites. In: Bacon CW, White JFJ (eds) Microbial endophytes. Marcel Dekker, New York, pp 341–388Google Scholar
  56. Li GH, Yu ZF, Li X, Wang XB et al (2007) Nematicidal metabolites produced by the endophytic fungus Geotrichum sp. AL4. Chem Biodivers 4(7):1520–1524PubMedCrossRefGoogle Scholar
  57. Li XJ, Zhang Q, Zhang AL, Gao JM (2012) Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities. J Agric Food Chem 60:3424–3431PubMedCrossRefGoogle Scholar
  58. Li W, Li M, Su X, Qin L et al (2014) Mycoepoxydiene induces apoptosis and inhibits TPA-induced invasion in human cholangiocarcinoma cells via blocking NF-κB pathway. Biochimie 101(1):183–191PubMedCrossRefGoogle Scholar
  59. Li J, Xie J, Yang Y, Li X et al (2015) Pestalpolyols A–D, cytotoxic polyketides from Pestalotiopsis spcr013. Planta Med 81(14):1285–1289PubMedCrossRefGoogle Scholar
  60. Liang F, Li D, Chen Y, Tao M et al (2012) Secondary metabolites of endophytic Guignardia mangiferae from Smilax glabra and their antitumor activities. Chin Tradit Herb Drugs 43(5):856–860Google Scholar
  61. Lin X, Huang Y, Fang M, Wang J et al (2005) Cytotoxic and antimicrobial metabolites from marine lignicolous fungi, Diaporthe sp. FEMS Microbiol Lett 251(1):53–58PubMedCrossRefGoogle Scholar
  62. Liu Y, Hu Z, Lin X, Lu C, Shen Y (2013) A new polyketide from diaporthe sp. SXZ-19, an endophytic fungal strain of Camptotheca acuminate. Nat Prod Res 27(22):2100–2104PubMedCrossRefGoogle Scholar
  63. Liu Y, Li Y, Qu J, Ma S et al (2015) Eremophilane sesquiterpenes and polyketones produced by an endophytic Guignardia fungus from the toxic plant Gelsemium elegans. J Nat Prod 78(9):2149–2154PubMedCrossRefGoogle Scholar
  64. Liu Y, Yang M, Wang X, Li T, Kong L (2016) Caryophyllene sesquiterpenoids from the endophytic fungus, Pestalotiopsis sp. Fitoterapia 109:119–124PubMedCrossRefGoogle Scholar
  65. López H, Valera A, Trujillo J (1995) Lignans from Ocotea foetens. J Nat Prod 58(5):782–785CrossRefGoogle Scholar
  66. Mandavid H, Rodrigues AMS, Espindola LS, Eparvier V, Stien D (2015) Secondary metabolites isolated from the amazonian endophytic fungus Diaporthe sp. SNB-GSS10. J Nat Prod 78(7):1735–1739PubMedCrossRefGoogle Scholar
  67. Mei W, Zheng B, Zhao Y, Zhong H et al (2012) Meroterpenes from endophytic fungus A1 of mangrove plant Scyphiphora hydrophyllacea. Mar Drugs 10(9):1993–2001PubMedPubMedCentralCrossRefGoogle Scholar
  68. Miller JD, Mackenzie S, Foto M, Adams GW, Findlay JA (2002) Needles of white spruce inoculated with rugulosin-producing endophytes contain rugulosin reducing spruce budworm growth rate. Mycol Res 106:471–479CrossRefGoogle Scholar
  69. Miller JD, Sumarah MW, Adams GW (2008) Effect of a rugulosin-producing endophyte in Picea glauca on Choristoneura fumiferana. J Chem Ecol 34:362–368PubMedCrossRefGoogle Scholar
  70. Molitor D, Liermann JC, Berkelmann-Löhnertz B, Buckel I et al (2012) Phenguignardic acid and guignardic acid, phytotoxic secondary metabolites from Guignardia bidwellii. J Nat Prod 75(7):1265–1269PubMedCrossRefGoogle Scholar
  71. Nicoletti R, Fiorentino A (2015) A plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture 5(4):918–970CrossRefGoogle Scholar
  72. Nisa H, Kamili AN, Nawchoo IA, Shafi S et al (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog 82:50–59PubMedCrossRefGoogle Scholar
  73. Ofuji K, Satake M, McMahon T, Silke J et al (1999) Isolation and characterization of phytotoxic compounds produced by Phomopsis helianthi. Nat Toxins 7(3):119–127CrossRefGoogle Scholar
  74. Ola ARB, Debbab A, Kurtán T, Brötz-Oesterhelt H et al (2014) Dihydroanthracenone metabolites from the endophytic fungus Diaporthe melonis isolated from Annona squamosa. Tetrahedron Lett 55(20):3133–3136CrossRefGoogle Scholar
  75. Ondeyka JG, Helms GL, Hensens OD, Goetz MA et al (1997) Nodulisporic acid A, a novel and potent insecticide from a Nodulisporium sp. isolation, structure determination, and chemical transformations. J Am Chem Soc 119:8809–8816CrossRefGoogle Scholar
  76. Otomo N, Sato H, Sakamura S (1983) Novel phytotoxins produced by the causal fungus of the shoot blight of larches. Agric Biol Chem 47(5):1115–1119Google Scholar
  77. Pimentel MR, Molina G, Dionisio AP, Maróstica MR, Pastore GM (2011) Use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int 2011:576286PubMedCrossRefGoogle Scholar
  78. Pino JA, Fernandes P, Marbot R, Fontinha SS (2004) Chemical composition of the leaf oil of Ocotea foetens (Alt.) Benth. et Hook. from Madeira. J Essent Oil Res 16(2):131–132CrossRefGoogle Scholar
  79. Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315PubMedCrossRefGoogle Scholar
  80. Qadri M, Deshidi R, Shah BA, Bindu K et al (2015) An endophyte of Picrorhiza kurroa royle ex. benth, producing menthol, phenylethyl alcohol and 3-hydroxypropionic acid, and other volatile organic compounds. World J Microbiol Biotech 31(10):1647–1654CrossRefGoogle Scholar
  81. Rodilla JM, Tinoco MT, Morais JC, Gimenez C et al (2008) Laurus novocanariensis essential oil: seasonal variation and valorization. Biochem Syst Ecol 36(3):167–176CrossRefGoogle Scholar
  82. Rodrigues KF, Hesse M, Werner C (2000) Antimicrobial activities of secondary metabolites produced by endophytic fungi from Spondias mombin. J Basic Microbiol 40(4):261–267PubMedCrossRefGoogle Scholar
  83. Rodrigues-Heerklotz KF, Drandarov K, Heerklotz J, Hesse M, Werner C (2001) Guignardic acid, a novel type of secondary metabolite produced by the endophytic fungus Guignardia sp.: isolation, structure elucidation, and asymmetric synthesis. Helv Chim Acta 84(12):3766–3772CrossRefGoogle Scholar
  84. Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:1–17CrossRefGoogle Scholar
  85. Rohlfs M, Churchill ACL (2011) Fungal secondary metabolites as modulators of interactions with insects and other arthropods. Fungal Genet Biol 48:23–34PubMedCrossRefGoogle Scholar
  86. Rudgers JA, Clay K (2008) An invasive plant–fungal mutualism reduces arthropod diversity. Ecol Lett 11:831–840PubMedCrossRefGoogle Scholar
  87. Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343CrossRefGoogle Scholar
  88. Schardl CL (1996) Epichloë species: fungal symbionts of grasses. Annu Rev Phytopathol 34:109–130PubMedCrossRefGoogle Scholar
  89. Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004CrossRefGoogle Scholar
  90. Schwarz M, Kopcke B, Weber RWS, Sterner O, Anke H (2004) 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry 65:2239–2245PubMedCrossRefGoogle Scholar
  91. Sebastianes FLS, Cabedo N, Aouad NE, Valente AMMP et al (2012) 3-hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum. Curr Microbiol 65(5):622–632PubMedCrossRefGoogle Scholar
  92. Shi YW, Zhang X, Lou K (2013) Isolation, characterization, and insecticidal activity of an endophyte of drunken horse grass, Achnatherum inebrians. J Insect Sci 13:151PubMedPubMedCentralCrossRefGoogle Scholar
  93. Shi C, Yuan L, Linn X, Zhao P (2016) Two new lactone derivatives from an endophyte Diaporthe sp. XZ-07 cultivated on Campththeea acumiaath. J Chin Mater Med 41(10):1860–1863Google Scholar
  94. Shiono Y, Sasaki T, Shibuya F, Yasuda Y et al (2013) Isolation of a phomoxanthone A derivative, a new metabolite of tetrahydroxanthone, from a Phomopsis sp. isolated from the mangrove, Rhizhopora mucronata. Nat Prod Commun 8(12):1735–1737PubMedGoogle Scholar
  95. Singh B, Chadha BS, Kaur A (2012) Acetylcholinesterase inhibitory potential and insecticidal activity of an endophytic Alternaria sp. from Ricinus communis. Appl Biochem Biotechnol 168:991–1002PubMedCrossRefGoogle Scholar
  96. Singh B, Kaur T, Kaur S, Manhas RK, Kaur A (2016) Insecticidal potential of an endophytic Cladosporium velox against Spodoptera litura mediated through inhibition of alpha glycosidases. Pestic Biochem Physiol 131:46–52PubMedCrossRefGoogle Scholar
  97. Sommart U, Rukachaisirikul V, Trisuwan K, Tadpetch K et al (2012) Tricycloalternarene derivatives from the endophytic fungus Guignardia bidwellii PSU-G11. Phytochemistry Lett 5(1):139–143CrossRefGoogle Scholar
  98. Sonaimuthu V, Krishnamoorthy S, Johnpaul M (2010) Optimization of process parameters for improved production of Taxol by a novel endophytic fungus Pestalotiopsis oxyanthi SVJM060 isolated from Taxus baccta. J Biotech 150:S471-S471Google Scholar
  99. Sousa JPB, Aguilar-Pérez MM, Arnold AE, Rios N et al (2016) Chemical constituents and their antibacterial activity from the tropical endophytic fungus Diaporthe sp. F2934. J Appl Microbiol 120(6):1501–1508PubMedCrossRefGoogle Scholar
  100. Specian V, Sarragiotto MH, Pamphile JA, Clemente E (2012) Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata. Braz J Microbiol 43:1174–1182PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sumarah MW, Miller JD (2009) Anti-insect secondary metabolites from fungal endophytes of conifer trees. Nat Prod Commun 4:1497–1504PubMedGoogle Scholar
  102. Sumarah MW, Adams GW, Berghout J, Slack GJ et al (2008) Spread and persistence of a rugulosin-producing endophyte in white spruce seedlings. Mycol Res 112:731–736PubMedCrossRefGoogle Scholar
  103. Sumarah MW, Puniani E, Sorensen D, Blackwell BA, Miller JD (2010) Secondary metabolites from antiinsect extracts of endophytic fungi isolated from Picea rubens. Phytochemistry 71:760–765PubMedCrossRefGoogle Scholar
  104. Sun Z, Liang F, Wu W, Chen Y et al (2015) Guignardones P-S, new meroterpenoids from the endophytic fungus Guignardia mangiferae A348 derived from the medicinal plant Smilax glabra. Molecules 20(12):22900–22907PubMedCrossRefGoogle Scholar
  105. Suryanarayanan TS, Ravishankar JP, Venkatesan G, Murali TS (2004) Characterization of the melanin pigment of a cosmopolitan fungal endophyte. Mycol Res 108:974–978PubMedCrossRefGoogle Scholar
  106. Thakur A, Kaur S, Kaur A, Singh V (2012) Detrimental effects of endophytic fungus Nigrospora sp. on survival and development of Spodoptera litura. Biocontrol Sci Technol 22:151–161CrossRefGoogle Scholar
  107. Thakur A, Kaur S, Kaur A, Singh V (2013) Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants. Environ Entomol 42(2):240–246PubMedCrossRefGoogle Scholar
  108. Tian X, Yurong Y, Guohua Ch, Zhenchuan M et al (2014) Suppression of Meloidogyne incognita by the endophytic fungus Acremonium implicatum from tomato root galls. Int J Pest Manag 60:239–245CrossRefGoogle Scholar
  109. Tinoco MT, Ramos P, Candeias MF (2009) Effects of a hexane extract from Laurus novocanariensis leaves on the ethanol metabolism of Wistar rats. Fitoterapia 80(2):130–133PubMedCrossRefGoogle Scholar
  110. Van Dessel P, Coyne D, Dubois T, De Waele D, Franco J (2011) In vitro nematicidal effect of endophytic Fusarium oxysporum against Radopholus similis, Pratylenchus goodeyi and Helicotylenchus multicinctus. Nematropica 41:154–160Google Scholar
  111. Vieira MLA, Hughes AFS, Gil VB, Vaz ABM, Alves TMA, Zani CL, Rosa CA, Rosa LH (2012) Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell. (Solanaceae). Can J Microbiol 58:1–13CrossRefGoogle Scholar
  112. Wang F, Ye Y, Ding H, Chen Y et al (2010) Benzophenones from Guignardia sp. IFB-E028, an endophyte on Hopea hainanensis. Chem Biodivers 7(1):216–220PubMedCrossRefGoogle Scholar
  113. Wang J, Zhao B, Yi Y, Zhang W et al (2012) Mycoepoxydiene, a fungal polyketide inhibits MCF-7 cells through simultaneously targeting p53 and NF-κB pathways. Biochem Pharmacol 84(7):891–899PubMedCrossRefGoogle Scholar
  114. Wang M, Chen Y, Sun Z, Tan G et al (2016) Study on cytotoxic secondary metabolites of endophytic fungus Diaporthe longicolla A616 from Pogostemon cablin. Chin J Nat Med 41(11):2112–2117Google Scholar
  115. Wicklow DT, Jordan AM, Gloer JB (2009) Antifungal metabolites (monorden, monocillins I, II, III) from Colletotrichum graminicola, a systemic vascular pathogen of maize. Mycol Res 113(12):1433–1442PubMedCrossRefGoogle Scholar
  116. Xu J, Yang X, Lin Q (2014) Chemistry and biology of pestalotiopsis-derived natural products. Fungal Divers 66(1):37–68CrossRefGoogle Scholar
  117. Yang Z, Yang T, Luo M, Xia X et al (2013) A new sesquiterpenoid from fungus Colletotrichum sp. and its cytotoxicity. Yaoxue Xuebao 48(6):891–895Google Scholar
  118. Yuan WH, Liu M, Jiang N, Guo ZK et al (2010) Guignardones A–C: three meroterpenes from Guignardia mangiferae. Eur J Org Chem 33:6348–6353CrossRefGoogle Scholar
  119. Zang LY, Wei W, Guo Y, Wang T et al (2012) Sesquiterpenoids from the mangrove-derived endophytic fungus Diaporthe sp. J Nat Prod 75(10):1744–1749CrossRefGoogle Scholar
  120. Zhang C, Ondeyka JG, Herath KB, Guan Z et al (2005) Tenellones A and B from a Diaporthe sp.: two highly substituted benzophenone inhibitors of parasite cGMP-dependent protein kinase activity. J Nat Prod 68(4):611–613PubMedCrossRefGoogle Scholar
  121. Zhang W, Draeger S, Schulz B, Krohn K (2009) Ring B aromatic steroids from an endophytic fungus, Colletotrichum sp. Nat Prod Commun 4(11):1449–1454PubMedGoogle Scholar
  122. Zhang X, Shi Y, Wang X, Zhang W, Lou K (2010) Isolation, identification and insecticidal activity of endophyte from Achnatherum inebrians. Wei Sheng Wu Xue Bao 50(4):530–536PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Maria Fe Andrés
    • 1
  • Carmen Elisa Diaz
    • 2
  • Cristina Giménez
    • 3
  • Raimundo Cabrera
    • 3
  • Azucena González-Coloma
    • 1
  1. 1.Instituto de Ciencias Agrarias, CSICMadridSpain
  2. 2.Instituto de Productos Naturales y Agrobiología, CSICSanta Cruz de TenerifeSpain
  3. 3.Universidad de La LagunaSanta Cruz de TenerifeSpain

Personalised recommendations