Skip to main content

Procyanidins: a comprehensive review encompassing structure elucidation via mass spectrometry

Abstract

Procyanidins are polyphenols abundant in dietary fruits, vegetables, nuts, legumes, and grains with a variety of chemopreventive biological effects. Rapid structure determination of these compounds is needed, notably for the more complex polymeric procyanidins. We review the recent developments in the structure elucidation of procyanidins with a focus on mass spectrometric approaches, especially liquid chromatography-tandem mass spectrometry (LC–MS/MS) and matrix-assisted laser desorption ionization (MALDI) MS/MS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

PC:

procyanidins

DP:

degree of polymerization

MS:

mass spectrometry

MALDI:

matrix-assisted laser desorption ionization

QM:

quinone methide

RDA:

retro Diels–Alder

References

  1. Adamson GE, Lazarus SA, Mitchell AE et al (1999) HPLC mehod for the quantification of procyanidins in cocoa and chocolate samples and correlation to total antioxidant capacity. J Agric Food Chem 47:4184–4188

    CAS  Article  PubMed  Google Scholar 

  2. Akiyama H, Sakushima J, Taniuchi S et al (2000) Antiallergic effect of apple polyphenols on the mouse model. Biol Pharm Bull 23:1370–1373

    CAS  Article  PubMed  Google Scholar 

  3. Arranz S, Valderas-Martinez P, Chiva-Blanch G et al (2013) Cardioprotective effects of cocoa: clinical evidence from randomized clinical intervention trials in humans. Mol Nutr Food Res 57:936–947

    CAS  Article  PubMed  Google Scholar 

  4. Balas L, Vercauteren J (1994) Extensive high-resolution reverse 2D NMR analysis for the structural elucidation of procyanidin oligomers. Magn Reson Chem 32:386–393

    CAS  Article  Google Scholar 

  5. Balas L, Vercauteren J, Laguerre M (1995) 2D NMR structure elucidation of proanthocyanidins: the special case of the catechin–(4α-8)–catechin–(4α-8)–catechin trimer. Magn Reson Chem 33:85–94

    CAS  Article  Google Scholar 

  6. Benavente-García O, Castillo J, Marin FR et al (1997) Uses and properties of citrus flavonoids. J Agric Food Chem 45:4505–4515

    Article  Google Scholar 

  7. Bittner K, Rzeppa S, Humpf H-U (2013) Distribution and quantification of flavan-3-ols and procyanidins with low degree of polymerization in nuts, cereals, and legumes. J Agric Food Chem 61:9148–9154

    CAS  Article  PubMed  Google Scholar 

  8. Calderón AI, Wright BJ, Hurst WJ, van Breemen RB (2009) Screening antioxidants using LC–MS: case study with cocoa. J Agric Food Chem 57:5693–5699

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chaves FC, Gianfagna TJ (2007) Cacao leaf procyanidins increase locally and systemically in response to infection by Moniliophthora perniciosa basidiospores. Physiol Mol Plant Pathol 70:174–179

    CAS  Article  Google Scholar 

  10. Chen L, Yuan P, Chen K et al (2014) Oxidative conversion of B-to A-type procyanidin trimer: evidence for quinone methide mechanism. Food Chem 154:315–322

    CAS  Article  PubMed  Google Scholar 

  11. Churchwell MI, Twaddle NC, Meeker LR, Doerge DR (2005) Improving LC–MS sensitivity through increases in chromatographic performance: comparisons of UPLC–ES/MS/MS to HPLC–ES/MS/MS. J Chromatogr B: Anal Technol Biomed Life Sci 825:134–143

    CAS  Article  Google Scholar 

  12. de Pascual-Teresa S, Moreno DA, García-Viguera C (2010) Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci 11:1679–1703

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dole M, Mack LL, Hines RL et al (1968) Molecular beams of macroions. J Chem Phys 49:2240–2249

    CAS  Article  Google Scholar 

  14. Duan Y, Zhang H, Xu F et al (2010) Inhibition effect of procyanidins from lotus seedpod on mouse B16 melanoma in vivo and in vitro. Food Chem 122:84–91

    CAS  Article  Google Scholar 

  15. Ehring H, Karas M, Hillenkamp F (1992) Role of photoionization and photochemistry in ionization processes of organic molecules and relevance for matrix-assisted laser desorption lonization mass spectrometry. Org Mass Spectrom 27:472–480

    CAS  Article  Google Scholar 

  16. Engstrom MT, Palijarvi M, Fryganas C et al (2014) Rapid qualitative and quantitative analyses of proanthocyanidin oligomers and polymers by UPLC–MS/MS. J Agric Food Chem 62:3390–3399

    CAS  Article  PubMed  Google Scholar 

  17. Faria A, Calhau C, de Freitas V, Mateus N (2006) Procyanidins as antioxidants and tumor cell growth modulators. J Agric Food Chem 54:2392–2397

    CAS  Article  PubMed  Google Scholar 

  18. Feliciano RP, Krueger CG, Shanmuganayagam D et al (2012) Deconvolution of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry isotope patterns to determine ratios of A-type to B-type interflavan bonds in cranberry proanthocyanidins. Food Chem 135:1485–1493

    CAS  Article  PubMed  Google Scholar 

  19. Fenn JB (2002) Electrospray ionization mass spectrometry: how it all began. J Biomol Tech 13:101–118

    PubMed  PubMed Central  Google Scholar 

  20. Fine AM (2003) Oligomeric proanthocyanidin (OPCs). Altern Med Rev 8:442–450

    Google Scholar 

  21. Friedrich W, Eberhardt A, Galensa R (2000) Investigation of proanthocyanidins by HPLC with electrospray ionization mass spectrometry. Eur Food Res Technol 211:56–64

    CAS  Article  Google Scholar 

  22. Ge Y-W, Zhu S, Kazuma K et al (2016) Molecular ion index assisted comprehensive profiling of B-type oligomeric proanthocyanidins in rhubarb by high performance liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 408:3555–3570

    CAS  Article  PubMed  Google Scholar 

  23. Gentile C, Allegra M, Angileri F et al (2012) Polymeric proanthocyanidins from Sicilian pistachio (Pistacia vera L.) nut extract inhibit lipopolysaccharide-induced inflammatory response in RAW 264.7 cells. Eur J Nutr 51:353–363

    CAS  Article  PubMed  Google Scholar 

  24. Gossé F, Guyot S, Roussi S et al (2005) Chemopreventive properties of apple procyanidins on human colon cancer-derived metastatic SW620 cells and in a rat model of colon carcinogenesis. Carcinogenesis 26:1291–1295

    Article  PubMed  Google Scholar 

  25. Gu L, Kelm M, Hammerstone JF et al (2002) Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normal-phase HPLC–MS fluorescent detection method. J Agric Food Chem 50:4852–4860

    CAS  Article  PubMed  Google Scholar 

  26. Gu L, Kelm MA, Hammerstone JF et al (2003) Liquid chromatographic/electrospray ionization mass spectrometric studies of proanthocyanidins in foods. J Mass Spectrom 38:1272–1280

    CAS  Article  PubMed  Google Scholar 

  27. Gu L, Kelm MA, Hammerstone JF et al (2004) Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr 134:613–617

    CAS  Article  PubMed  Google Scholar 

  28. Hammerstone JF, Lazarus SA, Mitchell AE et al (1999) Identification of procyanidins in cocoa (Theobroma cacao) and chocolate using high-performance liquid chromatography/mass spectrometry. J Agric Food Chem 47:490–496

    CAS  Article  PubMed  Google Scholar 

  29. Hammerstone JF, Lazarus SA, Schmitz HH (2000) Procyanidin content and variation in some commonly consumed foods. J Nutr 130:2086S–2092S

    CAS  Article  PubMed  Google Scholar 

  30. Han X, Shen T, Lou H (2007) Dietary polyphenols and their biological significance. Int J Mol Sci 8:950–988

    CAS  Article  PubMed Central  Google Scholar 

  31. Hayasaka Y, Waters EJ, Cheynier V et al (2003) Characterization of proanthocyanidins in grape seeds using electrospray mass spectrometry. Rapid Commun Mass Spectrom 17:9–16

    CAS  Article  PubMed  Google Scholar 

  32. Hellenbrand N, Sendker J, Lechtenberg M et al (2015) Isolation and quantification of oligomeric and polymeric procyanidins in leaves and flowers of hawthorn (Crataegus spp.). Fitoterapia 104:14–22

    CAS  Article  PubMed  Google Scholar 

  33. Hellström J, Sinkkonen J, Karonen M, Mattila P (2007) Isolation and structure elucidation of procyanidin oligomers from saskatoon berries (Amelanchier alnifolia). J Agric Food Chem 55:157–164

    Article  PubMed  Google Scholar 

  34. Hellström JK, Törrönen AR, Mattila PH (2009) Proanthocyanidins in common food products of plant origin. J Agric Food Chem 57:7899–7906

    Article  PubMed  Google Scholar 

  35. Hemström P, Irgum K (2006) Hydrophilic interaction chromatography. J Sep Sci 29:1784–1821

    Article  PubMed  Google Scholar 

  36. Hiraoka K (2013) Fundamentals of mass spectrometry. Springer, New York

    Book  Google Scholar 

  37. Hurst WJ, Stanley B, Glinski JA et al (2009) Characterization of primary standards for use in the HPLC analysis of the procyanidin content of cocoa and chocolate containing products. Molecules 14:4136–4146

    CAS  Article  PubMed  Google Scholar 

  38. Ito C, Oki T, Yoshida T et al (2013) Characterisation of proanthocyanidins from black soybeans: isolation and characterisation of proanthocyanidin oligomers from black soybean seed coats. Food Chem 141:2507–2512

    CAS  Article  PubMed  Google Scholar 

  39. Jakobek L (2015) Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem 175:556–567

    CAS  Article  PubMed  Google Scholar 

  40. Kamimural A, Takahashi T, Waranabe Y (2000) Investigation of topical application of procyanidin B-2 from apple to identify its potential use as a hair growing agent. Phytomedicine 7:529–536

    Article  Google Scholar 

  41. Karas M (1996) Matrix-assisted laser desorption ionization MS: a progress report. Biochem Soc Trans 24:897–900

    CAS  Article  PubMed  Google Scholar 

  42. Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Matrix- assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Process 78:53–68

    CAS  Article  Google Scholar 

  43. Karonen M, Loponen J, Ossipov V, Pihlaja K (2004) Analysis of procyanidins in pine bark with reversed-phase and normal-phase high-performance liquid chromatography–electrospray ionization mass spectrometry. Anal Chim Acta 522:105–112

    CAS  Article  Google Scholar 

  44. Karonen M, Liimatainen J, Sinkkonen J (2011) Birch inner bark procyanidins can be resolved with enhanced sensitivity by hydrophilic interaction HPLC–MS. J Sep Sci 34:3158–3165

    CAS  Article  PubMed  Google Scholar 

  45. Khan ML, Haslam E, Williamson MP (1997) Structure and conformation of the procyanidin B-2 dimer. Magn Reson Chem 35:854–858

    CAS  Article  Google Scholar 

  46. Kimmel EM, Jerome M, Holderness J et al (2011) Oligomeric procyanidins stimulate innate antiviral immunity in dengue virus infected human PBMCs. Antivir Res 90:80–86

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Kind T, Fiehn O (2010) Advances in structure elucidation of small molecules using mass spectrometry. Bioanal Rev 2:23–60

    Article  PubMed  PubMed Central  Google Scholar 

  48. Krueger CG, Vestling MM, Reed JD (2003) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of heteropolyflavan-3-ols and glucosylated heteropoly flavans in Sorghum [Sorghum bicolor (L.) Moench]. J Agric Food Chem 51:538–543

    CAS  Article  PubMed  Google Scholar 

  49. Kumar PR, Dinesh SR, Rini R (2016) LCMS—a review and a recent update. J Pharm Pharm Sci 5:377–391

    CAS  Google Scholar 

  50. Li H-J, Deinzer ML (2009) Proanthocyanidins in hops. Beer in health and disease prevention. Elsevier, Amsterdam, pp 333–348

    Chapter  Google Scholar 

  51. Li S, Xiao J, Chen L et al (2012) Identification of A-series oligomeric procyanidins from pericarp of Litchi chinensis by FT-ICR-MS and LC-MS. Food Chem 135:31–38

    CAS  Article  Google Scholar 

  52. Li W, Liu J, Guan R et al (2015) Chemical characterization of procyanidins from Spatholobus suberectus and their antioxidative and anticancer activities. J Funct Foods 12:468–477

    Article  Google Scholar 

  53. Malien-Aubert C, Dangles O, Amiot MJ (2002) Influence of procyanidins on the color stability of oenin solutions. J Agric Food Chem 50:3299–3305

    CAS  Article  PubMed  Google Scholar 

  54. Mann M, Kelleher NL (2008) Precision proteomics: the case for high resolution and high mass accuracy. PNAS 105:18132–18138

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Martin MA, Goya L, Ramos S (2013) Potential for preventive effects of cocoa and cocoa polyphenols in cancer. Food Chem Toxicol 56:336–351

    CAS  Article  PubMed  Google Scholar 

  56. Mateos-Martín ML, Fuguet E, Quero C et al (2012) New identification of proanthocyanidins in cinnamon (Cinnamomum zeylanicum L.) using MALDI-TOF/TOF mass spectrometry. Anal Bioanal Chem 402:1327–1336

    Article  PubMed  Google Scholar 

  57. Miller JM (2005) Chromatogarphy: concepts and contrasts, 2nd edn. Wiley, Hoboken

    Google Scholar 

  58. Monagas M, Quintanilla-López JE, Gómez-Cordovés C et al (2010) MALDI-TOF MS analysis of plant proanthocyanidins. J Pharm Biomed Anal 51:358–372

    CAS  Article  PubMed  Google Scholar 

  59. Montagut G, Bladé C, Blay M et al (2010) Effects of a grapeseed procyanidin extract (GSPE) on insulin resistance. J Nutr Biochem 21:961–967

    CAS  Article  PubMed  Google Scholar 

  60. Morris GA (1986) Modern NMR techniques for structure elucidation. Magn Reson Chem 24:371–403

    CAS  Article  Google Scholar 

  61. Nguyen HP, Schug KA (2008) The advantages of ESI-MS detection in conjunction with HILIC mode separations: fundamentals and applications. J Sep Sci 31:1465–1480

    CAS  Article  PubMed  Google Scholar 

  62. Niu S, Zhang W, Chait BT (1998) Direct comparison of infrared and ultraviolet wavelength matrix-assisted laser desorption/ionization mass spectrometry of proteins. J Am Soc Mass Spectrom 9:1–7

    CAS  Article  PubMed  Google Scholar 

  63. Ohnishi-Kameyama M, Yanagida A, Kanda T, Nagata T (1997) Identification of catechin oligomers from apple (Malus pumila cv. Fuji) in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and fast-atom bombardment mass spectrometry. Rapid Commun Mass Spectrom 11:31–36

    CAS  Article  PubMed  Google Scholar 

  64. Oliveira J, Alhinho Da Silva M, Teixeira N et al (2015) Screening of anthocyanins and anthocyanin-derived pigments in red wine grape pomace using LC-DAD/MS and MALDI-TOF techniques. J Agric Food Chem 63:7636–7644

    CAS  Article  PubMed  Google Scholar 

  65. Ortega N, Romero MP, Macià A et al (2010) Comparative study of UPLC-MS/MS and HPLC-MS/MS to determine procyanidins and alkaloids in cocoa samples. J Food Compos Anal 23:298–305

    CAS  Article  Google Scholar 

  66. Patras MA, Milev BP, Vrancken G, Kuhnert N (2014) Identification of novel cocoa flavonoids from raw fermented cocoa beans by HPLC-MSn. Food Res Int 63:353–359

    CAS  Article  Google Scholar 

  67. Peng Z, Hayasaka Y, Iland PG et al (2001) Quantitative analysis of polymeric procyanidins (tannins) from grape (vitis vinifera) seeds by reverse phase high- performance liquid chromatography. J Agric Food Chem 49:26–31

    CAS  Article  PubMed  Google Scholar 

  68. Pérez-Jiménez J, Torres JL (2012) Analysis of proanthocyanidins in almond blanch water by HPLC–ESI–QqQ–MS/MS and MALDI–TOF/TOF MS. Food Res Int 49:798–806

    Article  Google Scholar 

  69. Rastogi S, Arora V, Bhalla V (2015) Pycnogenol: the hercules of antioxidants. Indian J Drugs 3:5–10

    Google Scholar 

  70. Rigaud J, Escribano-Bailon MT, Prieur C et al (1993) Normal-phase high-performance liquid chromatographic separation of procyanidins from cacao beans and grape seeds. J Chromatogr A 654:255–260

    CAS  Article  Google Scholar 

  71. Sarnoski PJ, Johnson JV, Reed KA et al (2012) Separation and characterisation of proanthocyanidins in virginia type peanut skins by LC-MSn. Food Chem 131:927–939

    CAS  Article  Google Scholar 

  72. Self R, Eagles J, Galletti GC et al (1986) Fast atom bombardment mass spectrometry of polyphenols (syn. vegetable tannins). Biol Mass Spectrom 13:449–468

    CAS  Article  Google Scholar 

  73. Shi J, Yu J, Pohorly JE, Kakuda Y (2003) Polyphenolics in grape seeds—biochemistry and functionality. J Med Food 6:291–299

    CAS  Article  PubMed  Google Scholar 

  74. Shoji T, Masumoto S, Moriichi N et al (2006) Apple (Malus pumila) procyanidins fractionated according to the degree of polymerization using normal-phase chromatography and characterized by HPLC-ESI/MS and MALDI-TOF/MS. J Chromatogr A 1102:206–213

    CAS  Article  PubMed  Google Scholar 

  75. Silva Elipe MV (2003) Advantages and disadvantages of nuclear magnetic resonance spectroscopy as a hyphenated technique. Anal Chim Acta 497:1–25

    CAS  Article  Google Scholar 

  76. Sivakumaran S, Rumball W, Lane GA et al (2006) Variation of proanthocyanidins in lotus species. J Chem Ecol 32:1797–1816

    CAS  Article  PubMed  Google Scholar 

  77. Spencer P, Sivakumaran S, Fraser K et al (2007) Isolation and characterisation of procyanidins from Rumex obtusifolius. Phytochem Anal 18:193–203

    CAS  Article  PubMed  Google Scholar 

  78. Stringano E, Cramer R, Hayes W et al (2011) Deciphering the complexity of sainfoin (Onobrychis viciifolia) proanthocyanidins by MALDI-TOF mass spectrometry with a judicious choice of isotope patterns and matrixes. Anal Chem 83:4147–4153

    CAS  Article  PubMed  Google Scholar 

  79. Sui Y, Zheng Y, Li X et al (2016) Characterization and preparation of oligomeric procyanidins from Litchi chinensis pericarp. Fitoterapia 112:168–174

    CAS  Article  PubMed  Google Scholar 

  80. Sultana T, Stecher G, Mayer R et al (2008) Quality assessment and quantitative analysis of flavonoids from tea samples of different origins by HPLC-DAD-ESI-MS. J Agric Food Chem 56:3444–3453

    CAS  Article  PubMed  Google Scholar 

  81. Tanaka K, Waki H, Ido Y et al (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    CAS  Article  Google Scholar 

  82. Tarascou I, Barathieu K, André Y et al (2006) An improved synthesis of procyanidin dimers: regio–and stereocontrol of the interflavan bond. Eur J Org Chem 23:5367–5377

    Article  Google Scholar 

  83. Tatsuno T, Jinno M, Arima Y et al (2012) Anti-inflammatory and anti-melanogenic proanthocyanidin oligomers from peanut skin. Biol Pharm Bull 35:909–916

    CAS  Article  PubMed  Google Scholar 

  84. Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2:1231–1246

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Tsao R, McCallum J (2010) Fruit and vegetable phytochemicals. Wiley-Blackwell, Ames

    Google Scholar 

  86. U.S. Department of Agriculture (2004) USDA database for the proanthocyanidin content of selected foods. pp 1–33. https://www.ars.usda.gov/ARSUserFiles/80400525/Data/PA/PA.pdf. Accessed 8 May 2017

  87. Vázquez-Agell M, Urpi-Sarda M, Sacanella E et al (2013) Cocoa consumption reduces NF-kB activation in peripheral blood mononuclear cells in humans. Nutr Metab Cardiovasc Dis 23:257–263

    Article  PubMed  Google Scholar 

  88. Vivas N, Nonier M-F, de Gaulejac NV et al (2004) Differentiation of proanthocyanidin tannins from seeds, skins and stems of grapes (Vitis vinifera) and heartwood of Quebracho (Schinopsis balansae) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and thioacidolysis/liquid chromatography/electrospray ionization mass spectrometry. Anal Chim Acta 513:247–256

    CAS  Article  Google Scholar 

  89. Wang J, Kalt W, Sporns P (2000) Comparison between HPLC and MALDI-TOF MS analysis of anthocyanins in highbush blueberries. J Agric Food Chem 48:3330–3335

    CAS  Article  PubMed  Google Scholar 

  90. Wang Y, Chung S-J, Song WO, Chun OK (2011) Estimation of daily proanthocyanidin intake and major food sources in the U.S. diet. J Nutr 141:447–452

    CAS  Article  PubMed  Google Scholar 

  91. Wang C, He H, Zhang J et al (2016) High performance liquid chromatography (HPLC) fingerprints and primary structure identification of corn peptides by HPLC-diode array detection and HPLC-electrospray ionization tandem mass spectrometry. J Food Drug Anal 24:95–104

    CAS  Article  PubMed  Google Scholar 

  92. Wollgast J, Pallaroni L, Agazzi M-E, Anklam E (2001) Analysis of procyanidins in chocolate by reversed-phase high-performance liquid chromatography with electrospray ionisation mass spectrometric and tandem mass spectrometric detection. J Chromatogr A 926:211–220

    CAS  Article  PubMed  Google Scholar 

  93. Wysocki VH, Resing KA, Zhang Q, Cheng G (2005) Mass spectrometry of peptides and proteins. Methods 35:211–222

    CAS  Article  PubMed  Google Scholar 

  94. Xie D-Y, Dixon RA (2005) Proanthocyanidin biosynthesis—Still more questions than answers? Phytochemistry 66:2127–2144

    CAS  Article  PubMed  Google Scholar 

  95. Yanagida A, Murao H, Ohnishi-Kameyama M et al (2007) Retention behavior of oligomeric proanthocyanidins in hydrophilic interaction chromatography. J Chromatogr A 1143:153–161

    CAS  Article  PubMed  Google Scholar 

  96. Zhang H, Cheng Y, Luo X, Duan Y (2016) Protective effect of procyanidins extracted from the lotus seedpod on immune function injury induced by extremely low frequency electromagnetic field. Biomed Pharmacother 82:364–372

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the P50 AT000155 from the Office of Dietary Supplements and the National Center for Complementary and Integrative Health and F31AT009039 from the National Center for Complementary and Integrative Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard B. van Breemen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rue, E.A., Rush, M.D. & van Breemen, R.B. Procyanidins: a comprehensive review encompassing structure elucidation via mass spectrometry. Phytochem Rev 17, 1–16 (2018). https://doi.org/10.1007/s11101-017-9507-3

Download citation

Keywords

  • Procyanidins
  • Oligomeric
  • Polymeric
  • Structure elucidation