Advertisement

Phytochemistry Reviews

, Volume 16, Issue 5, pp 953–987 | Cite as

Withania somnifera (Linn.) Dunal: a review of chemical and pharmacological diversity

  • Rishu Kalra
  • Nutan Kaushik
Article

Abstract

Withania somnifera Dunal, is a commonly used herb in Indian Ayurvedic medicine system. Due to its pharmacological value and an inexhaustible source of novel biologically active compounds, it has been a great interest for researchers. The plant is known to possess anti-inflammatory, antitumor, antistress, antioxidant, immunomodulatory and hemopoetic properties. Various withanolides, steroidal lactones, have been isolated from W. somnifera and were known to have high therapeutic value. Based on the differences in the substitution patterns of withanolides the species has been classified into various chemotypes. So far, three different chemotypes have been identified, which have been further classified into ecotypes based on the contents of withanolides. Present review summarizes the phytochemical variability and pharmacological advances reported in literature.

Keywords

Ashwagandha Chemotypes Withanolides Withaferin A Indian ginseng 

Abbreviations

WS

Withania somnifera

NMR

Nuclear magnetic resonance spectroscopy

RP-HPLC

Reversed phase high performance liquid chromatography

LDH

Lactate dehydrogenase

CPK

Creatine phosphokinase

LPO

Lipid peroxidation

C-H-R

Cold, hypoxia and restraint

CS

Chronic stress

GABA

Gamma-Aminobutyric acid

NF-κB

Nuclear factor kappa-light-chain-enhancer of activated B cells

PCNA

Proliferating cell nuclear antigen

TNF

Tumor necrosis factor

IL-1β, IL-6

Interleukin

RNS

Reactive nitrogen species

ROS

Reactive oxygen species

AP-1

Activator protein 1

HUVECs

Human umbilical vein endothelial cell

Sp1

Specificity protein 1

VEGF

Vascular endothelial cell growth factor

NCI-H460

Lung tumor cell lines

HCT-116

Colon tumor cell lines

SF-268

Central Nervous System tumor cell lines

MCF-7

Breast tumor cell lines

BHA

Butylated hydroxyanisole

BHT

Butylated hydroxytoluene

TBHQ

Tert-butylhydroquinone

SOD

Superoxide dismutase

CAT

Catalase

GPX

Glutathione peroxidase

CNS

Central nervous system

WBC

White blood cells

PFC

Plaque forming cell

SRBS

Sheep red blood cells

NADPH-d

Nicotinamide adenine dinucleotide phosphate diaphorase

SH-SY5Y

Human neuroblastoma tumor cell lines

nNOS

Neuronal nitric oxide synthase

WSG

W. somnifera glycowithanolides

EPM

Elevated plus maze

ECS

Electroconvulsive shock

IA

Ibotenic acid

MnPCEs

Micronucleated polychromatic erythrocytes

DMBA

Dimethylbenz (a) anthracene

FeSO4

Ferrous sulfate

TBARS

Thiobarbituric acid and reactive substances

HP

Hydroperoxides

AST

Aspartate transaminase

ALT

Alanine transaminase

ALP

Alkaline phosphatase

PD

Parkinson’s disease

IR injury

Ischemia and reperfusion

TUNEL

Terminal deoxynucleotidyl transferase dUTP nick end labeling

PTZ

Pentylenetetrazol

T

Testosterone

LH

Luteinizing hormone

FSH

Follicle-stimulating hormone

PRL

Prolactin

Notes

Acknowledgement

Financial support from Department of Biotechnology, Governmnet of India is gratefully acknowledged.

References

  1. Abou-Douh AM (2002) New withanolides and other constituents from the fruit of Withania somnifera. Arch Pharm 335(6):267–276CrossRefGoogle Scholar
  2. Abraham A, Kirson I, Glotter E et al (1968) A chemotaxonomic study of Withania somnifera (L.) Dunal. Phytochemistry 7:957–962CrossRefGoogle Scholar
  3. Abraham A, Kirson I, Lavie D et al (1975) The withanolides of Withania somnifera chemotypes I and II. Phytochemistry 14:189–194CrossRefGoogle Scholar
  4. Ahmad M, Saleem S, Ahmad AS et al (2005) Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced parkinsonism in rats. Hum Exper Toxicol 24:137–147CrossRefGoogle Scholar
  5. Ahmad MK, Mahdi AA, Shukla KK et al (2010) Withania somnifera improves semen quality by regulating reproductive hormone levels and oxidative stress in seminal plasma of infertile males. Fert Ster 94(3):989–996CrossRefGoogle Scholar
  6. Al-Hindawi MK, Al-Khafaji SH, Abdul-Nabi MH (1992) Anti-granuloma activity of Iraqi Withania somnifera. J Ethnopharmacol 37(2):113–116PubMedCrossRefGoogle Scholar
  7. Ali M, Shuaib M, Ansari SH (1997) Withanolides from the stem bark of Withania somnifera. Phytochemistry 44(6):1163–1168CrossRefGoogle Scholar
  8. Anjaneyulu ASR, Rao SD (1997) New withanolides from the roots of Withania somnifera. Indian J Chem 36(5):424–433Google Scholar
  9. Anju (2011) Adaptogenic and anti-stress activity of Withania somnifera in stress induced mice. Res J Pharm Biol Chem Sci 2(4):676–684Google Scholar
  10. Atal CK, Gupta OP, Raghunathan K et al (1975) Pharmacognosy and Phytochemistry of Withania somnifera (Linn.) Dunal (Ashwagandha). Central Council for Research in Indian Medicine and Homeopathy, New DelhiGoogle Scholar
  11. Bandhoria P, Gupta VK, Amina M et al (2006) 6α,7α-epoxy-5α,17α, dihydroxy-1-oxo-22R-witha-2, 24-dienolide in leaves of Withania somnifera: isolation and its crystal structure. J Chem Crystal 36(2):153–159CrossRefGoogle Scholar
  12. Bessalle R, Lavie D (1992) Withanolide C, a chlorinated withanolide from Withania somnifera. Phytochemistry 31(10):3648–3651CrossRefGoogle Scholar
  13. Besselle R, Lavie D (1987) Semiquantitative reverse phase high performance liquid chromatography analysis of the ecotypes of Withania somnifera chemotype III. J Chromatogr A 389(1):195–210CrossRefGoogle Scholar
  14. Bhatnagar M, Sharma D, Salvi M (2009) Neuroprotective effects of withania somnifera dunal: a possible mechanism. Neurochem Res 34(11):1975–1983PubMedCrossRefGoogle Scholar
  15. Bhattacharya SK, Muruganandam AV (2003) Adaptogenic activity of Withania somnifera: an experimental study using a rat model of chronic stress. Pharmacol Biochem Behav 75(3):547–555PubMedCrossRefGoogle Scholar
  16. Bhattacharya SK, Goel RK, Kaur R et al (1987) Anti-stress activity of sitoindosides VII and VIII, New acylsterylglycosides from W. somnifera. Phytother Res 1:32–37CrossRefGoogle Scholar
  17. Bhattacharya SK, Kumar A, Ghosal S (1995) Effects of glycowithanolides from Withania somnifera on an animal model of Alzheimer’s disease and perturbed central cholinergic markers of cognition in rats. Phytotherapy Res 9(2):110–113CrossRefGoogle Scholar
  18. Bhattacharya SK, Satyan KS, Ghosal S (1997) Antioxidant activity of glycowithanolides from Withania somnifera. Indian J Exp Biol 35(3):236–239PubMedGoogle Scholar
  19. Bhattacharya A, Ramanathan M, Ghosal S et al (2000a) Effect of Withania somnifera glycowithanolides on iron-induced hepatotoxicity in rats. Phytother Res 14(7):568–570PubMedCrossRefGoogle Scholar
  20. Bhattacharya SK, Bhattacharya A, Sairam K et al (2000b) Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: an experimental study. Phytomedicine 6:463–469CrossRefGoogle Scholar
  21. Candelario M, Cuellar E, Reyes-Ruiz JM et al (2015) Direct evidence for GABAergic activity of Withania somnifera on mammalian ionotropic GABA A and GABAρ receptors. J Ethnopharmacol 171:264–272PubMedCrossRefGoogle Scholar
  22. Chandra S, Chatterjee P, Dey P et al (2012) Evaluation of anti-inflammatory effect of ashwagandha: a preliminary study in vitro. Pharmacog J 4(29):47–49CrossRefGoogle Scholar
  23. Chandran U, Patwardhan B (2017) Network ethnopharmacological evaluation of the immunomodulatory activity of Withania somnifera. J Ethnopharmacol. 197:250–256PubMedCrossRefGoogle Scholar
  24. Chang HC, Chang FR, Wang YC et al (2007) A bioactive withanolide Tubocapsanolide A inhibits proliferation of human lung cancer cells via repressing Skp2 expression. Mol Cancer Ther 6(5):1572–1578PubMedCrossRefGoogle Scholar
  25. Chopra RN, Chopra IC, Handa KL et al (eds) (1958) Withania somnifera Dunal. Indigenous drugs of India. U N Dhar and Sons, Calcutta, pp. 436Google Scholar
  26. Choudhary MI, Abbas S, Jamal SA et al (1996) Withania somnifera: a source of exotic withanolides. Heterocycles 42(2):555–563CrossRefGoogle Scholar
  27. Choudhary MI, Yousuf S, Nawaz SA et al (2004) Cholinesterase inhibiting withanolides from Withania somnifera. Chem Pharm Bull 52(11):1358–1361PubMedCrossRefGoogle Scholar
  28. Choudhary MI, Hussain S, Yousuf S et al (2010) Chlorinated and diepoxy withanolides from Withania somnifera and their cytotoxic effects against human lung cancer cell line. Phytochemistry 71(17–18):2205–2209PubMedCrossRefGoogle Scholar
  29. Datta S, Pal NKK, Nandy AK (2011) Inhibition of the emergence of multi drug resistant Staphylococcus aureus by Withania somnifera root extracts. Asian Pac J Trop Med 4(11):917–920PubMedCrossRefGoogle Scholar
  30. Davis L, Kuttan G (2000) Immunomodulatory activity of Withania somnifera. J Ethnopharmacol 71(1–2):193–200PubMedCrossRefGoogle Scholar
  31. Dhuley JN (2001) Nootropic-like effect of ashwagandha (Withania somnifera L.) in mice. Phytother Res 15(6):524–528PubMedCrossRefGoogle Scholar
  32. Eastwood FW, Kirson I, Lavie D et al (1980) Analysis of hybrids of Withania somnifera part 2. New withanolides from a cross of South African chemotype by chemotype II (Israel) in Withania somnifera. Phytochemistry 19(7):1503–1507CrossRefGoogle Scholar
  33. Ganzera M, Choudhary MI, Khan IA (2003) Quantitative HPLC analysis of withanolides in Withania somnifera. Fitoterapia 74:68–76PubMedCrossRefGoogle Scholar
  34. Gaur R, Kumar K (2010) Insect growth-regulating effects of Withania somnifera in a polyphagous pest, Spodoptera litura. Phytoparasitica 38(3):237–241CrossRefGoogle Scholar
  35. Ghosal S, Lal J, Srivastava R et al (1989) Immunomodulatory and CNS effects of sitoindosides IX and X, two new glycowithanolides from Withania somnifera. Phytother Res 3(5):201–206CrossRefGoogle Scholar
  36. Girish KS, Shashidharamurthy R, Nagaraju S et al (2004) Isolation and characterization of hyaluronidase a “spreading factor” from Indian cobra (Naja naja) venom. Biochimie 86(3):193–202PubMedCrossRefGoogle Scholar
  37. Girish KS, Machiah KD, Ushanandini S et al (2006) Antimicrobial properties of a non-toxic glycoprotein (WSG) from Withania somnifera (Ashwagandha). J Basic Microbiol 46(5):365–374PubMedCrossRefGoogle Scholar
  38. Glotter E, Waitman R, Lavie D (1966) Constitutents of Withania somnifera VIII a new steroidal lactone. 37–deoxy-14 a-hydroxy withaferin A. J Chem Soc 19:1765–1767Google Scholar
  39. Glotter E, Kirson I, Abraham A et al (1973) Constituents of Withania somnifera (Dunal) XIII—the withanolides of chemotype III. Tetrahedron 29:1353–1364CrossRefGoogle Scholar
  40. Glotter E, Abraham A, Guenzberg IK (1977) Naturally occurring steroidal lactones with 17 α-oriented side chain. Structure of Withanolide E & related compounds. J Chem Soc Perkins Trans 1:341–343CrossRefGoogle Scholar
  41. Gupta M, Kaur G (2016) Aqueous extract from the Withania somnifera leaves as a potential anti-neuroinflammatory agent: a mechanistic study. J Neuroinflammation 13(1):193PubMedCentralPubMedCrossRefGoogle Scholar
  42. Gupta GL, Rana AC (2007) Protective effect of Withania somnifera dunal root extract against protracted social isolation induced behavior in rats. Ind J Phys Pharmacol 51(4):345–353Google Scholar
  43. Gupta VK, Lal MM, Satti NK et al (2011) Isolation and crystal structure of 6α,7α-epoxy-5α, 17α,27-trihydroxy-1-oxo-22R-witha-2,24-dienolide monohydrate-A withasteroid from withania somnifera leaves. J Chem Crystall 41(7):1064–1070CrossRefGoogle Scholar
  44. Harikrishnan B, Subramanian P, Subash S (2008) Effect of Withania somnifera root powder on the levels of circulatory lipid peroxidation and liver marker enzymes in chronic hyperammonemia. E J Chem 5(4):872–877CrossRefGoogle Scholar
  45. Heyninck K, Lahtela-Kakkonen M, Van der Veken P et al (2014) Withaferin A inhibits NF-kappaB activation by targeting cysteine 179 in IKKβ. Biochem Pharmacol 91(4):501–509PubMedCrossRefGoogle Scholar
  46. Hooker JD (1885) Flora of British India, vol 4. Reeve and Co, London, p 228Google Scholar
  47. Ichikawa H, Takada Y, Shishodia S et al (2006) Withanolides potentiate apoptosis, inhibit invasion, and abolish osteoclastogenesis through suppression of nuclear factor-κB (NF-κB) activation and NF-κB-regulated gene expression. Mol Cancer Ther 5(6):1434–1445PubMedCrossRefGoogle Scholar
  48. Javaid A, Shafique S, Shafique S (2011) Management of Parthenium hysterophorus (Asteraceae) by Withania somnifera (Solanaceae). Nat Prod Res 25(4):407–416PubMedCrossRefGoogle Scholar
  49. Jayaprakasam B, Nair MG (2003) Cyclooxygenase-2 enzyme inhibitory withanolides from Withania somnifera leaves. Tetrahedron 59(6):841–849CrossRefGoogle Scholar
  50. Jayaprakasam B, Zhang Y, Seeram NP et al (2003) Growth inhibition of human tumor cell lines by withanolides from Withania somnifera leaves. Life Sci 74(1):125–132PubMedCrossRefGoogle Scholar
  51. Jayaprakasam B, Strasburg GA, Nair MG (2004) Potent lipid peroxidation inhibitors from Withania somnifera fruits. Tetrahedron 60(13):3109–3121CrossRefGoogle Scholar
  52. John J (2014) Therapeutic potential of Withania somnifera: a report on phyto-pharmacological properties. IJPSR 5(6):2131Google Scholar
  53. Kaileh M, Vanden Berghe W, Heyerick A et al (2007) Withaferin A strongly elicits IκB kinase β hyperphosphorylation concomitant with potent inhibition of its kinase activity. J Biol Chem 282(7):4253–4264PubMedCrossRefGoogle Scholar
  54. Kaur P, Sharma M, Mathur S et al (2003) Effect of 1-Oxo-5β, 6β-epoxy-witha-2-ene-27-ethoxy-olide isolated from the roots of Withania somnifera on stress indices in Wistar rats. J Alter Complem Med 9(6):897–907CrossRefGoogle Scholar
  55. Kaurav BPS, Wanjari MM, Chandekar A et al (2012) Influence of Withania somnifera on obsessive compulsive disorder in mice. Asian Pac J Trop Med 5(5):380–384PubMedCrossRefGoogle Scholar
  56. Khan H, Tariq SA, Khan MA et al (2011) Cholinesterase and lipoxygenase inhibition of whole plant Withania somnifera. Afr J Pharm Pharmacol 5(20):2272–2275Google Scholar
  57. Kirson I, Glotter E (1980) 14 α-hydroxy steroids from W. somnifera (L) Dunal. J Chem Res Synop 10:338–339Google Scholar
  58. Kirson I, Glotter E, Abraham A et al (1970) Constituents of Withania somnifera. Dunal XI. The structure of three new withnolides. Tetrahedron 26:2209–2215CrossRefGoogle Scholar
  59. Kirson I, Glotter E, Lavis D et al (1971) Constituents of Withania somnifera Dunal XII. The withanolides of an Indian Chemotype. J Chem Soc (org) 52:2032–2044Google Scholar
  60. Kirson I, Cohen A, Abraham A (1975) Withanolides Q and R, two new 23-hydroxy-steroidal lactones. J Chem Soc Perkins Trans 21:2136–2138CrossRefGoogle Scholar
  61. Kirson I, Abraham A, Sethi PD et al (1976) 4β-Hydroxywithanolide E, a new natural steroid with a 17α-oriented side-chain. Phytochemistry 15:340–342CrossRefGoogle Scholar
  62. Kirson I, Abraham A, Lavie D (1977) Chemical analysis of hybrids of Withania somnifera (L) Dun Chemotype III (Israel) by Indian I (Delhi). Isr J Chem 16:20–24CrossRefGoogle Scholar
  63. Kuboyama T, Tohda C, Komatsu K (2005) Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br J Pharmacol 144:961–971PubMedCentralPubMedCrossRefGoogle Scholar
  64. Kulkarni SK, Akula KK, Dhir A (2008) Effect of withania somnifera dunal root extract against pentylenetetrazol seizure threshold in mice: possible involvement of GABAergic system. Ind J Experim Biol 46(6):465–469Google Scholar
  65. Kumar A, Ali M, Mir SR (2004) A new withanolide from the roots of Withania somnifera. Ind J Chem Sec B Org Med Chem 43(9):2001–2003Google Scholar
  66. Kumar A, Ali M, Rahman MS et al (2015a) Antidote effect of plants of Himalayan sub-origin against arsenic induced toxicity. J Bio Chem Res 2:99–109Google Scholar
  67. Kumar A, Kumar R, Rahman MS et al (2015b) Phytoremedial effect of Withania somnifera against arsenic-induced testicular toxicity in Charles Foster rats. Avicenna J Phytomed 5(4):355PubMedCentralPubMedGoogle Scholar
  68. Kuroyanagi M, Shibata K, Umehara K (1999) Cell differentiation inducing steroids from Withania somnifera L. (Dun.). Chem Pharm Bull 47(11):1646–1649CrossRefGoogle Scholar
  69. Lal P, Misra L, Sangwan RS et al (2006) New withanolides from fresh berries of Withania somnifera. Z Naturforsch B J Chem Sci 61(9):1143–1147Google Scholar
  70. Lavie D, Glotter E, Shvo Y (1965) Constituents of Withania somnifera-III—the side chain of Withaferin A. J Org Chem 30:1774–1778CrossRefGoogle Scholar
  71. Lavie D, Green Field S, Glotter E (1966) Constituents of Withania somnifera Dun. Part VI. The stereochemistry of withaferin A. J Chem Soc C 19:1753–1756CrossRefGoogle Scholar
  72. Lavie D, Kirson I, Glotter E (1968) Constituents of W. somnifera part X. The structure of withanolide D. Isr J Chem 5(6):671–678CrossRefGoogle Scholar
  73. Lavie D, Kirson I, Glotter E et al (1972) Crystal and molecular structure of withanolide E, a new natural steroidal lactone with a 17α-side-chain. J Chem Soc Chem Commun 15:877–878CrossRefGoogle Scholar
  74. Lavie D, Kirson I, Abraham A (1975) Chemical approach to genetics. Isr J Chem 14:60–68CrossRefGoogle Scholar
  75. Leyon PV, Kuttan G (2004) Effect of Withania somnifera on B16F-10 Melanoma induced Metastasis in Mice. Phytother Res 18(2):118–122PubMedCrossRefGoogle Scholar
  76. Machiah DK, Girish KS, Gowda TV (2006) A glycoprotein from a folk medicinal plant, Withania somnifera, inhibits hyaluronidase activity of snake venoms. Comp Biochem Physiol 143(2):158–161Google Scholar
  77. Mahdi AA, Shukla KK, Ahmad MK et al (2011) Withania somnifera improves semen quality in stress-related male fertility. J Evid Based Complement Altern Med, Med art. no, p 576962Google Scholar
  78. Majumdar DN (1952) Alkaloid constituents of W. somnifera. Curr Sci 21:46–48Google Scholar
  79. Majumdar DN (1955) Withania somnifera Dunal. II Alkaloid constituents and their chemical characterisation. Indian J Pharmacol 17:158–161Google Scholar
  80. Malik F, Singh J, Khajuria A et al (2007) A standardized root extract of Withania somnifera and its major constituent withanolide-A elicit humoral and cell-mediated immune responses by up regulation of Th1-dominant polarization in BALB/c mice. Life Sci 80(16):1525–1538PubMedCrossRefGoogle Scholar
  81. Mathur S, Kaur P, Sharma M et al (2004) The treatment of skin carcinoma, induced by UV B radiation, using 1-oxo-5β, 6β-epoxy-witha-2-enolide, isolated from the roots of Withania somnifera, in a rat model. Phytomedicine 11(5):452–460PubMedCrossRefGoogle Scholar
  82. Matsuda H, Murakami T, Kishi A et al (2001) Structures of withanosides I, II, III, IV, V, VI, and VII, new withanolide glycosides, from the roots of Indian Withania somnifera DUNAL and inhibitory activity for tachyphylaxis to clonidine in isolated guinea-pig ileum. Bioorg Med Chem 9(6):1499–1507PubMedCrossRefGoogle Scholar
  83. Menssen HG, Stapel G (1973) Uber ein c28–steroidlacton aus der wurzel von Withania somnifera. Planta Med 24(05):8–12PubMedCrossRefGoogle Scholar
  84. Mikolai J, Erlandsen A, Murison A et al (2009) In vivo effects of ashwagandha (Withania somnifera) extract on the activation of lymphocytes. J Altern Complement Med 15(4):423–430PubMedCrossRefGoogle Scholar
  85. Misra L, Lal P, Sangwan RS et al (2005) Unusually sulfated and oxygenated steroids from Withania somnifera. Phytochemistry 66(23):2702–2707PubMedCrossRefGoogle Scholar
  86. Misra L, Mishra P, Pandey A et al (2008) Withanolides from Withania somnifera roots. Phytochemistry 69(4):1000–1004PubMedCrossRefGoogle Scholar
  87. Misra L, Mishra P, Pandey A et al (2012) 1,4-Dioxane and ergosterol derivatives from Withania somnifera roots. J Asian Nat Prod Res 14(1):39–45PubMedCrossRefGoogle Scholar
  88. Mohan R, Hammers H, Bargagna-Mohan P et al (2004) Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 7(2):115–122PubMedCrossRefGoogle Scholar
  89. Mohanty IR, Arya DS, Gupt SK (2008) Withania somnifera provides cardioprotection and attenuates ischemia-reperfusion induced apoptosis. Clin Nutr 27(4):635–642PubMedCrossRefGoogle Scholar
  90. Mondal S, Roy S, Maity R et al (2012) Withanolide D, carrying the baton of Indian Rasayana herb as a lead candidate of antileukemic agent in modern medicine. Adv Exp Med Biol 749:295–312PubMedCrossRefGoogle Scholar
  91. Nittala SS, Lavie D (1981) Chemistry and genetics of withanolides in Withania somnifera hybrids. Phytochemistry 20(12):2741–2748CrossRefGoogle Scholar
  92. Nittala SS, Lavie D (1982) Studies on the 5β,6β-epoxide opening in withanolides. J Chem Soc Perkin Trans 1:2835–2839CrossRefGoogle Scholar
  93. Nittala SS, Velde VV, Frolow F et al (1981) Chlorinated withanolides from Withania somnifera and Acnistus breviflorus. Phytochemistry 20(11):2547–2552CrossRefGoogle Scholar
  94. Panjamurthy K, Manoharan S, Menon VP et al (2008) Protective role of withaferin-A on 7,12-dimethylbenz(a)anthracene-induced genotoxicity in bone marrow of Syrian golden hamsters. J Biochem Mol Toxicol 22(4):251–258PubMedCrossRefGoogle Scholar
  95. Pant M, Ambwani T, Umapathi V (2012) Antiviral activity of Ashwagandha extract on infectious bursal disease virus replication. Ind J Sci Technol 5(5):2750–2751Google Scholar
  96. Power FB, Salway AH (1911) The constituents of W. somnifera. J Chem Soc 99:490–507CrossRefGoogle Scholar
  97. Prasanna KS, Shilpa P, Salimath BP (2009) Withaferin A suppresses the expression of vascular endothelial growth factor in Ehrlich ascites tumor cells via Sp1 transcription factor. Curr Trends Biotechnol Pharm 3(2):138–148Google Scholar
  98. Rahman AU, Jamal SA, Choudhary MI, Asif E (1991) Two withanolides from Withania somnifera. Phytochemistry 30(11):3824–3826CrossRefGoogle Scholar
  99. Rahman AU, Jamal SA, Choudhary MI (1992) Two new withanolides from Withania somnifera. Heterocycles 34(4):689–698CrossRefGoogle Scholar
  100. Rahman AU, Abbas S, Shahwar DE, Jamal SA, Choudhary MI (1993) New withanolides from Withania spp. J Nat Prod 56(7):1000–1006CrossRefGoogle Scholar
  101. Rahman AU, Shabbir M, Yousaf M, Qureshi S, Shahwar DE, Naz A, Choudhary MI (1999) Three withanolides from Withania coagulans. Phytochemistry 52(7):1361–1364CrossRefGoogle Scholar
  102. RajaSankar S, Manivasagam T, Surendran S (2009) Ashwagandha leaf extract: a potential agent in treating oxidative damage and physiological abnormalities seen in a mouse model of Parkinson’s disease. Neurosci Lett 454(1):11–15PubMedCrossRefGoogle Scholar
  103. Ray S, Jha S (2001) Production of withaferin A in shoot cultures of Withania somnifera. Planta Med 67(5):432–436PubMedCrossRefGoogle Scholar
  104. Sabina EP, Rasool M, Vedi M et al (2013) Hepatoprotective and antioxidant potential of Withania somnifera against paracetamol-induced liver damage in rats. Int J Pharm Pharm Sci 5(2):648–651Google Scholar
  105. Schmelze GH, Gurib-Fakim A, Arroo R et al (2008) Plant resources of tropical Africa 11(1)—medicinal plants 1. Backhuys Publishers, Wageningen, p 630. ISBN 978-90-5782-204-9Google Scholar
  106. Schröter H-B, Neumann D, Katritzky AR et al (1966) Withasomnine. A pyrazole alkaloid from Withania somnifera Dun. Tetrahedron 22:2895–2897CrossRefGoogle Scholar
  107. Schwarting AE, Bobbit JM, Rother A et al (1963) The alkaloids of W. somnifera. Llyoida 26:258–273Google Scholar
  108. Seth C, Mas C, Conod A et al (2016) Long-lasting WNT-TCF response blocking and epigenetic modifying activities of Withanolide F in human cancer cells. PLOS ONE 11(12):e0168170PubMedCentralPubMedCrossRefGoogle Scholar
  109. Sethi PD, Subramanian SS (1976) Steroidal constituents of Withania coagulans roots. Indian J Pharm 38:22–23Google Scholar
  110. Sethi PD, Subramanian SS (2006) Steroidal constituents of Withania coagulans roots. Indian J Pharm 38(1):22–23Google Scholar
  111. Shohat B, Kirson I, Lavie D (1978) Immunodepressive properties of withaferin and withanolide D. Biomedicine 28:18–23PubMedGoogle Scholar
  112. Shukla KK, Mahdi AA, Mishra V et al (2011) Withania somnifera improves semen quality by combating oxidative stress and cell death and improving essential metal concentrations. Reprod BioMed Online 22(5):421–427PubMedCrossRefGoogle Scholar
  113. Siddique AA, Joshi P, Misra L et al (2014) 5, 6-De-epoxy-5-en-7-one-17-hydroxy withaferin A, a new cytotoxic steroid from Withania somnifera L. Dunal leaves. Nat Prod Res 28(6):392–398PubMedCrossRefGoogle Scholar
  114. Singariya P, Mourya KK, Kumar P (2011) Comparative microcidal activity of Withania somnifera and Cenchrus setigerus against the pathogenic micro-organisms. Int J Pharm Pharmaceutical Sci 3(5):511–515Google Scholar
  115. Singariya P, Kumar P, Mourya K (2012a) Antibacterial and antifungal potential of some polar solvent extracts of Ashwagandha (Solanaceae) against the nosocomial pathogens. Int J Green Pharm 6(1):17–22CrossRefGoogle Scholar
  116. Singariya P, Kumar P, Mourya KK (2012b) Screening for antimicrobial potency of methanolic extract of Indian Ginseng. Int J Pharm Pharmaceutical Sci 4(3):553–557Google Scholar
  117. Singh S, Kumar S (1998) Withania somnifera: The Indian Ginseng Ashwagandha. Central Institute of Medicinal and Aromatic plants, Lucknow, p 2Google Scholar
  118. Subbaraju GV, Vanisree M, Rao CV et al (2006) Ashwagandhanolide, a bioactive dimeric thiowithanolide isolated from the roots of Withania somnifera. J Nat Prod 69(12):1790–1792PubMedCrossRefGoogle Scholar
  119. TERI (2006) Report on chemoprofiling of medicinal plants for their sustainable utilization. The Energy and Resources Institute, New Delhi, p 46Google Scholar
  120. Tohda C, Joyashiki E (2009) Sominone enhances neurite outgrowth and spatial memory mediated by the neurotrophic factor receptor, RET. Br J Pharmacol 157(8):1427–1440PubMedCentralPubMedCrossRefGoogle Scholar
  121. Tong X, Zhang H, Timmermann BN (2011) Chlorinated withanolides from Withania somnifera. Phytochem Lett 4(4):411–414PubMedCentralPubMedCrossRefGoogle Scholar
  122. Velde VV, Lavie D (1981) New withanolides of biogenetic interest from Withania somnifera. Phytochemistry 20:1359–1364CrossRefGoogle Scholar
  123. Velde VV, Lavie D (1982) A Δ16-withanolide in Withania somnifera as a possible precursor for α-side-chains. Phytochemistry 21(3):731–733CrossRefGoogle Scholar
  124. Visavadiya NP, Narasimhacharya AVRL (2007) Ameliorative effects of herbal combinations in hyperlipidemia. Phytomed 14(2–3):136–142CrossRefGoogle Scholar
  125. Vitali G, Conte L, Nicoletti M (1996) Withanolide composition and in vitro culture of Italian Withania somnifera. Planta Med 62(3):287–288PubMedCrossRefGoogle Scholar
  126. Xu Y-M, Marron MT, Seddon E et al (2009) 2,3-Dihydrowithaferin A-3β-O-sulfate, a new potential prodrug of withaferin A from aeroponically grown Withania somnifera. Bioorg Med Chem 17(6):2210–2214PubMedCrossRefGoogle Scholar
  127. Xu Y-M, Gao S, Bunting DP et al (2011) Unusual withanolides from aeroponically grown Withania somnifera. Phytochemistry 72(6):518–522PubMedCrossRefGoogle Scholar
  128. Yoshida M, Hoshi A, Kuretani K et al (1979) Relationship between chemical structure and antitumor activity of withaferin A analogues. J Pharmacobiodyn 2:92–97CrossRefGoogle Scholar
  129. Zhang H, Samadi AK, Cohen MS et al (2012) Antiproliferative withanolides from the solanaceae: a structure-activity study. Pure Appl Chem 84(6):1353–1367PubMedCentralPubMedCrossRefGoogle Scholar
  130. Zhao J, Nakamura N, Hattori M et al (2002) Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull 50(6):760–765PubMedCrossRefGoogle Scholar
  131. Ziauddin M, Phansalkar N, Patki P et al (1996) Studies on the immunomodulatory effects of Ashwagandha. J Ethnopharmacol 50(2):69–76PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.The Energy and Resources Institute (TERI), Darbari Seth BlockIndia Habitat CentreNew DelhiIndia

Personalised recommendations