Phytochemistry Reviews

, Volume 16, Issue 2, pp 333–353 | Cite as

Scopolamine: a journey from the field to clinics

  • Sophie Friederike Ullrich
  • Hansjörg Hagels
  • Oliver Kayser


Tropane alkaloids are present in many different plants of the Solanaceae family and widely known for their anticholinergic properties. Among them, most valued and increasingly demanded is scopolamine, also known under the name of hyoscine, which is used as pharmaceutical active substance in the treatment of postoperative nausea and vomiting, motion sickness and gastrointestinal, renal and biliary spasms for instance. It naturally occurs in various plant genera, e.g. Anisodus, Anthocercis, Atropa, Brugmansia, Datura, Duboisia, Hyoscyamus, Mandragora and Scopolia and the purified substance has a long history of use dating back to the nineteenth century. Until today, the supply in scopolamine is mainly covered by large scale field plant cultivation of hybrids between Duboisia myoporoides and Duboisia leichhardtii. Biotechnological approaches optimising the alkaloid biosynthesis, for example the use of callus cultures or genetically transformed hairy root cultures, are not competitive by now. The aim of this review is to give a comprehensive overview regarding the current knowledge on botanical origin, pharmacology, biosynthesis as well as agricultural and biotechnological production of scopolamine.


Anticholinergics Hyoscine Solanaceae Tropane alkaloids 



Arginine decarboxylase


Central nervous system


Cytochrome P450 80F1

E. coli

Escherichia coli






Hyoscyamine 6β-hydroxylase (enzyme/gene)


Muscarinic acetylcholine receptors


N-methylputrescine oxidase


Ornithine decarboxylase


Putrescine N-methyltransferase (enzyme/gene)

S. cerevisiae

Saccharomyces cerevisiae




Tropinone-reductase I (enzyme/gene)


Tropinone-reductase I (enzyme/gene)



The research from the DISCO project leading to these results has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement 613513. This work is furthermore supported financially by Boehringer Ingelheim Pharma GmbH & Co. KG.. The authors are grateful to Andreas Rothauer for literature supply and proof reading of the manuscript.


  1. Adamse P, van Egmond HP (2010) Tropane alkaloids in food. RIKILT—Institute of Food Safety. Cited 20 Apr 2016
  2. Alaghemand A, Ghorbanpour M, Asli DE et al (2013) Influence of urea fertilization on tropane alkaloids content of Henbane (Hyoscyamus niger L.) under hydroponic culture conditions. Adv Environ Biol 7(2):301–307Google Scholar
  3. Al-Humaid AI (2004) Effects of compound fertilization on growth and alkaloids of Datura plants. J Plant Nutr 27(12):2203–2219CrossRefGoogle Scholar
  4. Apfel CC, Zhang K, George E et al (2010) Transdermal scopolamine for the prevention of postoperative nausea and vomiting: a systematic review and meta-analysis. Clin Ther 32(12):1987–2002PubMedCrossRefGoogle Scholar
  5. Armstrong DW, Han SM, Han YI (1987) Separation of optical isomers of Scopolamine, Cocaine, Homatropine, and Atropine. Anal Biochem 167:261–264PubMedCrossRefGoogle Scholar
  6. Barr RG (2006) Tiotropium for stable chronic obstructive pulmonary disease: a meta-analysis. Thorax 61(10):854–862PubMedPubMedCentralCrossRefGoogle Scholar
  7. Belabbassi O, Khelifi-Slaoui M, Zaoui D et al (2016) Synergistic effects of polyploidization and elicitation on biomass and hyoscyamine content in hairy roots of Datura stramonium. Biotechnol Agron Soc Environ 20(3):408–416Google Scholar
  8. Berger M (2011) Kleines Lexikon der Nachtschattengewächse. Nachtschatten Verlag, SolothurnGoogle Scholar
  9. Beyer J, Drummer OH, Maurer HH (2009) Analysis of toxic alkaloids in body samples. Forensic Sci Int 185(1–3):1–9PubMedCrossRefGoogle Scholar
  10. Bimmerle G (1993) “Truth” Drugs in Interrogation. Center for the study of intelligence. CIA historical review programme. Cited 20 Apr 2016
  11. Biondi S, Fornalé S, Oksman-Caldentey K et al (2000) Jasmonates induce over-accumulation of methylputrescine and conjugated polyamines in Hyoscyamus muticus L. root cultures. Plant Cell Rep 19(7):691–697CrossRefGoogle Scholar
  12. Bymaster FP, McKinzie DL, Felder CC et al (2003) Use of M1–M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res 28(3/4):437–442PubMedCrossRefGoogle Scholar
  13. Cao Y-D, He Y-C, Li H et al (2015) Efficient biosynthesis of rare natural product scopolamine using E. coli cells expressing a S14P/K97A mutant of hyoscyamine 6β-hydroxylase AaH6H. J Biotechnol 211:123–129PubMedCrossRefGoogle Scholar
  14. Cardillo AB, Talou J, Giulietti AM (2008) Expression of Brugmansia candida Hyoscyamine 6β-hydroxylase gene in Saccharomyces cerevisiae and its potential use as biocatalyst. Microb Cell Fact 7(1):17PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cardillo AB, Otálvaro AÁM, Busto VD et al (2010) Scopolamine, anisodamine and hyoscyamine production by Brugmansia candida hairy root cultures in bioreactors. Process Biochem 45(9):1577–1581CrossRefGoogle Scholar
  16. Carter AJ (2003) Myths and mandrakes. J Roy Soc Med 96:144–147PubMedPubMedCentralCrossRefGoogle Scholar
  17. Carvalho EB, Curtis WR (1998) Characterization of fluid-flow resistance in root cultures with a convective flow tubular bioreactor. Biotechnol Bioeng 60(3):375–384PubMedCrossRefGoogle Scholar
  18. Caulfield MP, Birdsall NJM (1998) International union of pharmacology. XVII. classification of muscarinic acetylcholine receptors. Pharmacol Rep 50(2):279–290Google Scholar
  19. Chand S, Basu P (1998) Embryogenesis and plant regeneration from callus cultures derived from unpollinated ovaries of Hyoscyamus muticus L. Plant Cell Rep 17(4):302–305CrossRefGoogle Scholar
  20. Choi O, Choo CH, Cho SC (1964) The studies on the residual accommodation of Koreans: II. The residual accommodation under 0.5% scopolamine and 1% cyclogyl cycloplegia. Yonsei Med J 5(1):62–64PubMedCrossRefGoogle Scholar
  21. Christen P, Roberts MF, Phillipson JD et al (1989) High-yield production of tropane alkaloids by hairy-root cultures of a Datura candida hybrid. Plant Cell Rep 8:75–77PubMedCrossRefGoogle Scholar
  22. Corallo CE, Whitfield A, Wu A (2009) Anticholinergic syndrome following an unintentional overdose of scopolamine. Ther Clin Risk Manag 5:719–723PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cusido RM, Palazón J, Pinol T et al (1999) Datura metel: in vitro production of tropane alkaloids. Planta Med 65:144–148PubMedCrossRefGoogle Scholar
  24. De Luca V, St Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 5(4):1360–1385Google Scholar
  25. Dehghan E, Häkkinen ST, Oksman-Caldentey K-M et al (2012) Production of tropane alkaloids in diploid and tetraploid plants and in vitro hairy root cultures of Egyptian henbane (Hyoscyamus muticus L.). Plant Cell, Tissue and Organ Culture (PCTOC) 110(1):35–44Google Scholar
  26. Dobo P, Fodor G, Janzsó G et al (1959) The Stereochemistry of the Tropane Alkaloids. Part XII. The Total Synthesis of Scopolamine. J Chem Soc:3461–3465Google Scholar
  27. Dräger B (2006) Tropinone reductases, enzymes at the branch point of tropane alkaloid metabolism. Phytochemistry 67(4):327–337PubMedCrossRefGoogle Scholar
  28. Dupraz J-M, Christen P, Kapetanidis I (1994) Tropane alkaloids in transformed roots of Datura quercolia. Planta Med 60:158–162PubMedCrossRefGoogle Scholar
  29. EFSA (2013) Scientific opinion on tropane alkaloids in food and feed. EFSA Journal Cited 16 Febr 2016
  30. Endo T, Yasuyuku Y (1985) Alkaloid production in cultured roots of three species of Duboisia. Phytochemistry 24(6):1233–1236CrossRefGoogle Scholar
  31. El Imam YMA, Evan WC (1984) Tropane alkaloids of species of Anthocercis Cyphanthera and Crenidium. Planta Med 50(1):86–87PubMedCrossRefGoogle Scholar
  32. Evans WC, Ramsey KPA (1981) Tropane alkaloids from Anthocercis and Anthotroche. Phytochemistry 20:497–499CrossRefGoogle Scholar
  33. Evans WC, Ramsey KPA (1983) Alkaloids of the Solanaceae tribe Anthocecideae. Phytochemistry 22(10):2219–2225CrossRefGoogle Scholar
  34. Evans WC, Wellendorf M (1959) The alkaloids of the roots of Datura. J Chem Soc:1406–1409Google Scholar
  35. Evans WC, Ghani A, Woolley VA (1972) Alkaloids of Solandra species. Phytochemistry 11:470–472CrossRefGoogle Scholar
  36. Ferrie AMR (2009) Current Status of Doubled Haploids in Medicinal Plants. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer Verlag, Berlin HeidelbergGoogle Scholar
  37. Finkel R, Cubeddu LX, Clark MA (eds) (2009) Lippincott’s Illustrated Reviews: Pharmacology, 4th edn. Lippincott Williams & Wilkins, FloridaGoogle Scholar
  38. Fodor G, Kovács Ö (1953) The Stereochemistry of the Tropane Alkaloids. Part III. The Configuration of Scopolamine and of Valeroidine. J Chem Soc:2341-2344Google Scholar
  39. Foley P (2006) Duboisia myoporoides: the medical career of a native Australian plant. Hist Rec Aust Sci 17:31–69CrossRefGoogle Scholar
  40. Gadamer J, Hammer F (1921) Beiträge zur Kenntnis des Scopolins. Arch Pharm 259(1–4):110–135CrossRefGoogle Scholar
  41. Geis G (1959) In Scopolamine Veritas. J Crim L & Criminology 50(4):347–357Google Scholar
  42. Gerarde J (1597) The Herball or Generall Historie of Plantes. Virtuelle Fachbibliothek Biologie. Cited 18 Apr 2016
  43. Godara R, Katoch M, Katoch R et al (2014) In Vitro Acaricidal Activity of Atropa belladonna and Its Components, Scopolamine and Atropine, against Rhipicephalus (Boophilus) microplus. Sci World J 2014:1–6CrossRefGoogle Scholar
  44. Griffin WJ, Lin GD (2000) Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry 53:623–637PubMedCrossRefGoogle Scholar
  45. Grynkiewicz G, Gadzikowska M (2008) Tropane alkaloids as medicinally useful natural products and their synthetic derivatives as new drugs. Pharmacol Rep 60:439–463PubMedGoogle Scholar
  46. Gyermek L (1997) Pharmacology of Antimuscarinic Agents. In: Kane H, Didier D, Boyd D, Luong K (eds) Handbooks in Pharmacology and Toxicology. CRC Press, Boca RatonGoogle Scholar
  47. Hall RCW, Popkin MK, Mchenry LE (1977) Angel’s Trumpet Psychosis: a Central Nervous System Anticholinergic Syndrom. Am J Psychiat 143(3):312–314Google Scholar
  48. Hashimoto T, Yamada Y (1994) Alkaloid biogenesis: molecular aspects. Annu Rev Plant Physiol Plant Mol Biol 45:257–285CrossRefGoogle Scholar
  49. Hashimoto T, Yukimune Y, Yamada Y (1989) Putrescine and putrescine N-methyltransferase in the biosynthesis of tropane alkaloids in cultured roots of Hyoscyamus albus. Planta 178:123–130PubMedCrossRefGoogle Scholar
  50. Hashimoto T, Hayashi A, Amano Y et al (1991) Hyoscyamine 6β-hydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is lokalized at the pericycle of the root. J Biol Chem 266(7):4648–4653PubMedGoogle Scholar
  51. Hashimoto T, Nakajima K, Ongena G et al (1992) Two Tropinone Reductases with Distinct Stereospecificities from Cultured Roots of Hyoscyamus niger. Plant Physiol 100(2):836–845PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hashimoto T, Matsuda J, Yamada Y (1993a) Two-step epoxidation of hyoscyamine to scopolamine is catalyzed by bifunctional hyoscyamine 6β-hydroxylase. FEBS Lett 329(1/2):35–39PubMedCrossRefGoogle Scholar
  53. Hashimoto T, Yun D-J, Yamada Y (1993b) Production of tropane alkaloids in genetically engineered root cultures. Phytochemistry 32(3):713–718CrossRefGoogle Scholar
  54. Heim WG, Sykes KA, Hildreth SB et al (2007) Cloning and characterization of a Nicotiana tabacum methylputrescine oxidase transcript. Phytochemistry 68(4):454–463PubMedCrossRefGoogle Scholar
  55. Hibi N, Fujita T, Hatano M et al (1992) Putrescine N-Methyltransferase in cultured roots of Hyoscyamus albus. Plant Physiol 100:826–835PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hills KL, Bottomley W, Mortimer PI (1953) Occurrence of Nicotine together with Hyoscine in Duboisia myoporoides R. Br. Nature 171(4349):435PubMedCrossRefGoogle Scholar
  57. Humphrey AD, O’Hagan D (2001) Tropane alkaloid biosynthesis. A century old problem unresolved. Nat Prod Rep 18(5):494–502PubMedCrossRefGoogle Scholar
  58. Ikenaga T, Hama K, Takemoto S et al (1985) Seasonal Variations of Tropane Alkaloids Content in Duboisia. Jpn J Trop Agr 29(4):229–230Google Scholar
  59. Jackson BP, Berry MI (1979) Mandragora—taxonomy and chemistry of the European species. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Press, London, Acad, pp 505–512Google Scholar
  60. Jaffe RJ, Novakovic V, Peselow ED (2013) Scopolamine as an Antidepressant. Clin Neuropharmacol 36(1):24–26PubMedCrossRefGoogle Scholar
  61. Jaremicz Z, Luczkiewicz M, Kokotkiewicz A et al (2014) Production of tropane alkaloids in Hyoscyamus niger (black henbane) hairy roots grown in bubble-column and spray bioreactors. Biotechnol Lett 36(4):843–853PubMedCrossRefGoogle Scholar
  62. Jaziri M, Legros M, Homes J et al (1988) Tropine alkaloids production by hairy root cultures of Datura stramonium and Hyoscyamus niger. Phytochemistry 27(2):419–420CrossRefGoogle Scholar
  63. Jouhikainen K, Lindgren L, Jokelainen T et al (1999) Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering. Planta 208:545–551CrossRefGoogle Scholar
  64. Kai G, Chen J, Li L et al (2007) Molecular Cloning and Characterization of a New cDNA Encoding Hyoscyamine 6β-hydroxylase from Roots of Anisodus acutangulus. J Biochem Mol Biol 40(5):715–722PubMedGoogle Scholar
  65. Kai G, Liu Y, Wang X et al (2011a) Functional identification of hyoscyamine 6β-hydroxylase from Anisodus acutangulus and overproduction of scopolamine in genetically-engineered Escherichia coli. Biotechnol Lett 33(7):1361–1365PubMedCrossRefGoogle Scholar
  66. Kai G, Yang S, Luo X et al (2011b) Co-expression of AaPMT and AaTRI effectively enhances the yields of tropane alkaloids in Anisodus acutangulus hairy roots. BMC Biotechnol 11(1):43PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kai G, Zhang A, Guo Y et al (2012) Enhancing the production of tropane alkaloids in transgenic Anisodus acutangulus hairy root cultures by over-expressing tropinone reductase I and hyoscyamine-6β-hydroxylase. Mol BioSyst 8(11):2883PubMedCrossRefGoogle Scholar
  68. Kamada H, Okamura N, Satake M et al (1986) Alkaloid production by hairy root cultures in Atropa belladonna. Plant Cell Rep 5:239–242PubMedCrossRefGoogle Scholar
  69. Kholodenko BN, Cascante M, Hoek JB et al (1998) Metabolic design: how to engineer a living cell to desired metabolite concentrations and fluxes. Biotechnol Bioeng 59(2):239–247PubMedCrossRefGoogle Scholar
  70. Kim Y, Kim J, Kim OJ et al (2014) Intoxication by angel’s trumpet: case report and literature review. BMC Res Notes 7Google Scholar
  71. Kintz P, Villain M, Barguil Y et al (2006) Testing for atropine and scopolamine in hair by LC-MS-MS after Datura inoxia abuse. J Anal Toxicol 30(7):454–457PubMedCrossRefGoogle Scholar
  72. Knab T (1977) Notes Concerning Use of Solandra among the Huichol. Econ Bot 31:80–86CrossRefGoogle Scholar
  73. Koleva II, van Beek TA, Soffers AEMF et al (2012) Alkaloids in the human food chain - Natural occurrence and possible adverse effects. Mol Nutr Food Res 56(1):30–52PubMedCrossRefGoogle Scholar
  74. Lavania UC, Srivastava S (1991) Enhanced productivity of tropane alkaloids and fertility in artificial autotetraploids of Hyoscyamus niger L. Euphytica 52(2):73–77Google Scholar
  75. Lee O-S, Kang Y-M, Jung H-Y et al (2005) Enhanced production of tropane alkaloids in Scopolia parviflora by introducing the PMT (putrescine N-methyltransferase) gene. Vitro Cell Dev-Pl 41(2):167–172CrossRefGoogle Scholar
  76. Leete E, Marion L, Spenser ID (1954) Biogenesis of Hyoscyamine. Nature 174(4431):650–651PubMedCrossRefGoogle Scholar
  77. Levin DA (1983) Polyploidy and Novelty in Flowering Plants. Am Nat 122(1):1–25CrossRefGoogle Scholar
  78. Li R, Reed DW, Liu E, Nowak J, Pelcher LE, Page JE, Covello PS (2006) Functional genomic analysis of alkaloid biosynthesis in Hyoscyamus niger reveals a cytochrome P450 involved in littorine rearrangement. Chem Biol 13(5):513–520PubMedCrossRefGoogle Scholar
  79. Luanratana O, Griffin WJ (1980a) Cultivation of a Duboisia hybrid. Part A. Nutritional requirements and effects of growth regulators on alkaloid content. J Nat Prod 43(5):546–551CrossRefGoogle Scholar
  80. Luanratana O, Griffin WJ (1980b) Cultivation of a Duboisia hybrid. Part B. Alkaloid variation in a commercial plantation: effects of seasonal change, soil fertility, and cytokinins. J Nat Prod 43(5):552–558CrossRefGoogle Scholar
  81. Luanratana O, Noymuang W, Buasang W et al (1990) Seasonal variation of alkaloids in Thai grown Duboisia myoporoides and Duboisia hybrid. Planta Med 56:640CrossRefGoogle Scholar
  82. Maldonado-Mendoza IE, Ayora-Talavera TR, Loyola-Vargas VM (1993) Establishment of hairy root cultures of Datura stramonium. Plant Cell Tiss Org 33:321–329CrossRefGoogle Scholar
  83. Mangathayaru K (2013) Pharmacognosy: An Indian perspective. Pearson Education India, New DelhiGoogle Scholar
  84. Mano Y, Nabeshima S, Matsui C et al (1986) Production of Tropane Alkaloids by Hairy Root Cultures of Scopolia japonica. Agr Biol Chem Tokyo 50(11):2715–2722Google Scholar
  85. Mano Y, Ohkawa H, Yamada Y (1989) Production of tropane alkaloids by hairy root cultures of Duboisia leichhardtii transformed by Agrobacterium rhizogenes. Plant Sci 59:191–201CrossRefGoogle Scholar
  86. Mato A, Limeres J, Tomás I et al (2010) Management of drooling in disabled patients with scopolamine patches. Brit J Clin Pharmaco 69(6):684–688CrossRefGoogle Scholar
  87. Matsuda J, Okabe S, Hashimoto T et al (1991) Molecular cloning of hyoscyamine 6β-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger. J Biol Chem 266(15):9460–9464PubMedGoogle Scholar
  88. Meinwald J (1953) The Stereochemistry of Scopolamine. J Chem Soc 1953:712–713Google Scholar
  89. Min J, Jung H, Kang S et al (2007) Production of tropane alkaloids by small-scale bubble column bioreactor cultures of Scopolia parviflora adventitious roots. Bioresource Technol 98(9):1748–1753CrossRefGoogle Scholar
  90. Moyano E, Fornalé S, Palazón J et al (2002) Alkaloid production in Duboisia hybrid hairy root cultures overexpressing the pmt gene. Phytochemistry 59:697–702PubMedCrossRefGoogle Scholar
  91. Moyano E, Jouhikainen K, Tammela P et al (2003) Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. J Exp Bot 54(381):203 ± 211Google Scholar
  92. Moyano E, Palazón J, Bonfill M et al (2007) Biotransformation of hyoscyamine into scopolamine in transgenic tobacco cell cultures. J Plant Physiol 164(4):521–524PubMedCrossRefGoogle Scholar
  93. Munoz O, Casale JF (2003) Tropane Alkaloids from Latua pubiflora. Z Naturforsch 58c:626-628Google Scholar
  94. Nachum Z, Shupak A, Gordon CR (2006) Transdermal Scopolamine for Prevention of Motion Sickness. Clin Pharmacokinet 45(6):543–566PubMedCrossRefGoogle Scholar
  95. Nakajima K, Hashimoto T (1999) Two tropinone reductases, that catalyze opposite stereospecific reductions in tropane alkaloid biosynthesis, are lokalized in plant root with different cell-specific patterns. Plant Cell Physiol 40(11):1099–1107PubMedCrossRefGoogle Scholar
  96. Nejadhabibvash F, Rahmani F, Heidari R et al (2012) Study of inheritance and environment on tropane alkaloids within Hyoscyamus species. Austr J Crop Sci 6(10):1428–1434Google Scholar
  97. Nisar A, Malik AH, Zargar MA (2013) Atropa acuminata Royle Ex Lindl. blunts production of pro-inflammatory mediators eicosanoids, leukotrienes, cytokines in vitro and in vivo models of acute inflammatory responses. J Ethnopharmacol 147(3):584–594PubMedCrossRefGoogle Scholar
  98. Nocquet P-A (2016) Opatz T (2016) Total Synthesis of (±)-Scopolamine: challenges of the Tropane Ring. Eur J Org Chem 6:1156–1164CrossRefGoogle Scholar
  99. Oksman-Caldentey K-M (2007) Tropane and Nicotine Alkaloid Biosynthesis-Novel Approaches Towards Biotechnological Production of Plant-Derived Pharmaceuticals. Curr Pharm Biotechnol 8:203–210PubMedCrossRefGoogle Scholar
  100. Olmstead RG, Bohs L, Migid HA et al (2008) A molecular phylogeny of the Solanaceae. Taxon 57(4):1159Google Scholar
  101. OSAC (2014) Colombia 2014 Crime and Safety Report: Bogota. Product of the research and information support center. Cited 18 Apr 2016
  102. Osbaldeston TA (ed) (2000) De Materia Medica (by) Pedanius Dioscorides. Ibidis, JohannesburgGoogle Scholar
  103. Palazón J, Moyano E, Cusidó RM et al (2003) Alkaloid production in Duboisia hybrid hairy roots and plants overexpressing the h6h gene. Plant Sci 165(6):1289–1295CrossRefGoogle Scholar
  104. Palazón J, Navarro-Ocaña A, Hernandez-Vazquez L et al (2008) Application of metabolic engineering to the production of scopolamine. Molecules 13(8):1722–1742PubMedCrossRefGoogle Scholar
  105. Parr AJ (1989) The production of secondary metabolites by plant cell cultures. J Biotechnol 10:1–26CrossRefGoogle Scholar
  106. Payne J, Hamill JD, Robins RJ et al (1987) Production of hyoscyamine by ‘hairy root’ cultures of Datura stramonium. Planta Med 53(5):474–478PubMedCrossRefGoogle Scholar
  107. Perez LM, Farriols C, Puente V et al (2010) The use of subcutaneous scopolamine as a palliative treatment in Parkinson’s disease. Palliat Med 25(1):92–93PubMedCrossRefGoogle Scholar
  108. Perger ARV (1864) Deutsche Pflanzensagen. Schaber Verlag, StuttgartGoogle Scholar
  109. Phillipson JD, Handa SS (1976) Hyoscyamine N-Oxide in Atropa belldonna. Phytochemistry 15:605–608CrossRefGoogle Scholar
  110. Pietsch J, Koch I, Hermanns-Clausen M et al (2009) Pediatric plant exposures in Germany, 1998–2004. Clin Toxicol 46(7):686–691CrossRefGoogle Scholar
  111. Pitta-Alavarez SI, Giulietti AM (1995) Advantages and limitations in the use of hairy root cultures for the production of tropane alkaloids: use of Anti-Auxins in the maintenance of normal root morphology. In Vitro Cell Dev Bio 31:215–220CrossRefGoogle Scholar
  112. Pitta-Alvarez SI, Giulietti AM (1999) Influence of chitosan, acetic acid and citric acid on growth and tropane alkaloid production in transformed roots of Brugmansia candida. Effect of medium pH and growth phase. Plant Cell Tiss Org 59:31–38CrossRefGoogle Scholar
  113. Pitta-Alvarez SI, Spollansky TC, Giulietti AM (2000) The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme Microb Tech 26:252–258CrossRefGoogle Scholar
  114. Plowman T, Gyllenhaal LO, Lindgren JE (1971) Latua pubiflora magic plant from Southern Chile. Bot Mus Leafl Harv Univ 23(2):61–92Google Scholar
  115. Rahman L, Kitamura Y, Yamaguchi J et al (2006) Exogenous plant H6H but not bacterial HCHL gene is expressed in Duboisia leichhardtii hairy roots and affects tropane alkaloid production. Enzyme Microb Technol 39(6):1183–1189CrossRefGoogle Scholar
  116. Rätsch C (2012) Enzyklopädie der psychoaktiven Pflanzen: Botanik. AT Verlag, Aurau, Ethnopharmakologie und AnwendungGoogle Scholar
  117. Renner UD, Oertel R, Kirch W (2005) Pharmacokinetics and pharmacodynamics in clinical use of scopolamine. Ther Drug Monit 27(5):655–665PubMedCrossRefGoogle Scholar
  118. Richter U, Rothe G, Fabian A-K et al (2005) Overexpression of tropinone reductases alters alkaloid composition in Atropa belladonna root cultures. J Exp Bot 56(412):645–652PubMedCrossRefGoogle Scholar
  119. Ripperger H (1995) (S)-scopolamine and (S)-norscopolamine from Atropanthe sinensis. Planta Med 61(3):292–293PubMedGoogle Scholar
  120. Robins RJ, Parr AJ, Walton NJ (1991) Studies on the biosynthesis of tropane alkaloids in Datura stramonium L. transformed root cultures. Planta 183:196–201PubMedCrossRefGoogle Scholar
  121. Robins RJ, Bachmann P, Woolley JG (1994) Biosynthesis of hyoscyamine involves an intramolecular rearrangement of littorine. J Chem Soc Perkin Trans 1:615–619CrossRefGoogle Scholar
  122. Robins RJ, Chesters NCJE, O’Hagan D, Parr AJ, Walton NJ, Woolley JG (1995) The biosynthesis of hyoscyamine—the process by which littorine rearranges to hyoscyamine. J Chem Soc Perkin Trans 1:481–485CrossRefGoogle Scholar
  123. Robinson R (1917) A synthesis of tropinone. J Chem Soc 111:762–768CrossRefGoogle Scholar
  124. Romek KM, Remaud GS, Silvestre V et al (2016) Non-statistical13C fractionation distinguishes co-incident and divergent steps in the biosynthesis of the alkaloids nicotine and tropine. J Biol Chem 291(32):16620–16629PubMedCrossRefGoogle Scholar
  125. Rosenblum EI (1954) Alkaloid variation in wild and cultivated Duboisia leichhardtii F. Muell. Appl Sci 5:51–62Google Scholar
  126. Ryan SM, DeBoer KD, Hamill JD (2015) Alkaloid production and capacity for methyljasmonate induction by hairy roots of two species in Tribe Anthocercideae, family Solanaceae. Funct Plant Biol 42(8):792CrossRefGoogle Scholar
  127. Samoryadov BA, Minina SA (1971) Isolation of hyoscyamine and scopolamine from the epigeal part of Scopolia tangutica. Chem Nat Compd 7(2):205–206CrossRefGoogle Scholar
  128. Sato F, Hashimoto T, Hachiya A et al (2001) Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci USA 98(1):367–372PubMedCrossRefGoogle Scholar
  129. Sauerwein M, Shimomura K (1991) Alkaloid production in hairy roots of Hyoscyamus albus transformed with Agrobacterium rhizogenes. Phytochemistry 30(10):3277–3280CrossRefGoogle Scholar
  130. Schmidt E (1892) Mitteilungen aus dem pharmaceutisch-chemischen Institut der Universität Marburg. 40. Ueber Scopolamin (Hyoscin). Arch Pharm 230(1–4):207–231CrossRefGoogle Scholar
  131. Schmidt E, Henschke H (1888) Über die Alkaloide der Wurzel von Scopolia japonica. Arch Pharm 226(5):185–203CrossRefGoogle Scholar
  132. Sevón N, Oksman-Caldentey K-M (2002) Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med 68(10):859–868PubMedCrossRefGoogle Scholar
  133. Sevón N, Hiltunen R, Oksman-Caldentey K-M (1998) Somaclonal variation in transformed roots and protoplast-derived hairy root clones of Hyoscyamus muticus. Planta Med 64:37–41PubMedCrossRefGoogle Scholar
  134. Shepard GH (2009) Psychoactive Botanicals in Ritual, Religion and Shamanism. In: Elisabetsky E, Etkin NL (eds) Ethnopharmacology—Vol. II. EOLSS Publications, Paris, FranceGoogle Scholar
  135. Smolenski SJ, Crane FA, Voigt RF (1967) Effects of the ratio of calcium to potassium in the nutrient medium on the growth and alkaloid production of Atropa belladonna. J Pharm Sci 56(5):599–602PubMedCrossRefGoogle Scholar
  136. Soni P, Siddiqui AA, Dwivedi J et al (2012) Pharmacological properties of Datura stramonium L. as a potential medicinal tree: an overview. Asian Pac. J Trop Biomed 2(12):1002–1008CrossRefGoogle Scholar
  137. Staba J, Jindra A (1968) Datura tissue cultures: production of minor alkaloids from Chlorophyllous and Nonchlorophyllous Strains. J Pharm Sci 57(4):701–704PubMedCrossRefGoogle Scholar
  138. Staskin DR, Zoltan E (2007) Anticholinergics and central nervous system effects: are we confused? Rev Urol 9(4):191–196PubMedPubMedCentralGoogle Scholar
  139. Stohs SJ (1969) Production of scopolamine and hyoscyamine by Datura stramonium L Suspension Cultures. J Pharm Sci 58(6):703–705PubMedCrossRefGoogle Scholar
  140. Strang CE, Renna JM, Amthor FR et al (2010) Muscarinic acetylcholine receptor localization and activation effects on Ganglion response properties. Invest Ophthalmol Vis Sci 51(5):2778–2789PubMedPubMedCentralCrossRefGoogle Scholar
  141. Subroto MA, Kwok KH, Hamill JD et al (1996) Coculture of genetically transformed roots and shoots for synthesis, translocation, and biotransformation of secondary metabolites. Biotechnol Bioeng 49(5):481–494PubMedCrossRefGoogle Scholar
  142. Suzuki K, Yamada Y, Hashimoto T (1999) Expression of Atropa belladonna Putrescine N-Methyltransferase gene in root pericycle. Plant Cell Physiol 40(3):289–297PubMedCrossRefGoogle Scholar
  143. Tabata M, Yamamoto H, Hiraoka N et al (1972) Organization and alkaloid production in tissue cultures of Scopolia parviflora. Phytochemistry 11:949–955CrossRefGoogle Scholar
  144. Takeuchi I, Suzuki T, Kishi T et al (2015) Effect of Scopolamine Butylbromide on Clozapine-induced Hypersalivation in Schizophrenic Patients: a Case Series. Clin Psychopharmacol Neurosci 13(1):109–112PubMedPubMedCentralCrossRefGoogle Scholar
  145. Thearle J, Pearn J (1982) The history of hyoscine. Hist Sci Med 17(2):257–261PubMedGoogle Scholar
  146. Tytgat GN (2007) Hyoscine Butylbromide. A Review of its Use in the Treatment of Abdominal Cramping and Pain. Drugs 67(9):1343–1357PubMedCrossRefGoogle Scholar
  147. Tytgat GN (2008) Hyoscine butylbromide—a review on its parenteral use in acute abdominal spasm and as an aid in abdominal diagnostic and therapeutic procedures. Curr Med Res Opin 24(11):3159–3173PubMedCrossRefGoogle Scholar
  148. Ungricht S, Knapp S, Press JR (1998) A revision of the genus Mandragora (Solanaceae). Bull Nat Hist Mus Bot Ser 28(1):17–40Google Scholar
  149. Volpicelli LA, Levey AI (2004) Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. Prog Brain Res 145:59–66PubMedCrossRefGoogle Scholar
  150. Walton NJ, Robins RJ, Peerless ACJ (1990) Enzymes of N-methylputrescine biosynthesis in relation to hyoscyamine formation in transformed root cultures of Datura stramonium and Atropa belladonna. Planta 182:136–141PubMedCrossRefGoogle Scholar
  151. West FR Jr, Mika ES (1957) Synthesis of Atropine by Isolated Roots and Root-Callus Cultures of Belladonna. Bot Gaz 119(1):50–54CrossRefGoogle Scholar
  152. White FF, Nester EW (1980) Hairy root: plasmid encodes virulence traits in Agrobacterium rhizogenes. J Bacteriol 141(3):1134–1141PubMedPubMedCentralGoogle Scholar
  153. Wildiers H, Dhaenekint C, Demeulenaere P et al (2009) Atropine, Hyoscine Butylbromide, or Scopolamine Are Equally Effective for the Treatment of Death Rattle in Terminal Care. J Pain Symptom Manag 38(1):124–133CrossRefGoogle Scholar
  154. Williams C (2013) Medicinal Plants in Australia. Rosenberg Publishing, Dural, An Antipodean ApothecaryGoogle Scholar
  155. Willstätter R (1901) Umwandlung von Tropidin in Tropin. Ber Deut Chem Ges 34(2):3163–3165CrossRefGoogle Scholar
  156. Willstätter R, Berner E (1923) Hydrolyse des Scopolamins. Ber Deut Chem Ges 56:1079–1082CrossRefGoogle Scholar
  157. Wink M (1987) Physiology of the Accumulation of Secondary Metabolites with Special Reference to Alkaloids. In: Constabel F, Vasil I (eds) Cell culture and somatic cell genetics of plants. Academic Press, San Diego, pp 17–41Google Scholar
  158. Witkin JM, Overshiner C, Li X et al (2014) M1 and M2 Muscarinic Receptor Subtypes Regulate Antidepressant-Like Effects of the Rapidly Acting Antidepressant Scopolamine. J Pharmacol ExpTherap 351(2):448–456CrossRefGoogle Scholar
  159. Yukimune Y, Hara Y, Yamada Y (1994) Tropane Alkaloid Production in Root Cultures of Duboisia myoporoides Obtained by Repeated Selection. Biosci Biotech Biochem 58(8):1443–1446CrossRefGoogle Scholar
  160. Yun D-J, Hashimoto T, Yamada Y (1992) Metabolic engineering of medicinal plants: transgenic Atropa belladonna with an improved alkaloid composition. Appl Biol Sci 89:11799–11803Google Scholar
  161. Zabetakis I, Edwards R, O’Hagan D (1999) Elicitation of tropane alkaloid biosynthesis in transformed root cultures of Datura stramonium. Phytochemistry 50(1):53–56CrossRefGoogle Scholar
  162. Zárate R, el Jaber-Vazdekis N, Medina B et al (2006) Tailoring Tropane Alkaloid Accumulation in Transgenic Hairy Roots of Atropa baetica by Over-expressing the Gene Encoding Hyoscyamine 6β-hydroxylase. Biotechnol Lett 28(16):1271–1277PubMedCrossRefGoogle Scholar
  163. Zenkteler M (1971) In vitro production of haploid plants from pollen grains of Atropa belladonna L. Experientia 27:1087CrossRefGoogle Scholar
  164. Zhang L, Ding R, Chai Y et al (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci USA 101(17):6786–6791PubMedPubMedCentralCrossRefGoogle Scholar
  165. Zhang L, Kai G-Y, Lu B-B, Zhang H-M, Tang K-X, Jiang J-H, Chen WS (2005) Metabolic Engineering of Tropane Alkaloid Biosynthesis in Plants. J Integr Plant Biol 47(2):136–143CrossRefGoogle Scholar
  166. Zhang L, Yang B, Lu B et al (2007) Tropane alkaloids production in transgenic Hyoscyamus niger hairy root cultures over-expressing Putrescine N-methyltransferase is methyl jasmonate-dependent. Planta 225(4):887–896PubMedCrossRefGoogle Scholar
  167. Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59(1):735–769PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Sophie Friederike Ullrich
    • 1
    • 2
  • Hansjörg Hagels
    • 1
  • Oliver Kayser
    • 2
  1. 1.Boehringer Ingelheim Pharma GmbH und Co. KGIngelheim am RheinGermany
  2. 2.Department of Technical BiochemistryTechnical University of DortmundDortmundGermany

Personalised recommendations