Advertisement

Phytochemistry Reviews

, Volume 16, Issue 2, pp 295–308 | Cite as

The chemistry and pharmacology of Edelweiss: a review

  • Jan Tauchen
  • Ladislav Kokoska
Article
  • 622 Downloads

Abstract

Leontopodium nivale ssp. alpinum (syn. Leontopodium alpinum) is a perennial herb commonly known as Edelweiss, which has a long tradition in Alpine countries and adjacent regions as a medicinal plant. This review discusses current knowledge on the traditional uses, chemistry, biological activities and toxicology of this species. Several different classes of compounds such as terpenoids (analogues of sesquiterpenes, bisabolenes), phenylpropanoids (phenolic acids, flavonoids, coumarins, lignans), fatty acids and polyacetylenes were previously isolated from various parts of Edelweiss. Different types of extracts and compounds derived from this plant have been found to possess a broad spectrum of pharmacological activities on the cardiovascular and nervous systems. Furthermore, the plant have known anti-inflammatory, antimicrobial, antioxidant and chemo-protective effects. The observed pharmacological activities as well as toxicological profile of preparations and isolated compounds of Edelweiss support the view that these might be used in the development of agents with therapeutic benefit in various human diseases. Some suggestions for further research on chemical characterization and pharmacological properties are also given in this review.

Keywords

Asteraceae Leontopodium alpinum Leontopodium nivale Medicinal plant Secondary metabolites 

Notes

Acknowledgments

We would like to express our gratitude to Thomas Lichtenberg for providing us with the picture of Edelweiss in its natural habitat. We are also very grateful to Ludvík Bortl who read the manuscript and provided critical comments. Finally, great appreciation goes to Micheal Ua Seaghdha for his final linguistic revision of the English text.

References

  1. Bhatnagar D, Ehrlich KC, Cleveland TE (2003) Molecular genetic analysis and regulation of aflatoxin biosynthesis. Appl Microbiol Biotechnol 61:83–93CrossRefPubMedGoogle Scholar
  2. Bicchi C, Nano GM, Tira S (1975) n Paraffin components of some gnaphalieae. Planta Med 28:389–391CrossRefPubMedGoogle Scholar
  3. Blascakova M, Poracova J, Mydlar J, Zahatnanska M (2011) Law protected plants of national nature reserve dreveník (hornád basin) in project learning. Acta Hortic 920:167–174CrossRefGoogle Scholar
  4. Blöch C, Dickoré WB, Samuel R, Stuessy TF (2010) Molecular phylogeny of the edelweiss (Leontopodium, Asteraceae—Gnaphalieae). Edinb J Bot 67:235–264. doi: 10.1017/S0960428610000065 CrossRefGoogle Scholar
  5. Cervellati R, Höner K, Furrow SD et al (2001) The Briggs-Rauscher reaction as a test to measure the activity of antioxidants. Helv Chim Acta 84:3533–3547. doi: 10.1002/1522-2675(20011219)84:12<3533:AID-HLCA3533>3.0.CO;2-Y CrossRefGoogle Scholar
  6. Cervellati R, Renzulli C, Guerra MC, Speroni E (2002) Evaluation of antioxidant activity of some natural polyphenolic compounds using the Briggs-Rauscher reaction method. J Agric Food Chem 50:7504–7509. doi: 10.1021/jf020578n CrossRefPubMedGoogle Scholar
  7. Chopra I (2013) The 2012 garrod lecture: discovery of antibacterial drugs in the 21st century. J Antimicrob Chemother 68:496–505. doi: 10.1093/jac/dks436 CrossRefPubMedGoogle Scholar
  8. Cicek SS, Untersulzner C, Schwaiger S, Zidorn C (2012) Caffeoyl-D-glucaric acid derivatives in the genus Gnaphalium (Asteraceae: Gnaphalieae). Rec Nat Prod 6:311–315Google Scholar
  9. Comey N, Hook I, Sheridan H (1992a) Essential oil from normal and hairy roots of Leontopodium alpinum. In: Proceedings of 23rd international symposium on essential oils. Ayr, ScotlandGoogle Scholar
  10. Comey N, Hook I, Sheridan H (1992b) Enhancement of anthocyanin production in cell cultures and hairy roots of Leontopodium alpinum. Planta Med 58:A605–A606CrossRefGoogle Scholar
  11. Comey N, Hook I, Sheridan H et al (1997) Isolation of (S)-(-)-2,3-dihydro-2,6-dimethyl-4H-benzopyran-4-one from roots of Leontopodium alpinum. J Nat Prod 60:148–149. doi: 10.1021/np960228t CrossRefGoogle Scholar
  12. Costa S, Schwaiger S, Cervellati R et al (2009) In vitro evaluation of the chemoprotective action mechanisms of leontopodic acid against aflatoxin B1 and deoxynivalenol-induced cell damage. J Appl Toxicol 29:7–14. doi: 10.1002/jat.1372 CrossRefPubMedGoogle Scholar
  13. Costa S, Cervellati R, Speroni E et al (2010) Free radicals and antioxidants in two oxidative-stress cell models exposed to ochratoxin A and amyloid β: Unexpected results. World Mycotoxin J 3:257–261. doi: 10.3920/WMJ2010.1221 CrossRefGoogle Scholar
  14. Daniela L, Alla P, Maurelli R et al (2012) Anti-inflammatory effects of concentrated ethanol extracts of edelweiss (Leontopodium alpinum Cass.) callus cultures towards human keratinocytes and endothelial cells. Mediators Inflamm. doi: 10.1155/2012/498373 PubMedPubMedCentralGoogle Scholar
  15. Desbois AP (2012) Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries. Recent Pat Anti-Infect Drug Disc 7:111–122. doi: 10.2174/157489112801619728 CrossRefGoogle Scholar
  16. Dewick PM (2009) Medicinal natural products: a biosynthetic approach, 3rd edn. Wiley, Chichester, UKCrossRefGoogle Scholar
  17. Dobner MJ, Ellmerer EP, Schwaiger S et al (2003a) New lignan, benzofuran, and sesquiterpene derivatives from the roots of Leontopodium alpinum and L. leontopodioides. Helv Chim Acta 86:733–738. doi: 10.1002/hlca.200390072 CrossRefGoogle Scholar
  18. Dobner MJ, Schwaiger S, Jenewein IH, Stuppner H (2003b) Antibacterial activity of Leontopodium alpinum (Edelweiss). J Ethnopharmacol 89:301–303. doi: 10.1016/j.jep.2003.09.004 CrossRefPubMedGoogle Scholar
  19. Dobner MJ, Sosa S, Schwaiger S et al (2004) Anti-inflammatory activity of Leontopodium alpinum and its constituents. Planta Med 70:502–508. doi: 10.1055/s-2004-827148 CrossRefPubMedGoogle Scholar
  20. Duwensee K, Schwaiger S, Tancevski I et al (2011) Leoligin, the major lignan from Edelweiss, activates cholesteryl ester transfer protein. Atherosclerosis 219:109–115. doi: 10.1016/j.atherosclerosis.2011.07.023 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dzau VJ, Braun-Dullaeus RC, Sedding DG (2002) Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med 8:1249–1256. doi: 10.1038/nm1102-1249 CrossRefPubMedGoogle Scholar
  22. Erhardt A (1993) Pollination of the edelweiss, Leontopodium alpinum. Bot J Linn Soc 111:229–240. doi: 10.1006/bojl.1993.1016 CrossRefGoogle Scholar
  23. Finkenzeller X (2014) Alpenblumen, 4th edn. Verlag Eugen Ulmer, Stuttgart, GermanyGoogle Scholar
  24. Fischer F, Zufferey E, Bourgeois J-M et al (2011) UV-ABC screens of luteolin derivatives compared to edelweiss extract. J Photochem Photobiol B 103:8–15. doi: 10.1016/j.jphotobiol.2011.01.005 CrossRefPubMedGoogle Scholar
  25. Ganzera M, Greifeneder V, Schwaiger S, Stuppner H (2012) Chemical profiling of Edelweiss (Leontopodium alpinum Cass.) extracts by micellar electrokinetic capillary chromatography. Fitoterapia 83:1680–1686. doi: 10.1016/j.fitote.2012.09.023 CrossRefPubMedGoogle Scholar
  26. Greuter W (2003) The Euro + Med treatment of Gnaphalieae and Inuleae (Compositae)—generic concepts and required new names. Willdenowia 33:239–244. doi: 10.3372/wi.33.33202 CrossRefGoogle Scholar
  27. Grey AI, Hook IL, James P, Sheridan H (1999) Sesquiterpenes from Leontopodium alpinum. Phytochemistry 50:1057–1060. doi: 10.1016/S0031-9422(98)00625-6 CrossRefGoogle Scholar
  28. Halliwell B, Gutteridge JM (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford, UKGoogle Scholar
  29. Handl-Mazzetti H (1928) Systematische monographie der gattung Leontopodium. Beih Zum Bot Cent 44:1–178Google Scholar
  30. Hennessy D, Hook I, Sheridan H, McGee A (1989) Hydroxycinnamic acid esters from cell suspension cultures and plants of Leontopodium alpinum. Phytochemistry 28:489–490CrossRefGoogle Scholar
  31. Hook ILI (1993) Leontopodium alpinum Cass. (edelweiss): in vitro culture, micropropagation, and the production of secondary metabolites. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry 21: medicinal and aromatic plants IV. Springer Verlag, Berlin, Germany, pp 217–232Google Scholar
  32. Hook I (1994) Secondary metabolites in hairy root cultures of Leontopodium alpinum Cass. (Edelweiss). Plant Cell Tissue Organ Cult 38:321–326. doi: 10.1007/BF00033892 CrossRefGoogle Scholar
  33. Hörandl E, Dobeš C, Suda J et al (2011) Apomixis is not prevalent in subnival to nival plants of the European Alps. Ann Bot 108:381–390. doi: 10.1093/aob/mcr142 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hornick A, Schwaiger S, Rollinger JM et al (2008) Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties. Biochem Pharmacol 76:236–248. doi: 10.1016/j.bcp.2008.04.015 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Keller R, Vittoz P (2015) Clonal growth and demography of a hemicryptophyte alpine plant: Leontopodium alpinum Cassini. Alp Bot 125:31–40. doi: 10.1007/s00035-014-0142-y CrossRefGoogle Scholar
  36. Khela S (2013) Leontopodium alpinum. The IUCN Red List of Threatened Species 2013: e.T202984A2758405. http://dx.doi.org/10.2305/IUCN.UK.2013-2.RLTS.T202984A2758405.en. Accessed 10 Apr 2015
  37. Kitahara T, Koyama N, Matsuda J et al (2004) Antimicrobial activity of saturated fatty acids and fatty amines against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull 27:1321–1326. doi: 10.1248/bpb.27.1321 CrossRefPubMedGoogle Scholar
  38. Koleva II, Niederländer HAG, Van Beek TA (2001) Application of ABTS radical cation for selective on-line detection of radical scavengers in HPLC eluates. Anal Chem 73:3373–3381. doi: 10.1021/ac0013610 CrossRefPubMedGoogle Scholar
  39. Lee D-H, Lee J-H, Choi B-H (2011) Isolation and characterization of 10 microsatellite loci from Korean Leontopodium japonicum (Asteraceae). Am J Bot 98:e183–e184. doi: 10.3732/ajb.1100065 CrossRefPubMedGoogle Scholar
  40. Matthioli PA (1931) Herbář - jinak bylinář velmi užitečný, překlad Tadeáš Hájek z Hájku. Nakladatel Bedřich Kočí, Prague, Czech RepublicGoogle Scholar
  41. Maugini E (1962) Morfologia fiorale, embriologia ed embriogenesi in Leontopodium alpinum Cass. var. typicum Fiori e Paoletti. G Bot Ital 69:1–12CrossRefGoogle Scholar
  42. Messner B, Kern J, Wiedemann D et al (2013) 5-Methoxyleoligin, a lignan from Edelweiss, stimulates CYP26B1-dependent angiogenesis in vitro and induces arteriogenesis in infarcted rat hearts in vivo. PLoS One. doi: 10.1371/journal.pone.0058342 Google Scholar
  43. Neblea M, Marian M, Duţǎ M (2012) Medicinal plant diversity in the flora of the west part of Bucegi Mountains (Romania). Acta Hortic 955:41–50CrossRefGoogle Scholar
  44. Nussbaumer S, Bonnabry P, Veuthey J-L, Fleury-Souverain S (2011) Analysis of anticancer drugs: a review. Talanta 85:2265–2289CrossRefPubMedGoogle Scholar
  45. Piccini A, Russo C, Gliozzi A et al (2005) β-amyloid is different in normal aging and in Alzheimer disease. J Biol Chem 280:34186–34192CrossRefPubMedGoogle Scholar
  46. Re R, Pellegrini N, Proteggente A et al (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3 CrossRefPubMedGoogle Scholar
  47. Reisinger U, Schwaiger S, Zeller I et al (2009) Leoligin, the major lignan from Edelweiss, inhibits intimal hyperplasia of venous bypass grafts. Cardiovasc Res 82:542–549. doi: 10.1093/cvr/cvp059 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ritsch A, Scharnagl H, Eller P et al (2010) Cholesteryl ester transfer protein and mortality in patients undergoing coronary angiography: the ludwigshafen risk and cardiovascular health study. Circulation 121:366–374. doi: 10.1161/CIRCULATIONAHA.109.875013 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Safer S, Cicek SS, Pieri V et al (2011a) Metabolic fingerprinting of Leontopodium species (Asteraceae) by means of 1H NMR and HPLC-ESI-MS. Phytochemistry 72:1379–1389. doi: 10.1016/j.phytochem.2011.04.006 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Safer S, Tremetsberger K, Guo Y-P et al (2011b) Phylogenetic relationships in the genus Leontopodium (Asteraceae: Gnaphalieae) based on AFLP data. Bot J Linn Soc 165:364–377. doi: 10.1111/j.1095-8339.2011.01117.x CrossRefPubMedPubMedCentralGoogle Scholar
  51. Schwaiger S, Dobner MJ, Odonchimeg B et al (2002) Phytochemical profile of Leontopodium alpinum Cass in comparison to other Asian Leontopodium species. Rev Fitoter 2:241Google Scholar
  52. Schwaiger S, Adams M, Seger C et al (2004) New constituents of Leontopodium alpinum and their in vitro leukotriene biosynthesis inhibitory activity. Planta Med 70:978–985. doi: 10.1055/s-2004-832625 CrossRefPubMedGoogle Scholar
  53. Schwaiger S, Cervellati R, Seger C et al (2005) Leontopodic acid—a novel highly substituted glucaric acid derivative from Edelweiss (Leontopodium alpinum Cass.) and its antioxidative and DNA protecting properties. Tetrahedron 61:4621–4630. doi: 10.1016/j.tet.2005.03.002 CrossRefGoogle Scholar
  54. Schwaiger S, Seger C, Wiesbauer B et al (2006) Development of an HPLC-PAD-MS assay for the identification and quantification of major phenolic edelweiss (Leontopodium alpium Cass.) constituents. Phytochem Anal 17:291–298CrossRefPubMedGoogle Scholar
  55. Siljak S, Cartier D, Gorenflot R (1974) Introduction a l’etude de Leontopodium alpinum Cass.: variabilite morphologique et nombre chromosomique dans les populations naturelles. Comptes Rendus Hebd Séances Académie Sci 278:2905–2908Google Scholar
  56. Speroni E, Schwaiger S, Egger P et al (2006) In vivo efficacy of different extracts of Edelweiss (Leontopodium alpinum Cass.) in animal models. J Ethnopharmacol 105:421–426. doi: 10.1016/j.jep.2005.11.019 CrossRefPubMedGoogle Scholar
  57. Stuppner H, Ellmerer EP, Ongania K-H, Dobner M (2002) Bisabolane derivatives from Leontopodium alpinum. Helv Chim Acta 85:2982–2989. doi: 10.1002/1522-2675(200209)85:9<2982:AID-HLCA2982>3.0.CO;2-H CrossRefGoogle Scholar
  58. Sugar I (1971) Ucka - novo nalaziste runolista (Leontopodium alpinum Cass. var. krasense (Derb.) Hay.) u Hrvatskoj. (Le mont Ucka une nouvelle localite de Leontopodium alpinum Cass. var. krasense (Derg.) Hay en Croatie.). Acta Bot Croat 30:153–156Google Scholar
  59. Tabernaemontanus JT (1993) Das Ander Buch von Kreutern (1582). In: Bauhin H (ed) D. Jacobi theodori tabernaemontani neu vollkommen kraeuter-buch. Verlag Kölbl, Grünwald bei München, pp 779–782Google Scholar
  60. Tira S, Galeffi C, Di Modica G (1970) Flavonoids of Gnaphalieae: Leontopodium alpinum cass. Experientia 26:1192. doi: 10.1007/BF01897956 CrossRefPubMedGoogle Scholar
  61. Trejgell A, Tretyn A (2010) Micropropagation in in vitro culture efficiency of selected protected species Asteraceae. Biotechnologia 3:202–209Google Scholar
  62. Wawrosch C, Schwaiger S, Stuppner H, Kopp B (2014) Lignan formation in hairy root cultures of Edelweiss (Leontopodium nivale ssp. alpinum (Cass.) Greuter). Fitoterapia 97:219–223. doi: 10.1016/j.fitote.2014.06.008 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Yamamoto A, Matsuzawa Y, Yokoyama S et al (1986) Effects of probucol on xanthomata regression in familial hypercholesterolemia. Am J Cardiol 57:H29–H35. doi: 10.1016/0002-9149(86)90434-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.The Department of Quality of Agricultural Products, The Faculty of Agrobiology, Food and Natural ResourcesThe Czech University of Life Sciences PraguePrague 6 – SuchdolCzech Republic
  2. 2.The Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciencesThe Czech University of Life Sciences PraguePrague 6 – SuchdolCzech Republic

Personalised recommendations