Skip to main content

Edible freshwater macrophytes: a source of anticancer and antioxidative natural products—a mini-review

Abstract

Edible freshwater macrophytes (EFM) are edible, macroscopic freshwater plants, many of which are also used as traditional/folk medicine. This mini-review highlights phytochemical and pharmacological evidence pertaining to anticancer and antioxidative natural products derived from EFM, with special attention to Centella asiatica (Indian pennywort), Nelumbo nucifera (sacred lotus), Nasturtium officinale (watercress), Ipomoea aquatica (water spinach) and Ludwigia adscendens (water primrose). Current knowledge gaps and further research opportunities are also discussed. EFM is a promising source of anticancer and antioxidative natural products which warrants more extensive exploration. More research is needed before such natural products can be exploited for application in food and medicine.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Aboul-Enein A, Shanab S, Shalaby E et al (2014) Cytotoxic and antioxidant properties of active principals isolated from water hyacinth against four cancer cells lines. BMC Complement Altern Med 14:1–11

    Google Scholar 

  • Aires A, Carvalho R, Rosa EAS et al (2013) Phytochemical characterization and antioxidant properties of baby-leaf watercress produced under organic production system. CYTA J Food 11:343–351

    CAS  Google Scholar 

  • Alkiyumi SS, Abdullah MA, Alrashdi AS et al (2012) Ipomoea aquatica extract shows protective action against thioacetamide-Induced hepatotoxicity. Molecules 17:6146–6155

    CAS  PubMed  Google Scholar 

  • Al-Saeedi FJ (2014) Study of the cytotoxicity of asiaticoside on rats and tumour cells. BMC Cancer 14:220

    PubMed Central  PubMed  Google Scholar 

  • Amiri H (2012) Volatile constituents and antioxidant activity of flowers, stems and leaves of Nasturtium officinale R. Br Nat Prod Res 26:109–115

    CAS  Google Scholar 

  • Anand T, Mahadeva N, Phani KG et al (2010) Antioxidant and DNA damage preventive properties of Centella asiatica (L) Urb. Pharmacogn J 2:53–57

    Google Scholar 

  • Anila L, Vijayalakshmi NR (2003) Antioxidant action of flavonoids from Mangifera indica and Emblica officinalis in hypercholesterolemic rats. Food Chem 83:569–574

    CAS  Google Scholar 

  • Babykutty S, Padikkala J, Sathiadevan PP et al (2008) Apoptosis induction of Centella asiatica on human breast cancer cells. Afr J Tradit Complement Altern Med 6:9–16

    PubMed Central  PubMed  Google Scholar 

  • Bahramikia S, Yazdanparast R (2010) Antioxidant efficacy of Nasturtium officinale extracts using various in vitro assay systems. J Acupunct Meridian Stud 4:283–290

    Google Scholar 

  • Baldasquin-Caceres B, Gomez-Garcia FJ, López-Jornet P et al (2014) Chemopreventive potential of phenolic compounds in oral carcinogenesis. Arch Oral Biol 59:1101–1107

    CAS  PubMed  Google Scholar 

  • Berdahl DR, Nahas RI, Barren JP (2010) Synthetic and natural antioxidant additives in food stabilization: current applications and future research. In: Decker EA, Elias R, McClements DJ (eds) Oxidation in foods and beverages and antioxidant applications: understanding mechanisms of oxidation and antioxidant activity. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  • Boligon AA, Janovik V, Boligon AA et al (2013) HPLC analysis of polyphenolic compounds and antioxidant activity in Nasturtium officinale. Int J Food Prop 16:61–69

    CAS  Google Scholar 

  • Boyd LA, McCann MJ, Hashim Y et al (2006) Assessment of the anti-genotoxic, anti-proliferative, and anti-metastatic potential of crude watercress extract in human colon cancer cells. Nutr Cancer 55:232–241

    CAS  PubMed  Google Scholar 

  • Bunpo P, Kataoka K, Arimochi H et al (2004) Inhibitory effects of Centella asiatica on azoxymethane-induced aberrant crypt focus formation and carcinogenesis in the intestines of F344 rats. Food Chem Toxicol 42:1987–1997

    CAS  PubMed  Google Scholar 

  • Burlando B, Cornara L (2014) Therapeutic properties of rice constituents and derivatives (Oryza sativa L.): a review update. Trends Food Sci Technol 40:82–98

    CAS  Google Scholar 

  • Chen BH, Chen YY (1992) Determination of carotenoids and chlorophylls in water convolvulus (Ipomoea aquatica) by liquid chromatography. Food Chem 45:129–134

    CAS  Google Scholar 

  • Chen BH, Yang SH, Han LH (1991) Characterization of major carotenoids in water convolvulus (Ipomoea aquatica) by open-column, thin-layer and high-performance liquid chromatography. J Chromatogr 543:147–155

    CAS  Google Scholar 

  • Chen CH, Pearson AM, Gray JI (1992) Effects of synthetic antioxidants (BHA, BHT and PG) on the mutagenicity of IQ-like compounds. Food Chem 43:177–183

    CAS  Google Scholar 

  • Chen S, Fang L, Xi H et al (2012a) Simultaneous qualitative assesment and quantitative analysis of flavonoids in various tissues of lotus (Nelumbo nucifera) using high performance liquid chromatography coupled with triple quad mass spectrometry. Anal Chim Acta 724:127–135

    CAS  PubMed  Google Scholar 

  • Chen S, Wu BH, Fang JB et al (2012b) Analysis of flavonoids from lotus (Nelumbo nucifera) leaves using high performance liquid chromatography/photodiode array detector tandem electrospray ionization mass spectrometry and an extraction method optimized by orthogonal design. J Chromatogr A 1227:145–153

    CAS  PubMed  Google Scholar 

  • Chen JY, Xu QW, Xu H et al (2014) Asiatic acid promotes p21WAF1/CIP1 protein stability through attenuation of NDR1/2 dependent phosphorylation of p21WAF1/CIP1 in HepG2 human hepatoma cells. Asian Pac J Cancer Prev 15:963–967

    PubMed  Google Scholar 

  • Chung SS, Ho EC, Lam KS et al (2003) Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol 14:233–236

    Google Scholar 

  • Coskun O, Kanter M, Korkmaz A et al (2005) Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol Res 51:117–123

    CAS  PubMed  Google Scholar 

  • Daniel RS, Biju CM, Devi KS et al (1998) Antioxidant effect of two flavonoids from the bark of Ficus bengalensis Linn in hyperlipidemic rats. Indian J Exp Biol 36:902–906

    CAS  PubMed  Google Scholar 

  • Dantas-Santos N, Gomes DL, Costa LS et al (2012) Freshwater plants synthesize sulfated polysaccharides: Heterogalactans from water hyacinth (Eicchornia crassipes). Int J Mol Sci 13:961–976

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dasgupta N, De B (2007) Antioxidant activity of some leafy vegetables of India: A comparative study. Food Chem 101:471–474

    CAS  Google Scholar 

  • Datta S, Sinha M, Das D et al (2013) Protective effect of secondary plant metabolites from Ipomoea aquatica Forsk. against carbofuran induced damages. Indian J Exp Biol 51:1109–1119

    PubMed  Google Scholar 

  • Deng S, Deng Z, Fan Y et al (2009) Isolation and purification of three flavonoid glycosides from the leaves of Nelumbo nucifera (Lotus) by high speed counter-current chromatography. J Chromatogr B 877:2487–2492

    CAS  Google Scholar 

  • Dwarka D (2012) Anti-carcinogenic activity of Centella asiatica and Elytropappus rhinocerotis on a human colon cancer cell line. In Thesis, Durban University of Technology

  • Engel N, Falodun A, Kühn J et al (2014) Pro-apoptotic and anti-adhesive effects of four African plant extracts on the breast cancer cell line MCF-7. BMC Complement Altern Med 14:334

    PubMed Central  PubMed  Google Scholar 

  • Fan BY, Gu YC, He Y et al (2014) Cytotoxic resin glycosides from Ipomoea aquatica and their effects on intracellular Ca2+ concentrations. J Nat Prod 77:2264–2272

    CAS  PubMed  Google Scholar 

  • Faried A, Kurnia D, Faried LS et al (2007) Anticancer effects of gallic acid isolated from Indonesian herbal medicine, Phaleria macrocarpa (Scheff.) Boerl, on human cancer cell lines. Int J Oncol 30:605–613

    CAS  PubMed  Google Scholar 

  • Fasseas MK, Mountzouris KC, Tarantilis PA et al (2007) Antioxidant activity in meat treated with oregano and sage essential oils. Food Chem 106:1188–1194

    Google Scholar 

  • Forbes-Hernandez TY, Giampieri F, Gasparrini M et al (2014) The effects of bioactive compounds from plant foods on mitochondrial function: a focus on apoptotic mechanisms. Food Chem Toxicol 68:154–182

    CAS  PubMed  Google Scholar 

  • Fu H, Xie B, Ma S et al (2011) Evaluation of antioxidant activities of principal carotenoids available in water spinach (Ipomoea aquatica). J Food Compos Anal 24:288–297

    CAS  Google Scholar 

  • Gibellini L, Pinti M, Nasi M et al (2011) Quercetin and cancer chemoprevention. Evid Based Complement Alternat Med 2011: Article ID 591356

  • Gill CIR, Haldar S, Boyd LA et al (2007) Watercress supplementation in diet reduces lymphocyte DNA damage and alters blood antioxidant status in healthy adults. Am J Clin Nutr 85:504–510

    CAS  PubMed  Google Scholar 

  • Gnanapragasam A, Ebenezar KK, Sathish V et al (2004) Protective effect of Centella asiatica on antioxidant tissue defense system against adriamycin induced cardiomyopathy in rats. Life Sci 76:585–597

    CAS  PubMed  Google Scholar 

  • Govindan G, Sambandan TG, Govindan M et al (2007) A bioactive polyacetylene compound isolated from Centella asiatica. Planta Med 73:597–599

    CAS  PubMed  Google Scholar 

  • Guo ZR (2012) Modification of natural products for drug discovery. Yao Xue Xue Bao 47:144–157

    CAS  PubMed  Google Scholar 

  • Gupta P, Wright SE, Kim SH et al (2014) Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanisms. BBA Rev Cancer 1846:405–424

    CAS  Google Scholar 

  • Hashimoto T, Yamada T, Nagai M et al (2010) Wasabi (Wasabia japonica). In: Singh VK, Govil JN (eds) Recent progress in medicinal plants, vol 30. Studium Press LLC, Houston

    Google Scholar 

  • Hirai S, Ishibuchi T, Watabe S et al (2011) Protective effect of red-stemmed type of Ipomoea aquatica Forsk against CCl 4-induced oxidative damage in mice. J Nutr Sci Vitaminol 57:306–310

    CAS  PubMed  Google Scholar 

  • Hsu Y-L, Kuo P-L, Lin L-T et al (2005) Asiatic acid, a triterpene, induces apoptosis and cell cycle arrest through activation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways in human breast cancer cells. J Pharmacol Exp Ther 313:333–344

    CAS  PubMed  Google Scholar 

  • Huang YH, Zhang SH, Zhen RX et al (2004) Asiaticoside inducing apoptosis of tumor cells and enhancing anti-tumor activity of vincristine. Ai Zheng 23:1599–1604

    CAS  PubMed  Google Scholar 

  • Huang DJ, Chen HJ, Lin CD et al (2005) Antioxidant and antiproliferative activities of water spinach (Ipomoea aquatica Forsk) constituents. Bot Bull Acad Sin 46:99–106

    Google Scholar 

  • Huang HL, Li DL, Li XM et al (2007) Antioxidative principals of Jussiaea repens: an edible medicinal plant. Int J Food Sci Technol 42:1219–1227

    CAS  Google Scholar 

  • Huang B, He J, Ban X et al (2011) Antioxidant activity of bovine and porcine meat treated with extracts from edible lotus (Nelumbo nucifera) rhizome knot and leaf. Meat Sci 87:46–53

    CAS  PubMed  Google Scholar 

  • Hussin M, Abdul-Hamid A, Mohamad S et al (2007) Protective efect of Centella asiatica extract and powder on oxidative stress in rats. Food Chem 100:535–541

    CAS  Google Scholar 

  • Hussin F, Eshkoor SA, Rahmat A et al (2014) The Centella asiatica juice effects on DNA damage, apoptosis and gene expression in hepatocellular carcinoma (HCC). BMC Complement Altern Med 14:32

    PubMed Central  PubMed  Google Scholar 

  • Jansen PCM (2004) Altemanthera sessilis (L.) DC. In: Grubben GJH, Denton OA (eds) PROTA 2: vegetables/Légumes [CD-Rom]). PROTA, Wageningen

    Google Scholar 

  • Jung HA, Jung YJ, Yoon NJ et al (2008) Inhibitory effects of Nelumbo nucifera leaves on rat lens aldose reductase, advanced glycation endproducts formation, and oxidative stress. Food Chem Toxicol 46:3818–3826

    CAS  PubMed  Google Scholar 

  • Kakde D, Jain D, Shrivastava V et al (2011) Cancer therapeutics-opportunities, challenges and advances in drug delivery. J Appl Pharm Sci 1:1–10

    Google Scholar 

  • Khlifi D, Hayouni EA, Valentin A et al (2013) LC–MS analysis, anticancer, antioxidant and antimalarial activities of Cynodon dactylon L. extracts. Ind Crop Prod 45:240–247

    CAS  Google Scholar 

  • Lee YS, Jin D-Q, Kwon EJ et al (2002) Asiatic acid, a triterpene, induces apoptosis through intracellular Ca2+ release and enhanced expression of p53 in HepG2 human hepatoma cells. Cancer Lett 186:83–91

    CAS  PubMed  Google Scholar 

  • Liu C-M, Kao C-L, Wu H-M et al (2014) Antioxidant and anticancer aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn. cv. Rosa-plena. Molecules 19:17829–17838

    CAS  PubMed  Google Scholar 

  • Lo C, Lai TY, Yang JH et al (2010) Gallic acid induces apoptosis in A375.S2 human melanoma cells through caspase-dependent and -independent pathways. Int J Oncol 37:377–385

    CAS  PubMed  Google Scholar 

  • Lobo V, Patil A, Phatak A et al (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118–126

    PubMed Central  CAS  PubMed  Google Scholar 

  • Luo X, Chen B, Lui J et al (2005) Simultaneous analysis of N-nornuciferine, O-nornuciferine, nuciferine, and roemerine in leaves of Nelumbo nucifera Gaertn by high-performance liquid chromatography–photodiode array detection–electrospray mass spectrometry. Anal Chim Acta 538:129–133

    CAS  Google Scholar 

  • Luo Y, Yang YP, Liu J et al (2014) Neuroprotective effects of madecassoside against focal cerebral ischemia reperfusion injury in rats. Brain Res 1565:37–47

    CAS  PubMed  Google Scholar 

  • Ma W, Lu Y, Hu R et al (2010) Application of ionic liquids based microwave-assisted extraction of three alkaloids N-nornuciferine, O-nornuciferine, and nuciferine from lotus leaf. Talanta 80:1292–1297

    CAS  PubMed  Google Scholar 

  • Martínez L, Cilla I, Beltrán JA et al (2007) Effect of illumination on the display life of fresh pork sausages packaged in modified atmosphere. Influence of the addition of rosemary, ascorbic acid and black pepper. Meat Sci 75:443–450

    PubMed  Google Scholar 

  • Marzouk MS, Soliman FM, Shehata IA et al (2007) Flavonoids and biological activities of Jussiaea repens. Nat Prod Res 21:436–443

    CAS  PubMed  Google Scholar 

  • McCauley J, Zivanovic A, Skropeta D (2013) Bioassays for anticancer activities. Methods Mol Biol 1055:191–205

    CAS  PubMed  Google Scholar 

  • Mukherjee PK, Mukherjee D, Maji AK et al (2009) The sacred lotus (Nelumbo nucifera)–phytochemical and therapeutic profile. J Pharm Pharmacol 61:407–422

    CAS  PubMed  Google Scholar 

  • Nagendra Prasad K, Shivamurthy GR, Aradhya SM (2008) Ipomoea aquatica, an underutilized green leafy vegetable: a review. Int J Bot 4:123–129

    Google Scholar 

  • Niki E (2011) Antioxidant capacity: which capacity and how to assess it? J Berry Res 1:169–176

    Google Scholar 

  • Ohno Y, Fukuda K, Takemura G et al (1999) Induction of apoptosis by gallic acid in lung cancer cells. Anticancer Drugs 10:845–852

    CAS  PubMed  Google Scholar 

  • Ong H-C (2008) Vegetables for health and healing. Utusan Publications and Distributors Sdn Bhd, Kuala Lumpur

    Google Scholar 

  • Ooh KF, Ong HC, Wong FC et al (2014) High performance liquid chromatography profiling of health-promoting phytochemicals and evaluation of antioxidant, anti-lipoxygenase, iron chelating and anti-glucosidase activities of wetland macrophytes. Pharmacogn Mag 10:S443–S455

    PubMed Central  PubMed  Google Scholar 

  • Orhan IE (2012) Centella asiatica (L.) Urban: from traditional medicine to modern medicine with neuroprotective potential. Evid Based Complement Alternat Med 2012: 1–8 (Article ID: 946259)

  • Orhan IE, Atasu E, Senol FS et al (2013) Comparative studies on Turkish and Indian Centella asiatica (L.) Urban (gotu kola) samples for their enzyme inhibitory and antioxidant effects and phytochemical characterization. Ind Crop Prod 47:316–322

    CAS  Google Scholar 

  • Park BC, Bosire KO, Lee ES et al (2005) Asiatic acid induces apoptosis in SK-MEL-2 human melanoma cells. Cancer Lett 218:81–90

    CAS  PubMed  Google Scholar 

  • Pittella F, Dutra RC, Junior DD et al (2009) Antioxidant and cytotoxic activities of Centella asiatica (L) Urb. Int J Mol Sci 10:3713–3721

    PubMed Central  CAS  PubMed  Google Scholar 

  • Poornima P, Weng CF, Padma VV (2014) Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest. BioFactors 40:121–131

    CAS  PubMed  Google Scholar 

  • Prakash O, Kumar A, Kumar P et al (2013) Anticancer potential of plants and natural products: a review. Am J Pharmacol Sci 1:104–115

    Google Scholar 

  • Prasad KN, Ashok G, Raghu C et al (2005) In vitro cytotoxic properties of Ipomoea aquatica leaf. Ind J Pharmacol 37:397–398

    Google Scholar 

  • Rai S, Wahile A, Mukherjee K et al (2006) Antioxidant activity of Nelumbo nucifera (sacred lotus) seeds. J Ethnopharmacol 104:322–327

    PubMed  Google Scholar 

  • Rai N, Agrawal RC, Khan A (2011a) Chemopreventive potential of Centella asiatica on B6F10 melanoma cell lines in experimental mice. Pharmacologyonline 1:748–758

    Google Scholar 

  • Rai N, Agrawal RC, Khan A (2011b) Inhibition of DMBA induced mouse skin carcinogenesis by Centella asiatica extract. Pharmacologyonline 3:536–546

    Google Scholar 

  • Reddy L, Odhav B, Bhoola KD (2003) Natural products for cancer prevention: a global perspective. Pharmacol Ther 99:1–13

    CAS  PubMed  Google Scholar 

  • Rose P, Huang Q, Ong CN et al (2005) Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol 209:105–113

    CAS  PubMed  Google Scholar 

  • Saha P, Selvan VT, Mondal SK et al (2008) Antidiabetic and antioxidant activity of methanol extract of Ipomoea reptans Poir aerial parts in streptozotocin induced diabetic rats. Pharmacologyonline 1:409–421

    Google Scholar 

  • Sebranek JG, Sewalt VJH, Robbins KL et al (2005) Comparison of a natural rosemary extract and BHA/BHT for relative antioxidant effectiveness in pork sausage. Meat Sci 69:289–296

    CAS  PubMed  Google Scholar 

  • Shilpi JA, Gray AI, Seidel V (2010) Chemical constituents from Ludwigia adscendens. Biochem Syst Ecol 38:106–109

    CAS  Google Scholar 

  • Siddique YH, Ara G, Beg T et al (2008) Antigenotoxic role of Centella asiatica L. extract against cyproterone acetate induced genotoxic damage in cultured human lymphocytes. Toxicol In Vitro 22:10–17

    CAS  PubMed  Google Scholar 

  • Sivaraman D, Panneerselvam P, Muralidharan P (2014) Isolation, characterization and insilico pharmacological screening of medicinally important bio-active phytoconstituents from the leaves of Ipomoea aquatica forsk. Int J Pharm Pharm Sci 6:262–267

    Google Scholar 

  • Subathra M, Shila S, Devi MA et al (2005) Emerging role of Centella asiatica in improving age-related neurological antioxidant status. Exp Gerontol 40:707–715

    PubMed  Google Scholar 

  • Sun BX, Fukuhara M (1997) Effects of co-administration of butylated hydroxytoluene, butylated hydroxyanisole and flavonoids on the activation of mutagens and drug-metabolizing enzymes in mice. Toxicology 122:61–72

    CAS  PubMed  Google Scholar 

  • Tagne RS, Telefo BP, Nyemb JN et al (2014) Anticancer and antioxidant activities of methanol extracts and fractions of some Cameroonian medicinal plants. Asian Pac J Trop Med 7:S442–S447

    Google Scholar 

  • Tang X-L, Yang X-Y, Jung H-J et al (2009) Asiatic acid induces colon cancer cell growth inhibition and apoptosis through mitochondrial death cascade. Biol Pharm Bull 32:1399–1405

    CAS  PubMed  Google Scholar 

  • Tee ES, Lim CL (1990) Carotenoid composition and content Malaysian vegetables and fruits by AOAC and HPLC methods. Food Chem 41:309–339

    Google Scholar 

  • Veerendra Kumar MH, Gupta YK (2002) Effect of different extracts of Centella asiatica on cognition and markers of oxidative stress in rats. J Ethnopharmacol 79:253–260

    CAS  PubMed  Google Scholar 

  • Venkatachalam K, Gunasekaran S, Jesudoss VAS et al (2013) The effect of rosmarinic acid on 1,2-dimethylhydrazine induced colon carcinogenesis. Exp Toxicol Pathol 65:409–418

    CAS  PubMed  Google Scholar 

  • Wijeweera P, Arnason JT, Koszycki D et al (2006) Evaluation of anxiolytic properties of Gotukola–(Centella asiatica) extracts and asiaticoside in rat behavioral models. Phytomedicine 13:668–676

    CAS  PubMed  Google Scholar 

  • Wills RBH, Rangga A (1995) Determination of carotenoids in Chinese vegetables. Food Chem 56:451–455

    Google Scholar 

  • Wolfe KL, Liu RH (2007) Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem 55:8896–8907

    CAS  PubMed  Google Scholar 

  • Woodall A, Britton G, Jackson M (1997) Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: relationship between carotenoid structure and protective ability. BBA Gen Subj 1336:575–586

    CAS  Google Scholar 

  • Xu CL, Wang QZ, Sun LM et al (2012) Asiaticoside: attenuation of neurotoxicity induced by MPTP in a rat model of Parkinsonism via maintaining redox balance and up-regulating the ratio of Bcl-2/Bax. Pharmacol Biochem Behav 100:413–418

    CAS  PubMed  Google Scholar 

  • Xu CL, Qu R, Zhang J et al (2013a) Neuroprotective effects of madecassoside in early stage of Parkinson’s disease induced by MPTP in rats. Fitoterapia 90:112–118

    CAS  PubMed  Google Scholar 

  • Xu R, Kang Q, Ren J et al (2013b) Antitumor molecular mechanism of chlorogenic acid on inducting genes GSK-3β and APC and inhibiting gene β-catenin. J Anal Meth Chem 2013:7

    Google Scholar 

  • Yazdanparast R, Bahramikia S, Ardestani A (2008) Nasturtium officinale reduces oxidative stress and enhances antioxidant capacity in hypercholesterolaemic rats. Chem Biol Interact 172:176–184

    CAS  PubMed  Google Scholar 

  • Yoon JS, Kim HM, Yadunandam AK et al (2013) Neferine isolated from Nelumbo nucifera enhances anti-cancer activities in Hep3B cells: molecular mechanisms of cell cycle arrest, ER stress induced apoptosis and anti-angiogenic response. Phytomedicine 20:1013–1022

    CAS  PubMed  Google Scholar 

  • Yoshida M, Fuchigami M, Nagao T et al (2005) Antiproliferative constituents from Umbelliferae plants VII. Active triterpenes and rosmarinic acid from Centella asiatica. Biol Pharm Bull 28:173–175

    CAS  PubMed  Google Scholar 

  • Zhang X, Liu Z, Xu B et al (2012) Neferine, an alkaloid ingredient in lotus seed embryo, inhibits proliferation of human osteosarcoma cells by promoting p38 MAPK-mediated p21 stabilization. Eur J Pharmacol 677:47–54

    CAS  PubMed  Google Scholar 

  • Zhang J-Y, Yi T, Liu J et al (2013a) Quercetin induces apoptosis via the mitochondrial pathway in KB and KBv200 cells. J Agric Food Chem 61:2188–2195

    CAS  PubMed  Google Scholar 

  • Zhang J, Ai L, Lv T et al (2013b) Asiatic acid, a triterpene, inhibits cell proliferation through regulating the expression of focal adhesion kinase in multiple myeloma cells. Oncol Lett 6:1762–1766

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng SY, Li Y, Jiang D et al (2012) Anticancer effect and apoptosis induction by quercetin in the human lung cancer cell line A-549. Mol Med Rep 5:822–826

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsun-Thai Chai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chai, TT., Ooh, KF., Quah, Y. et al. Edible freshwater macrophytes: a source of anticancer and antioxidative natural products—a mini-review. Phytochem Rev 14, 443–457 (2015). https://doi.org/10.1007/s11101-015-9399-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-015-9399-z

Keywords

  • Centella asiatica
  • Ipomoea aquatica
  • Ludwigia adscendens
  • Nasturtium officinale
  • Nelumbo nucifera