Advance on the benefits of bioactive peptides from buckwheat

Abstract

Buckwheat is a kind cereal mainly grown in cold plateau and mountainous districts. The seeds and food production made from buckwheat demonstrated great nutritional value and protective effects towards various kinds of disease. In this review, the antibacterial, trypsin inhibiting, antitumor, hypocholesterol, hypotensive and antidiabetic effects of buckwheat proteins and their enzyme hydrolysates were summarized and discussed. Many naturally occurring peptides isolated from buckwheat seeds are certified to be multiple functional compounds, such as buckwheat antimicrobial peptides, trypsin inhibitors, antitumor proteins, hypotensive peptides and antioxidant peptides. Besides its trypsin inhibiting activity upon proteases, buckwheat trypsin inhibitors also revealed antimicrobial activity towards fungi, Gram-positive and Gram-negative bacteria and antitumor activity against various kinds of cancer cells. The antitumor effects and the trypsin inhibiting activity are related with the special active site of the peptide molecules, while the hypolipidemic property and the hypotensive activity are most probably associating with the unique amino acids composition of buckwheat proteins, for the reason that the hydrolyzed small peptides still possess the relevant activity. Buckwheat peptides show prospective application in function food area and traditional medicine research. And structure–activity relationship of peptides attracts much more interests in recent years.

This is a preview of subscription content, access via your institution.

References

  1. Belozersky MA, Dunaevsky YE, Musolyamov AX, Egorov TA (1995) Complete amino acid sequence of the protease inhibitor from buckwheat seeds. FEBS Lett 371(3):264–266

    Article  CAS  PubMed  Google Scholar 

  2. Belozersky MA, Dunaevsky YE, Musolyamov AK, Egorov TA (2000) Amino acid sequence of the protease inhibitor BWI-4a from buckwheat seeds. IUBMB Life 49(4):273–276

    Article  CAS  PubMed  Google Scholar 

  3. Broekaert WF, Terras FR, Cammue BP, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108(4):1353–1358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Caimi G, Carollo C, Lo Presti R (2003) Diabetes mellitus: oxidative stress and wine. Curr Med Res Opin 19(7):581–586

    Article  CAS  PubMed  Google Scholar 

  5. Chen Z, Ren G, Zhang R, Ma K, Jiao R, Zhang K, Li Y, Yang N (2014) Hypocholesterolemic activity of buckwheat flour is mediated by increasing sterol excretion and down-regulation of intestinal NPC1L1 and ACAT2. J Funct Foods 6:311–318

    Article  Google Scholar 

  6. Cheung HS, Wang FL, Ondetti MA, Sabo EF, Cushman DW (1980) Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. J Biol Chem 255(2):401–407

    CAS  PubMed  Google Scholar 

  7. Cui X, Wang Z, Li Y, Li C (2013) Buckwheat trypsin inhibitor enters Hep G2 cells by clathrin-dependent endocytosis. Food Chem 141(3):2625–2633

    Article  CAS  PubMed  Google Scholar 

  8. Dunaevsky YE, Gladysheva IP, Pavlukova EB, Beliakova GA, Gladyshev DP, Papisova AI, Larionova NI, Belozersky MA (1997) The anionic protease inhibitor BWI-1 from buckwheat seeds. Kinetic properties and possible biological role. Physiol Plant 101(3):483–488

    Article  CAS  Google Scholar 

  9. Dunaevsky YE, Pavlukova EB, Beliakova GA, Tsybina TA, Gruban TN, Belozersky MA (2004) Protease inhibitors in buckwheat seeds: comparison of anionic and cationic inhibitors. J Plant Physiol 152(6):696–702

    Article  Google Scholar 

  10. Fujimura M, Minami Y, Watanabe K, Tadera K (2003) Purification, characterization, and sequencing of a novel type of antimicrobial peptides, Fa-AMP1 and Fa-AMP2, from seeds of buckwheat (Fagopyrum esculentum Moenc.). Biosci Biotechnol Biochem 67(8):1636–1642

    Article  CAS  PubMed  Google Scholar 

  11. Gao L, Li Y, Zhang Z, Wang Z, Wang H, Zhang L, Zhu L (2007) Apoptosisof HL-60 cells induced by recombinant common buckwheat trypsin inhibitor. J Exp Hematol 15(1):59–62

    CAS  Google Scholar 

  12. Guang C, Phillips RD (2009) Plant food-derived angiotensin I converting enzyme inhibitory peptides. J Agric Food Chem 57(12):5113–5120

    Article  CAS  PubMed  Google Scholar 

  13. Guo X, Zhu K, Zhang H, Yao H (2007) Purification and characterization of the antitumor protein from Chinese tartary buckwheat (Fagopyrum tataricum Gaertn.) water-soluble extracts. J Agric Food Chem 55(17):6958–6961

    Article  CAS  PubMed  Google Scholar 

  14. Guo X, Zhu K, Zhang H, Yao H (2010) Anti-tumor activity of a novel protein obtained from tartary buckwheat. Int J Mol Sci 11(12):5201–5211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hansen JB, Moen IW, Mandrup-Poulsen T (2014) Iron: the hard player in diabetes pathophysiology. Acta Physiol 210(4):717–732

    Article  CAS  Google Scholar 

  16. Ikeda K, Sakaguchi T, Kusano T, Yasumoto Y (1991) Endogenous factors affecting protein digestibility in buckwheat. Cereal Chem 68(4):424–427

    CAS  Google Scholar 

  17. Karki R, Park CH, Kim DW (2013) Extract of buckwheat sprouts scavenges oxidation and inhibits pro-inflammatory mediators in lipopolysaccharide-stimulated macrophages (RAW264.7). J Integr Med 11(4):246–252

    Article  PubMed  Google Scholar 

  18. Kayashita J, Shimaoka I, Nakajyoh M (1995) Hypocholesterolemic effect of buckwheat protein extract in rats fed cholesterol enriched diets. Nutr Res 15:691–698

    Article  CAS  Google Scholar 

  19. Kayashita J, Shimaoka I, Nakajoh M, Kato N (1996) Feeding of buckwheat protein extract reduces hepatic triglyceride concentration, adipose tissue weight and hepatic lipogenesis in rats. J Nutr Biochem 7:555–559

    Article  CAS  Google Scholar 

  20. Kayashita J, Shimaoka I, Nakajoh M, Yamazaki M, Kato N (1997) Consumption of buckwheat protein lowers plasma cholesterol and raises fecal neutral sterols in cholesterol-fed rats because of its low digestibility. J Nutr 127(7):1395–1400

    CAS  PubMed  Google Scholar 

  21. Kayashita J, Shimaoka I, Nakajoh M, Kishida N, Kato N (1999) Consumption of a buckwheat protein extract retards 7,12-dimethylbenz[alpha]anthracene-induced mammary carcinogenesis in rats. Biosci Biotechnol Biochem 63(10):1837–1839

    Article  CAS  PubMed  Google Scholar 

  22. Khadeeva NV, Kochieva EZ, Tcherednitchenko MY, Yakovleva EY, Sydoruk KV, Bogush VG, Dunaevsky YE, Belozersky MA (2009) Use of buckwheat seed protease inhibitor gene for improvement of tobacco and potato plant resistance to biotic stress. Biochemistry 74(3):260–267

    CAS  PubMed  Google Scholar 

  23. Kiyohara T, Iwasaki T (1985a) Purification and some properties of trypsin inhibitors from buckwheat seeds. Agric Biol Chem 49(3):581–588

    Article  CAS  Google Scholar 

  24. Kiyohara T, Iwasaki T (1985b) Chemical and physicochemical characterization of the permanent and temporary trypsin inhibitors from buckwheat. Agric Biol Chem 49(3):589–594

    Article  CAS  Google Scholar 

  25. Koyama M, Naramoto K, Nakajima T, Aoyama T, Watanabe M, Nakamura K (2013) Purification and identification of antihypertensive peptides from fermented buckwheat sprouts. J Agric Food Chem 61(12):3013–3021

    Article  CAS  PubMed  Google Scholar 

  26. Lee CC, Hsu WH, Shen SR, Cheng YH, Wu SC (2012) Fagopyrum tataricum (buckwheat) improved high-glucose-induced insulin resistance in mouse hepatocytes and diabetes in fructose-rich diet-induced mice. Exp Diabetes Res 2012:375673

  27. Leung EH, Ng TB (2007) A relatively stable antifungal peptide from buckwheat seeds with antiproliferative activity toward cancer cells. J Pept Sci 13(11):762–767

    Article  CAS  PubMed  Google Scholar 

  28. Li SQ, Zhang QH (2001) Advances in the development of functional foods from buckwheat. Crit Rev Food Sci Nutr 41:451–464

    Article  CAS  PubMed  Google Scholar 

  29. Li CH, Matsui T, Matsumoto K, Yamasaki R, Kawasaki T (2002) Latent production of angiotensin I-converting enzyme inhibitors from buckwheat protein. Pept Sci 8(6):267–274

    Article  CAS  Google Scholar 

  30. Li YY, Zhang Z, Wang ZH, Wang HW, Zhang L, Zhu L (2009) rBTI induces apoptosis in human solid tumor cell lines by loss in mitochondrial transmembrane potential and caspase activation. Toxicol Lett 189(2):166–175

    Article  CAS  PubMed  Google Scholar 

  31. Liu Z, Ishikawa W, Huang X, Tomotake H, Kayashita J, Watanabe H, Kato N (2001) A buckwheat protein product suppresses, 2-dimethylhydrazine-induced colon carcinogenesis in rats by reducing cell proliferation. J Nutr 131(6):1850–1853

    CAS  PubMed  Google Scholar 

  32. Liu R, Wang Y, Guo H, Jia S, Hu Y (2009) Study on the effect of buckwheat protein in lowering blood glucose of diabetic mice. J Jilin Agric Univ 31(1):102–104

    CAS  Google Scholar 

  33. Ma Y, Xiong YL (2009) Antioxidant and bile acid binding activity of buckwheat protein in vitro digests. J Agric Food Chem 57(10):4372–4380

    Article  CAS  PubMed  Google Scholar 

  34. Ma MS, In YB, Hyeon GL, Yang CB (2006) Purification and identification of angiotensin I-converting enzyme inhibitory peptide from buckwheat(Fagopyrum esculentum Moench). Food Chem 96:36–42

    Article  CAS  Google Scholar 

  35. Ma Y, Xiong YL, Zhai J, Zhu H, Dziubla T (2010) Fractionation and evaluation of radical-scavenging peptides from in vitro digests of buckwheat protein. Food Chem 118(3):582–588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Metzger B, Barnes D, Reed J (2007) Insoluble fraction of buckwheat (Fagopyrum esculentum Moench) protein possessing cholesterol-binding properties that reduce micelle cholesterol solubility and uptake by Caco-2 cells. J Agric Food Chem 55(15):6032–6038

    Article  CAS  PubMed  Google Scholar 

  37. Oparin PB, Mineev KS, Dunaevsky YE, Arseniev AS, Belozersky MA, Grishin EV, Egorov TA, Vassilevski AA (2012) Buckwheat trypsin inhibitor with helical hairpin structure belongs to a new family of plant defence peptides. Biochem J 446(1):69–77

    Article  CAS  PubMed  Google Scholar 

  38. Pandya MJ, Smith DA, Yarwood A, Gilroy J, Richardson M (1996) Complete amino acid sequences of two trypsin inhibitors from buckwheat seed. Phytochemistry 43(2):327–331

    Article  CAS  PubMed  Google Scholar 

  39. Park SS, Ohba H (2004) Suppressive activity of protease inhibitors from buckwheat seeds against human t-acute lymphoblastic leukemia cell lines. Appl Biochem Biotechnol 117(2):65–74

    Article  CAS  PubMed  Google Scholar 

  40. Park SS, Abe K, Kimura M, Urisu A, Yamasaki N (1997) Primary structure and allergenic activity of trypsin inhibitors from the seeds of buckwheat (Fagopyrumesculentum Moench). FEBS Lett 400(1):103–107

    Article  CAS  PubMed  Google Scholar 

  41. Pomeranz Y (1983) Buckwheat: structure, composition, and utilization. Crit Rev Food Sci Nutr 19(3):213–258

    Article  CAS  PubMed  Google Scholar 

  42. Pomeranz Y, Robbins SG (1972) Amino acid composition of buckwheat. J Agric Food Chem 20(2):270–274

    Article  CAS  Google Scholar 

  43. Ruan JJ, Chen H, Shao JR, Wu Q, Han XY (2011) An antifungal peptide from Fagopyrum tataricum seeds. Peptides 32(6):1151–1158

    Article  CAS  PubMed  Google Scholar 

  44. Thomma BP, Cammue BP, Thevissen K (2002) Plant defensins. Planta 216(2):193–202

    Article  CAS  PubMed  Google Scholar 

  45. Tomotake H, Shimaoka I, Kayashita J, Yokoyama F, Nakajoh M, Kato N (2000) A buckwheat protein product suppresses gallstone formation and plasma cholesterol more strongly than soy protein isolate in hamsters. J Nutr 130(7):1670–1674

    CAS  PubMed  Google Scholar 

  46. Tomotake H, Shimaoka I, Kayashita J, Yokoyama F, Nakajoh M, Kato N (2001) Stronger suppression of plasma cholesterol and enhancement of the fecal excretion of steroids by a buckwheat protein product than by a soy protein isolate in rats fed on a cholesterol-free diet. Biosci Biotechnol Biochem 65(6):1412–1414

    Article  CAS  PubMed  Google Scholar 

  47. Tomotake H, Yamamoto N, Yanaka N, Ohinata H, Yamazaki R, Kayashita J, Kato N (2006) High protein buckwheat flour suppresses hypercholesterolemia in rats and gallstone formation in mice by hypercholesterolemic diet and body fat in rats because of its low protein digestibility. Nutrition 22(2):166–173

    Article  CAS  PubMed  Google Scholar 

  48. Tomotake H, Yamamoto N, Kitabayashi H, Kawakami A, Kayashita J, Ohinata H, Karasawa H, Kato N (2007) Preparation of tartary buckwheat protein product and its improving effect on cholesterol metabolism in rats and mice fed cholesterol-enriched diet. J Food Sci 72(7):S528–S533

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y, Qi H, Gu B, Huang W, Zhao H (2009) The therapeutic effects of tartarian buckwheat protein extracts on 2 type diabetic rats. Zhejiang Journal of Preventive Medicine 21(01):4–14

    Google Scholar 

  50. Wang L, Zhao F, Li M, Zhang H, Gao Y, Cao P, Pan X, Wang Z, Chang W (2011) Conformational changes of rBTI from buckwheat upon binding to trypsin: implications for the role of the P8′ residue in the potato inhibitor I family. PLoS ONE 6(6):e20950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Watanabe M, Ayugase J (2010) Effects of buckwheat sprouts on plasma and hepatic parameters in type 2 diabetic db/db mice. J Food Sci 75(9):H294–H299

    Article  CAS  PubMed  Google Scholar 

  52. Yao Y, Shan F, Bian J, Chen F, Wang M, Ren G (2008) d-chiro-inositol-enriched tartary buckwheat bran extract lowers the blood glucose level in KK-Ay mice. J Agric Food Chem 56(21):10027–10031

    Article  CAS  PubMed  Google Scholar 

  53. Zhang HW, Zhang YH, Lu MJ, Tong WJ, Cao GW (2007a) Comparison of hypertension, dyslipidaemia and hyperglycaemia between buckwheat seed-consuming and non-consuming Mongolian–Chinese populations in InnerMongolia, China. Clin Exp Pharmacol Physiol 34:838–844

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Z, Li Y, Li C, Yuan J, Wang Z (2007b) Expression of a buckwheat trypsin inhibitor gene in Escherichia coli and its effect on multiple myeloma IM-9 cellproliferation. Acta Biochim Biophys Sin 39(9):701–707

    Article  CAS  PubMed  Google Scholar 

  55. Zhang R, Yao Y, Wang Y, Ren G (2011) Antidiabetic activity of isoquercetin in diabetic KK-Ay mice. Nutr Metab 8:85

    Article  CAS  Google Scholar 

  56. Zhou X, Cheng S, Yang Y (2011a) Toward a novel understanding of buckwheat self-defensive strategies during seed germination and preliminary investigation on the potential pharmacological application of its malting products. J Med Plants Res 5(32):6946–6954

    CAS  Google Scholar 

  57. Zhou X, Li Z, Zhou Y (2011b) Advances of buckwheat chemicals in diabetes mellitus treatment. J Chin Cereals Oils Assoc 26(5):119–121

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese National Natural Science Foundation Grant (31371761).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Zhou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Wen, L., Li, Z. et al. Advance on the benefits of bioactive peptides from buckwheat. Phytochem Rev 14, 381–388 (2015). https://doi.org/10.1007/s11101-014-9390-0

Download citation

Keywords

  • Buckwheat
  • Antimicrobial peptides
  • Trypsin inhibitors
  • Antitumor proteins
  • Hypotensive peptides