Advertisement

Phytochemistry Reviews

, Volume 15, Issue 1, pp 51–85 | Cite as

Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology

  • Ana Ferreira
  • Márcio Rodrigues
  • Ana Fortuna
  • Amílcar Falcão
  • Gilberto AlvesEmail author
Article

Abstract

The use and popularity of herbal medicines has been increasing worldwide. In fact, today, the traditional Chinese medicine offers a vast repertory for pharmaceutical research, as is the case of Huperzia serrata, a member of Huperziaceae family. This review reports the Lycopodium alkaloids that have been isolated from this plant. However, it was mainly focused on the huperzine A (HupA), a promising therapeutic option in several acute and chronic disorders. The major therapeutic interest described for HupA has been directed to the treatment of acetylcholine-deficit dementia, including Alzheimer’s disease. However, HupA was also shown to be effective on cerebrovascular dementia and other neurodegenerative disorders with an ischemic component, as well as on other kind of cognitive impairments; the value of HupA on myasthenia gravis, organophosphate poisoning and schizophrenia has also been described. In addition, many other pharmacological properties have been ascribed to HupA, namely its anti-inflammatory, antinociceptive and anticonvulsant properties, which was recently identified, promoting a growing interest on HupA research. Furthermore, its particular chemical structure and the fact that HupA is well tolerated in humans, even at doses well above those clinically required, along with its favorable pharmacokinetics, also boosted an intense research in the pharmaceutical industry. Therefore, several HupA-related features are addressed in this review, including not only its therapeutic properties, but also its chemistry, biological and chemical sources, structure–activity relationship, pharmacokinetics and toxicology, which are discussed in detail covering the literature published from 1962 to 2014.

Keywords

Huperziaceae Huperzia serrata Lycopodium alkaloids Huperzine A Alzheimer’s disease 

Abbreviations

ACh

Acetylcholine

AChE

Acetylcholinesterase

AD

Alzheimer’s disease

bid

Twice-daily

BuChE

Butyrylcholinesterase

Cmax

Peak concentration

CNS

Central nervous system

CYP

Cytochrome P450

HupA

Huperzine A

im

Intramuscular

ip

Intraperitoneal

iv

Intravenous

LD50

Median lethal dose

NMDA

N-Methyl-d-aspartate

po

Per os

sc

Subcutaneous

Notes

Acknowledgments

The authors thank the support of Fundação para a Ciência e a Tecnologia (FCT, Portugal) through the fellowship SFHR/BD/84936/2012, involving the POPH (Programa Operacional Potencial Humano) which is co-funded by FSE (Fundo Social Europeu), and through the strategic project Pest-OE/SAU/UI0709/2014.

References

  1. Alcalá M, Vivas NM, Hospital S et al (2003) Characterisation of the anticholinesterase activity of two new tacrine-huperzine A hybrids. Neuropharmacology 44:749–755CrossRefGoogle Scholar
  2. Alves RRN, Alves HN (2011) The faunal drugstore: animal-based remedies used in traditional medicines in Latin America. J Ethnobiol Ethnomed 7:9PubMedCentralPubMedCrossRefGoogle Scholar
  3. Andersen RA, Aaraas I, Gaare G, Fonnum F (1977) Inhibition of acetylcholinesterase from different species by organophosphorus compounds, carbamates and methylsulphonylfluoride. Gen Pharmacol 8:331–334PubMedCrossRefGoogle Scholar
  4. Ashani Y, Peggins JO, Doctor BP (1992) Mechanism of inhibition of cholinesterases by huperzine A. Biochem Biophys Res Commun 184:719–726PubMedCrossRefGoogle Scholar
  5. Ayer WA, Berezowsky JA, Iverach GG (1962) Lycopodium alkaloids-II. Tetrahedron 18:567–573CrossRefGoogle Scholar
  6. Ayer WA, Ma Y-T, Liu J-S et al (1994) Macleanine, a unique type of dinitrogenous Lycopodium alkaloid. Can J Chem 72:128–130CrossRefGoogle Scholar
  7. Bai D (2007) Development of huperzine A and B for treatment of Alzheimer’s disease. Pure Appl Chem 79:469–479CrossRefGoogle Scholar
  8. Bai DL, Tang XC, He XC (2000) Huperzine A, a potential therapeutic agent for treatment of Alzheimer’s disease. Curr Med Chem 7:355–374PubMedCrossRefGoogle Scholar
  9. Bialer M, Johannessen SI, Kupferberg HJ et al (2007) Progress report on new antiepileptic drugs: a summary of the eighth Eilat conference (EILAT VIII). Epilepsy Res 73:1–52PubMedCrossRefGoogle Scholar
  10. Bialer M, Johannessen SI, Levy RH et al (2009) Progress report on new antiepileptic drugs: a summary of the ninth Eilat conference (EILAT IX). Epilepsy Res 83:1–43PubMedCrossRefGoogle Scholar
  11. Bialer M, Johannessen SI, Levy RH et al (2010) Progress report on new antiepileptic drugs: a summary of the tenth Eilat conference (EILAT X). Epilepsy Res 92:89–124PubMedCrossRefGoogle Scholar
  12. Boudinot E, Taysse L, Daulon S et al (2005) Effects of acetylcholinesterase and butyrylcholinesterase inhibition on breathing in mice adapted or not to reduced acetylcholinesterase. Pharmacol Biochem Behav 80:53–61PubMedCrossRefGoogle Scholar
  13. Brunhofer G, Fallarero A, Karlsson D et al (2012) Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine. Bioorg Med Chem 20:6669–6679PubMedCrossRefGoogle Scholar
  14. Cadieux CL, Broomfield CA, Kirkpatrick MG et al (2010) Comparison of human and guinea pig acetylcholinesterase sequences and rates of oxime-assisted reactivation. Chem Biol Interact 187:229–233PubMedCrossRefGoogle Scholar
  15. Camps P, El Achab R, Morral J et al (2000) New tacrine-huperzine A hybrids (huprines): highly potent tight-binding acetylcholinesterase inhibitors of interest for the treatment of Alzheimer’s disease. J Med Chem 43:4657–4666PubMedCrossRefGoogle Scholar
  16. Capurro V, Busquet P, Lopes JP et al (2013) Pharmacological characterization of memoquin, a multi-target compound for the treatment of Alzheimer’s disease. PLoS ONE 8:e56870PubMedCentralPubMedCrossRefGoogle Scholar
  17. Chang J (2000) Medicinal herbs: drugs or dietary supplements? Biochem Pharmacol 59:211–219PubMedCrossRefGoogle Scholar
  18. Cheng DH, Tang XC (1998) Comparative studies of huperzine A, E2020, and tacrine on behavior and cholinesterase activities. Pharmacol Biochem Behav 60:377–386PubMedCrossRefGoogle Scholar
  19. Cheng DH, Ren H, Tang XC (1996) Huperzine A, a novel promising acetylcholinesterase inhibitor. NeuroReport 8:97–101PubMedCrossRefGoogle Scholar
  20. Chu D-F, Fu X-Q, Liu W-H et al (2006) Pharmacokinetics and in vitro and in vivo correlation of huperzine A loaded poly(lactic-co-glycolic acid) microspheres in dogs. Int J Pharm 325:116–123PubMedCrossRefGoogle Scholar
  21. Chu D, Tian J, Liu W et al (2007) Poly(lactic-co-glycolic acid) microspheres for the controlled release of huperzine A: in vitro and in vivo studies and the application in the treatment of the impaired memory of mice. Chem Pharm Bull 55:625–628PubMedCrossRefGoogle Scholar
  22. Coleman BR, Ratcliffe RH, Oguntayo SA et al (2008) [+]-Huperzine A treatment protects against N-methyl-D-aspartate-induced seizure/status epilepticus in rats. Chem-Biol Interact 175:387–395PubMedCrossRefGoogle Scholar
  23. Ding R, Sun B-F, Lin G-Q (2012) An efficient total synthesis of (−)-huperzine A. Org Lett 14:4446–4449PubMedCrossRefGoogle Scholar
  24. Ding R, Fu J-G, Xu G-Q et al (2014) Divergent total synthesis of the Lycopodium alkaloids huperzine A, huperzine B, and huperzine U. J Org Chem 79:240–250PubMedCrossRefGoogle Scholar
  25. Dvir H, Jiang HL, Wong DM et al (2002) X-ray structures of Torpedo californica acetylcholinesterase complexed with (+)-huperzine A and (−)-huperzine B: structural evidence for an active site rearrangement. Biochemistry 41:10810–10818PubMedCrossRefGoogle Scholar
  26. Eisenberg DM, Harris ESJ, Littlefield BA et al (2011) Developing a library of authenticated Traditional Chinese Medicinal (TCM) plants for systematic biological evaluation—rationale, methods and preliminary results from a Sino-American collaboration. Fitoterapia 82:17–33PubMedCentralPubMedCrossRefGoogle Scholar
  27. FDA (1999) Memorandum. In: http://www.fda.gov/ohrms/dockets/dailys/00/jan00/010300/rpt0055.pdf. Cited 10 Set 2014
  28. Filliat P, Foquin A, Lallement G (2002) Effects of chronic administration of huperzine A on memory in guinea pigs. Drug Chem Toxicol 25:9–24PubMedCrossRefGoogle Scholar
  29. Gao X, Tang XC (2006) Huperzine A attenuates mitochondrial dysfunction in beta-amyloid-treated PC12 cells by reducing oxygen free radicals accumulation and improving mitochondrial energy metabolism. J Neurosci Res 83:1048–1057PubMedCrossRefGoogle Scholar
  30. Gao WY, Li YM, De Wang B, Zhu DY (1999) Huperzine H, a new Lycopodium alkaloid from Huperzia serrata. Chin Chem Lett 10:463–466Google Scholar
  31. Gao W, Li Y, Jiang S, Zhu D (2000a) Three Lycopodium alkaloid N-oxides from Huperzia serrata. Planta Med 66:664–667PubMedCrossRefGoogle Scholar
  32. Gao Y, Tang XC, Guan LC, Kuang PZ (2000b) Huperzine A reverses scopolamine- and muscimol-induced memory deficits in chick. Acta Pharmacol Sin 21:1169–1173PubMedGoogle Scholar
  33. Gao X, Zheng CY, Yang L et al (2009) Huperzine A protects isolated rat brain mitochondria against beta-amyloid peptide. Free Radic Biol Med 46:1454–1462PubMedCrossRefGoogle Scholar
  34. Gao W-Y, Wang B-D, Li Y-M et al (2010) A new alkaloid and arbutin from the whole plant of Huperzia serrata. Chin J Chem 18:614–616CrossRefGoogle Scholar
  35. Garcia GE, Hicks RP, Skanchy D et al (2004) Identification and characterization of the major huperzine a metabolite in rat blood. J Anal Toxicol 28:379–383PubMedCrossRefGoogle Scholar
  36. García-Ayllón M-S, Riba-Llena I, Serra-Basante C et al (2010) Altered levels of acetylcholinesterase in Alzheimer plasma. PLoS ONE 5:e8701PubMedCentralPubMedCrossRefGoogle Scholar
  37. Gemma S, Gabellieri E, Huleatt P et al (2006) Discovery of huperzine A-tacrine hybrids as potent inhibitors of human cholinesterases targeting their midgorge recognition sites. J Med Chem 49:3421–3425PubMedCrossRefGoogle Scholar
  38. Gordon RK, Nigam SV, Weitz JA et al (2001) The NMDA receptor ion channel: a site for binding of Huperzine A. J Anal Toxicol 21(Suppl 1):S47–S51Google Scholar
  39. Grunwald J, Raveh L, Doctor BP, Ashani Y (1994) Huperzine A as a pretreatment candidate drug against nerve agent toxicity. Life Sci 54:991–997PubMedCrossRefGoogle Scholar
  40. Ha GT, Wong RK, Zhang Y (2011) Huperzine a as potential treatment of Alzheimer’s disease: an assessment on chemistry, pharmacology, and clinical studies. Chem Biodivers 8:1189–1204PubMedCrossRefGoogle Scholar
  41. Hallak M, Giacobini E (1989) Physostigmine, tacrine and metrifonate: the effect of multiple doses on acetylcholine metabolism in rat brain. Neuropharmacology 28:199–206PubMedCrossRefGoogle Scholar
  42. Hanin I, Tang XC, Kindel GL, Kozikowski AP (1993) Natural and synthetic Huperzine A: effect on cholinergic function in vitro and in vivo. Ann N Y Acad Sci 695:304–306PubMedCrossRefGoogle Scholar
  43. Haudrechy A, Chassaing C, Riche C, Langlois Y (2000) A formal synthesis of (+)-huperzine A. Tetrahedron 56:3181–3187CrossRefGoogle Scholar
  44. Holub J (1985) Transfers of Lycopodium species to Huperzia: with a note on generic classification in Huperziaceae. Folia Geobot Phytotaxon 20:67–80CrossRefGoogle Scholar
  45. Howes M-JR, Houghton PJ (2003) Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function. Pharmacol Biochem Behav 75:513–527PubMedCrossRefGoogle Scholar
  46. Hu P, Cross ML, Yuan SQ et al (1992) Mass spectrometric differentiation of huperzinine, N,N-dimethylhuperzine A and N-methylhuperzine B. Org Mass Spectrom 27:99–104CrossRefGoogle Scholar
  47. Huang J, He C (2010) Population structure and genetic diversity of Huperzia serrata (Huperziaceae) based on amplified fragment length polymorphism (AFLP) markers. Biochem Syst Ecol 38:1137–1147CrossRefGoogle Scholar
  48. Huang X-T, Qian Z-M, He X et al (2013) Reducing iron in the brain: a novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer’s disease. Neurobiol Aging 35:1045–1054PubMedCrossRefGoogle Scholar
  49. Inubushi Y, Ishii H, Yasui B et al (1967) Studies on the constituents of domestic Lycopodium plants. VII. Alkaloid constituents of Lycopodium serratum Thunb. var. serratum form. serratum (= Lycopodium serratum Thunb. var. Thunbergii Makino) and Lycopodium serratum Thunb. var. serratum form. inter. Yakugaku Zasshi 87:1394–1403PubMedGoogle Scholar
  50. Ji S-G, Huo K-K, Wang J, Pan S-L (2008) A molecular phylogenetic study of Huperziaceae based on chloroplast rbcL and psbA-trnH sequences. J Syst Evol 46:213–219Google Scholar
  51. Jia J-Y, Zhao Q-H, Liu Y et al (2013) Phase I study on the pharmacokinetics and tolerance of ZT-1, a prodrug of huperzine A, for the treatment of Alzheimer’s disease. Acta Pharmacol Sin 34:976–982PubMedCentralPubMedCrossRefGoogle Scholar
  52. Jiang J, Liu Y, Min K et al (2010) Two New Lycopodine Alkaloids from Huperzia serrata. Helv Chim Acta 93:1187–1191CrossRefGoogle Scholar
  53. Jordá EG, Verdaguer E, Jiménez A et al (2004) (±)-huprine Y, (−)-huperzine A and tacrine do not show neuroprotective properties in an apoptotic model of neuronal cytoskeletal alteration. J Alzheimers Dis 6:577–583PubMedGoogle Scholar
  54. Katakawa K, Nozoe A, Kogure N et al (2007) Fawcettimine-related alkaloids from Lycopodium serratum. J Nat Prod 70:1024–1028PubMedCrossRefGoogle Scholar
  55. Kitajima M, Takayama H (2012) Lycopodium alkaloids: isolation and asymmetric synthesis. Top Curr Chem 309:1–31PubMedCrossRefGoogle Scholar
  56. Kolgazi M, Uslu U, Yuksel M et al (2013) The role of cholinergic anti-inflammatory pathway in acetic acid-induced colonic inflammation in the rat. Chem Biol Interact 205:72–80PubMedCrossRefGoogle Scholar
  57. Konrath EL, Neves BM, Passos CDS et al (2012) Huperzia quadrifariata and Huperzia reflexa alkaloids inhibit acetylcholinesterase activity in vivo in mice brain. Phytomedicine 19:1321–1324PubMedCrossRefGoogle Scholar
  58. Kozikowski AP, Tückmantel W (1999) Chemistry, pharmacology, and clinical efficacy of the chinese nootropic agent huperzine A. Acc Chem Res 32:641–650CrossRefGoogle Scholar
  59. Laganière S, Corey J, Tang XC et al (1991) Acute and chronic studies with the anticholinesterase huperzine A: effect on central nervous system cholinergic parameters. Neuropharmacology 30:763–768PubMedCrossRefGoogle Scholar
  60. Lallement G, Veyret J, Masqueliez C et al (1997) Efficacy of huperzine in preventing soman-induced seizures, neuropathological changes and lethality. Fundam Clin Pharmacol 11:387–394PubMedCrossRefGoogle Scholar
  61. Lallement G, Baille V, Baubichon D et al (2002) Review of the value of huperzine as pretreatment of organophosphate poisoning. Neurotoxicology 23:1–5PubMedCrossRefGoogle Scholar
  62. Li YX, Zhang RQ, Li CR, Jiang XH (2007) Pharmacokinetics of huperzine A following oral administration to human volunteers. Eur J Drug Metab Pharmacokinet 32:183–187PubMedCrossRefGoogle Scholar
  63. Liang YQ, Tang XC (2004) Comparative effects of huperzine A, donepezil and rivastigmine on cortical acetylcholine level and acetylcholinesterase activity in rats. Neurosci Lett 361:56–59PubMedCrossRefGoogle Scholar
  64. Liang Y, Tang X (2006) Comparative studies of huperzine A, donepezil, and rivastigmine on brain acetylcholine, dopamine, norepinephrine, and 5-hydroxytryptamine levels in freely-moving rats. Acta Pharmacol Sin 27:1127–1136PubMedCrossRefGoogle Scholar
  65. Liang YQ, Huang XT, Tang XC (2008) Huperzine A reverses cholinergic and monoaminergic dysfunction induced by bilateral nucleus basalis magnocellularis injection of beta-amyloid peptide (1–40) in rats. Cell Mol Neurobiol 28:87–101PubMedCrossRefGoogle Scholar
  66. Lin L-J, Lin L-Z, Cordell GA et al (1993) NMR assignments of huperzine a, serratinine and lucidioline. Phytochemistry 34:1425–1428CrossRefGoogle Scholar
  67. Little JT, Walsh S, Aisen PS (2008) An update on huperzine A as a treatment for Alzheimer’s disease. Expert Opin Invest Drugs 17:209–215CrossRefGoogle Scholar
  68. Liu JS, Yu CM, Zhou YZ et al (1986) Study on the chemistry of huperzine-A and huperzine-B. Acta Chim Sin 44:1035–1040Google Scholar
  69. Liu HQ, Tan CH, Jiang SH, Zhu DY (2004) Huperzine V, a new Lycopodium alkaloid from Huperzia serrata. Chin Chem Lett 15:303–304Google Scholar
  70. Liu L, Xie G, Wang J, Sun J (2006) Experimental study on protective effects of HupA in the treatment of isocarbophos poisoning. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 24:323–325PubMedGoogle Scholar
  71. Liu L, Wang J, Xie G, Sun J (2013) Effect of huperzine A on neural lesion of acute organophosphate poisoning in mice. Wei Sheng Yan Jiu 42:419–423PubMedGoogle Scholar
  72. Lu WH, Shou J, Tang XC (1988) Improving effect of huperzine A on discrimination performance in aged rats and adult rats with experimental cognitive impairment. Acta Pharmacol Sinica 9:11–15Google Scholar
  73. Lu J-J, Pan W, Hu Y-J, Wang Y-T (2012) Multi-target drugs: the trend of drug research and development. PLoS ONE 7:e40262PubMedCentralPubMedCrossRefGoogle Scholar
  74. Lucey C, Kelly SA, Mann J (2007) A concise and convergent (formal) total synthesis of huperzine A. Org Biomol Chem 5:301–306PubMedCrossRefGoogle Scholar
  75. Lunardi P, Nardin P, Guerra MC et al (2013) Huperzine A, but not tacrine, stimulates S100B secretion in astrocyte cultures. Life Sci 92:701–707PubMedCrossRefGoogle Scholar
  76. Luo H, Li Y, Sun C et al (2010) Comparison of 454-ESTs from Huperzia serrata and Phlegmariurus carinatus reveals putative genes involved in Lycopodium alkaloid biosynthesis and developmental regulation. BMC Plant Biol 10:209PubMedCentralPubMedCrossRefGoogle Scholar
  77. Ma X, Gang DR (2004) The Lycopodium alkaloids. Nat Prod Rep 21:752–772PubMedCrossRefGoogle Scholar
  78. Ma X, Gang DR (2008) In vitro production of huperzine A, a promising drug candidate for Alzheimer’s disease. Phytochemistry 69:2022–2028PubMedCrossRefGoogle Scholar
  79. Ma X-Q, Jiang S-H, Zhu D-Y (1998) Alkaloid patterns in Huperzia and some related genera of Lycopodiaceae Sensu Lato occurring in China and their contribution to classification. Biochem Syst Ecol 26:723–728CrossRefGoogle Scholar
  80. Ma X, Wang H, Xin J et al (2003a) Identification of cytochrome P450 1A2 as enzyme involved in the microsomal metabolism of huperzine A. Eur J Pharmacol 461:89–92PubMedCrossRefGoogle Scholar
  81. Ma X-C, Wang H-X, Xin J et al (2003b) Effects of huperzine A on liver cytochrome P-450 in rats. Acta Pharmacol Sin 24:831–835PubMedGoogle Scholar
  82. Ma X-C, Xin J, Wang H-X et al (2003c) Acute effects of huperzine A and tacrine on rat liver. Acta Pharmacol Sin 24:247–250PubMedGoogle Scholar
  83. Ma X, Tan C, Zhu D, Gang DR (2005) Is there a better source of huperzine A than Huperzia serrata? Huperzine A content of Huperziaceae species in China. J Agric Food Chem 53:1393–1398PubMedCrossRefGoogle Scholar
  84. Ma X, Tan C, Zhu D, Gang DR (2006) A survey of potential huperzine A natural resources in China: the Huperziaceae. J Ethnopharmacol 104:54–67PubMedCrossRefGoogle Scholar
  85. Ma X, Tan C, Zhu D et al (2007) Huperzine A from Huperzia species-an ethnopharmacolgical review. J Ethnopharmacol 113:15–34PubMedCrossRefGoogle Scholar
  86. Ma T, Gong K, Yan Y et al (2013) Huperzine A promotes hippocampal neurogenesis in vitro and in vivo. Brain Res 1506:35–43PubMedCrossRefGoogle Scholar
  87. Malkova L, Kozikowski AP, Gale K (2011) The effects of huperzine A and IDRA 21 on visual recognition memory in young macaques. Neuropharmacology 60:1262–1268PubMedCentralPubMedCrossRefGoogle Scholar
  88. Miao ZC, Yang ZS, Feng R (1989) The structure determination of a new alkaloid phlegmariuine-N by long-range two-dimensional and NOE difference NMR spectroscopy. Acta Pharmacol Sin 24:114–117Google Scholar
  89. Morita H, Arisaka M, Yoshida N, Kobayashi J (2000) Serratezomines A-C, new alkaloids from Lycopodium serratum var. serratum. J Org Chem 65:6241–6245PubMedCrossRefGoogle Scholar
  90. Mukherjee PK, Kumar V, Mal M, Houghton PJ (2007) Acetylcholinesterase inhibitors from plants. Phytomedicine 14:289–300PubMedCrossRefGoogle Scholar
  91. Ortega MG, Vallejo MG, Cabrera JL et al (2006) Huperzia saururus, activity on synaptic transmission in the hippocampus. J Ethnopharmacol 104:374–378PubMedCrossRefGoogle Scholar
  92. Ou LY, Tang XC, Cai JX (2001) Effect of huperzine A on working memory in reserpine- or yohimbine-treated monkeys. Eur J Pharmacol 433:151–156PubMedCrossRefGoogle Scholar
  93. Pang YP, Kozikowski AP (1994) Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies. J Comput Mol Des 8:669–681CrossRefGoogle Scholar
  94. Park P, Schachter S, Yaksh T (2010) Intrathecal huperzine A increases thermal escape latency and decreases flinching behavior in the formalin test in rats. Neurosci Lett 470:6–9PubMedCentralPubMedCrossRefGoogle Scholar
  95. Patocka J (1998) Huperzine A—an interesting anticholinesterase compound from the Chinese herbal medicine. Acta Med (Hradec Králové) 41:155–157Google Scholar
  96. Pauliková I, Hrabovská A, Helia O, Devínsky F (2006) Inter-tissue and inter-species comparison of butyrylcholinesterases. Biologia (Bratisl) 61:709–712CrossRefGoogle Scholar
  97. Pepping J (2000) Huperzine A. Am J Heal Pharm 57:530–534Google Scholar
  98. Perry E, Howes M-JR (2011) Medicinal plants and dementia therapy: herbal hopes for brain aging? CNS Neurosci Ther 17:683–698PubMedCrossRefGoogle Scholar
  99. Pibiri F, Kozikowski AP, Pinna G et al (2008) The combination of huperzine A and imidazenil is an effective strategy to prevent diisopropyl fluorophosphate toxicity in mice. Proc Natl Acad Sci U S A 105:14169–14174PubMedCentralPubMedCrossRefGoogle Scholar
  100. Pohanka M, Zemek F, Bandouchova H, Pikula J (2012) Toxicological scoring of Alzheimer’s disease drug huperzine in a guinea pig model. Toxicol Mech Methods 22:231–235PubMedCrossRefGoogle Scholar
  101. Prati F, Uliassi E, Bolognesi ML (2014) Two diseases, one approach: multitarget drug discovery in Alzheimer’s and neglected tropical diseases. Med Chem Commun 5:853–861CrossRefGoogle Scholar
  102. Qian L, Ji R (1989) A total synthesis of (±)-huperzine A. Tetrahedron Lett 30:2089–2090CrossRefGoogle Scholar
  103. Qian BC, Wang M, Zhou ZF et al (1995) Pharmacokinetics of tablet huperzine A in six volunteers. Acta Pharmacol Sin 16:396–398Google Scholar
  104. Rafii MS, Walsh S, Little JT et al (2011) A phase II trial of huperzine A in mild to moderate Alzheimer disease. Neurology 76:1389–1394PubMedCentralPubMedCrossRefGoogle Scholar
  105. Raves ML, Harel M, Pang YP et al (1997) Structure of acetylcholinesterase complexed with the nootropic alkaloid, (−)-huperzine A. Nat Struct Biol 4:57–63PubMedCrossRefGoogle Scholar
  106. Reynolds IJ, Miller RJ (1988) Multiple sites for the regulation of the N-methyl-D-aspartate receptor. Mol Pharmacol 33:581–584PubMedGoogle Scholar
  107. Ros E, Aleu J, Gómez de Aranda I et al (2001) The pharmacology of novel acetylcholinesterase inhibitors, (±)-huprines Y and X, on the Torpedo electric organ. Eur J Pharmacol 421:77–84PubMedCrossRefGoogle Scholar
  108. Rothmaler W (2008) Pteridophyten-Studien I. Reper Spec Nov Regni Veg 54:55–82Google Scholar
  109. Ruan Q, Liu F, Gao Z et al (2013) The anti-inflamm-aging and hepatoprotective effects of huperzine A in d-galactose-treated rats. Mech Ageing Dev 134:89–97PubMedCrossRefGoogle Scholar
  110. Rudakova EV, Boltneva NP, Makhaeva GF (2011) Comparative analysis of esterase activities of human, mouse, and rat blood. Bull Exp Biol Med 152:73–75PubMedCrossRefGoogle Scholar
  111. Saxena A, Qian N, Kovach IM et al (1994) Identification of amino acid residues involved in the binding of Huperzine A to cholinesterases. Protein Sci 3:1770–1778PubMedCentralPubMedCrossRefGoogle Scholar
  112. Schachter SC (2009) Botanicals and herbs: a traditional approach to treating epilepsy. Neurotherapeutics 6:415–420PubMedCrossRefGoogle Scholar
  113. Schneider BM, Dodman NH, Faissler D, Ogata N (2009) Clinical use of an herbal-derived compound (Huperzine A) to treat putative complex partial seizures in a dog. Epilepsy Behav 15:529–534PubMedCrossRefGoogle Scholar
  114. Shang YZ, Ye JW, Tang XC (1999) Improving effects of huperzine A on abnormal lipid peroxidation and superoxide dismutase in aged rats. Acta Pharmacol Sin 20:824–828Google Scholar
  115. Sharma VK (2010) Herbal help in Alzheimer’s type of cognitive disorders : a comprehensive review. Drug Invent Today 2:320–324Google Scholar
  116. Shi Q, Fu J, Ge D et al (2012) Huperzine A ameliorates cognitive deficits and oxidative stress in the hippocampus of rats exposed to acute hypobaric hypoxia. Neurochem Res 37:2042–2052PubMedCrossRefGoogle Scholar
  117. Skolnick AA (1997) Old Chinese herbal medicine used for fever yields possible new Alzheimer disease therapy. JAMA 277:776PubMedCrossRefGoogle Scholar
  118. Sui X, Gao C (2014) Huperzine A ameliorates damage induced by acute myocardial infarction in rats through antioxidant, anti-apoptotic and anti-inflammatory mechanisms. Int J Mol Med 33:227–233PubMedGoogle Scholar
  119. Sun QQ, Xu SS, Pan JL et al (1999) Huperzine-A capsules enhance memory and learning performance in 34 pairs of matched adolescent students. Acta Pharmacol Sin 20:601–603Google Scholar
  120. Sussman JL, Harel M, Frolow F et al (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253:872–879PubMedCrossRefGoogle Scholar
  121. Szypuła WJ, Mistrzak P, Olszowska O (2013) A new and fast method to obtain in vitro cultures of Huperzia selago (Huperziaceae) sporophytes, a club moss which is a source of huperzine A. Acta Soc Bot Pol 82:313–320CrossRefGoogle Scholar
  122. Takayama H, Katakawa K, Kitajima M et al (2001) A new type of Lycopodium alkaloid, lycoposerramine-A, from Lycopodium serratum Thunb. Org Lett 3:4165–4167PubMedCrossRefGoogle Scholar
  123. Takayama H, Katakawa K, Kitajima M et al (2003) Ten new Lycopodium alkaloids having the lycopodane skeleton isolated from Lycopodium serratum Thunb. Chem Pharm Bull 51:1163–1169PubMedCrossRefGoogle Scholar
  124. Tan C-H, Zhu D-Y (2004) Lycopodine-type Lycopodium alkaloids from Huperzia serrata. Helv Chim Acta 87:1963–1967CrossRefGoogle Scholar
  125. Tan C-H, Jiang S-H, Zhu D-Y (2000a) Huperzine P, a novel Lycopodium alkaloid from Huperzia serrata. Tetrahedron Lett 41:5733–5736CrossRefGoogle Scholar
  126. Tan X-J, Wang H-Q, Jiang H-L et al (2000b) Structure assignment of 8 alpha-OH phlegmariurine B—a combined NMR and density functional theory investigation. Tetrahedron Lett 58:1386–1392Google Scholar
  127. Tan C-H, Chen G-F, Ma X-Q et al (2002a) Huperzine R, a novel 15-carbon Lycopodium alkaloid from Huperzia serrata. J Nat Prod 65:1021–1022PubMedCrossRefGoogle Scholar
  128. Tan C-H, Chen G-F, Ma X-Q et al (2002b) Three new phlegmariurine B type Lycopodium alkaloids from Huperzia serrata. J Asian Nat Prod Res 4:227–231PubMedCrossRefGoogle Scholar
  129. Tan C-H, Ma X-Q, Chen G-F et al (2002c) Huperzine W, a novel 14 carbons Lycopodium alkaloid from Huperzia serrata. Chin Chem Lett 13:331–332Google Scholar
  130. Tan C-H, Ma X-Q, Chen G-F, Zhu D-Y (2002d) Two novel Lycopodium alkaloids from Huperzia serrata. Helv Chim Acta 85:1058–1061CrossRefGoogle Scholar
  131. Tan C-H, Ma X-Q, Jiang S-H, Zhu D-Y (2002e) Three new hydroxylated serratidine alkaloids from Huperzia serrata. Nat Prod Lett 16:149–153PubMedCrossRefGoogle Scholar
  132. Tan C-H, Ma X-Q, Chen G-F, Zhu D-Y (2003a) Huperzines S, T, and U: new Lycopodium alkaloids from Huperzia serrata. Can J Chem 318:315–318CrossRefGoogle Scholar
  133. Tan C-H, Ma X-Q, Zhou H et al (2003b) Two novel hydroperoxylated Lycopodium alkaloids from Huperzia serrata. Acta Bot Sin 45:118–121Google Scholar
  134. Tang XC, Han YF (1999) Pharmacological profile of huperzine A, a novel acetylcholinesterase inhibitor from Chinese herb. CNS Drug Rev 5:281–300CrossRefGoogle Scholar
  135. Tang XC, Han YF, Chen XP, Zhu XD (1986) Effects of huperzine A on learning and retrieval process of discrimination performance in rats. Acta Pharmacol Sinica 7:507–511Google Scholar
  136. Tang XC, De Sarno P, Sugaya K, Giacobini E (1989) Effect of huperzine A, a new cholinesterase inhibitor, on the central cholinergic system of the rat. J Neurosci Res 24:276–285PubMedCrossRefGoogle Scholar
  137. Tang XC, Kindel GH, Kozikowski AP, Hanin I (1994) Comparison of the effects of natural and synthetic huperzine-A on rat brain cholinergic function in vitro and in vivo. J Ethnopharmacol 44:147–155PubMedCrossRefGoogle Scholar
  138. Tang L-L, Wang R, Tang X-C (2005a) Effects of huperzine A on secretion of nerve growth factor in cultured rat cortical astrocytes and neurite outgrowth in rat PC12 cells. Acta Pharmacol Sin 26:673–678PubMedCrossRefGoogle Scholar
  139. Tang L-L, Wang R, Tang X-C (2005b) Huperzine A protects SHSY5Y neuroblastoma cells against oxidative stress damage via nerve growth factor production. Eur J Pharmacol 519:9–15PubMedCrossRefGoogle Scholar
  140. The Plant List. In: www.theplantlist.org. Cited 10 Sept 2014
  141. Tonduli LS, Testylier G, Masqueliez C et al (2001) Effects of Huperzine used as pre-treatment against soman-induced seizures. Neurotoxicology 22:29–37PubMedCrossRefGoogle Scholar
  142. Toribio A, Delannay E, Richard B et al (2007) Preparative isolation of huperzines A and B from Huperzia serrata by displacement centrifugal partition chromatography. J Chromatogr A 1140:101–106PubMedCrossRefGoogle Scholar
  143. Tun MKM, Wüstmann D-J, Herzon SB (2011) A robust and scalable synthesis of the potent neuroprotective agent (−)-huperzine A. Chem Sci 2:2251CrossRefGoogle Scholar
  144. Tyagi A, Delanty N (2003) Herbal remedies, dietary supplements, and seizures. Epilepsia 44:228–235PubMedCrossRefGoogle Scholar
  145. Vallejo MG, Ortega MG, Cabrera JL et al (2007) Huperzia saururus increases memory retention in rats. J Ethnopharmacol 111:685–687PubMedCrossRefGoogle Scholar
  146. Vallejo MG, Ortega MG, Cabrera JL et al (2009) Sauroine, an alkaloid from Huperzia saururus with activity in wistar rats in electrophysiological and behavioral assays related to memory retention. J Nat Prod 72:156–158PubMedCrossRefGoogle Scholar
  147. Ved HS, Koenig ML, Dave JR, Doctor BP (1997) Huperzine A, a potential therapeutic agent for dementia, reduces neuronal cell death caused by glutamate. NeuroReport 8:963–968PubMedCrossRefGoogle Scholar
  148. Wang H, Tang XC (1998a) Anticholinesterase effects of huperzine A, E2020, and tacrine in rats. Acta Pharmacol Sin 19:27–30Google Scholar
  149. Wang T, Tang XC (1998b) Reversal of scopolamine-induced deficits in radial maze performance by (−)-huperzine A: comparison with E2020 and tacrine. Eur J Pharmacol 349:137–142PubMedCrossRefGoogle Scholar
  150. Wang R, Tang XC (2005) Neuroprotective effects of huperzine A. A natural cholinesterase inhibitor for the treatment of Alzheimer’s disease. Neurosignals 14:71–82PubMedCrossRefGoogle Scholar
  151. Wang ZF, Tang XC (2007) Huperzine A protects C6 rat glioma cells against oxygen–glucose deprivation-induced injury. FEBS Lett 581:596–602PubMedCrossRefGoogle Scholar
  152. Wang YE, Feng J, Lu WH, Tang XC (1988) Pharmacokinetics of huperzine A in rats and mice. Acta Pharmacol Sin 9:193–196Google Scholar
  153. Wang B-D, Jiang S-H, Gao W-Y et al (1998) Structural identification of huperzine O. Acta Chim Sin 40:842–845Google Scholar
  154. Wang XD, Zhang JM, Yang HH, Hu GY (1999) Modulation of NMDA receptor by huperzine A in rat cerebral cortex. Acta Pharmacol Sin 20:31–35Google Scholar
  155. Wang LM, Han YF, Tang XC (2000) Huperzine A improves cognitive deficits caused by chronic cerebral hypoperfusion in rats. Eur J Pharmacol 398:65–72PubMedCrossRefGoogle Scholar
  156. Wang R, Zhang HY, Tang XC (2001) Huperzine A attenuates cognitive dysfunction and neuronal degeneration caused by beta-amyloid protein-(1–40) in rat. Eur J Pharmacol 421:149–156PubMedCrossRefGoogle Scholar
  157. Wang LS, Zhou J, Shao XM, Tang XC (2002a) Huperzine A attenuates cognitive deficits and brain injury in neonatal rats after hypoxia-ischemia. Brain Res 949:162–170PubMedCrossRefGoogle Scholar
  158. Wang Z-F, Zhou J, Tang X-C (2002b) Huperzine B protects rat pheochromocytoma cells against oxygen–glucose deprivation-induced injury. Acta Pharmacol Sin 23:1193–1198PubMedGoogle Scholar
  159. Wang L, Zhou J, Shao X, Tang X (2003) Huperzine A attenuates cognitive deficits and brain injury after hypoxia-ischemic brain damage in neonatal rats. Zhonghua er ke za zhi 41:42–45PubMedGoogle Scholar
  160. Wang Y, Chu D, Gu J et al (2004) Liquid chromatographic-tandem mass spectrometric method for the quantitation of huperzine A in dog plasma. J Chromatogr B 803:375–378CrossRefGoogle Scholar
  161. Wang G, Zhang S, Zhan H (2006a) Effect of huperzine A on cerebral cholinesterase and acetylcholine in elderly patients during recovery from general anesthesia. Nan Fang Yi Ke Da Xue Xue Bao 26:1660–1662PubMedGoogle Scholar
  162. Wang R, Yan H, Tang X (2006b) Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol Sin 27:1–26PubMedCrossRefGoogle Scholar
  163. Wang Z, Tang L, Yan H et al (2006c) Effects of huperzine A on memory deficits and neurotrophic factors production after transient cerebral ischemia and reperfusion in mice. Pharmacol Biochem Behav 83:603–611PubMedCrossRefGoogle Scholar
  164. Wang H-B, Tan C-H, Tan J-J et al (2007) Lycopodium alkaloids from Huperzia serrata. Helv Chim Acta 90:153–157CrossRefGoogle Scholar
  165. Wang Z-F, Wang J, Zhang H-Y, Tang X-C (2008) Huperzine A exhibits anti-inflammatory and neuroprotective effects in a rat model of transient focal cerebral ischemia. J Neurochem 106:1594–1603PubMedCrossRefGoogle Scholar
  166. Wang B-S, Wang H, Wei Z-H et al (2009a) Efficacy and safety of natural acetylcholinesterase inhibitor huperzine A in the treatment of Alzheimer’s disease: an updated meta-analysis. J Neural Transm 116:457–465PubMedCrossRefGoogle Scholar
  167. Wang H-B, Tan C-H, Tan J-J et al (2009b) Two new N-oxide Lycopodium alkaloids from Huperzia serrata. Nat Prod Res 23:1363–1366PubMedCrossRefGoogle Scholar
  168. Wang J, Zhang HY, Tang XC (2010) Huperzine a improves chronic inflammation and cognitive decline in rats with cerebral hypoperfusion. J Neurosci Res 88:807–815PubMedGoogle Scholar
  169. Wang C-Y, Zheng W, Wang T et al (2011a) Huperzine A activates Wnt/β-catenin signaling and enhances the nonamyloidogenic pathway in an Alzheimer transgenic mouse model. Neuropsychopharmacology 36:1073–1089PubMedCentralPubMedCrossRefGoogle Scholar
  170. Wang Y, Wei Y, Oguntayo S et al (2011b) [+]-Huperzine A protects against soman toxicity in guinea pigs. Neurochem Res 36:2381–2390PubMedCrossRefGoogle Scholar
  171. Wang Y, Tang XC, Zhang HY (2012) Huperzine A alleviates synaptic deficits and modulates amyloidogenic and nonamyloidogenic pathways in APPswe/PS1dE9 transgenic mice. J Neurosci Res 90:508–517PubMedCrossRefGoogle Scholar
  172. Wang Y, Wei Y, Oguntayo S et al (2013) A combination of [+] and [−]-huperzine A improves protection against soman toxicity compared to [+]-huperzine A in guinea pigs. Chem-Biol Interact 203:120–124PubMedCrossRefGoogle Scholar
  173. White JD, Li Y, Kim J, Terinek M (2013) A novel synthesis of (−)-huperzine A via tandem intramolecular aza-Prins cyclization-cyclobutane fragmentation. Org Lett 15:882–885PubMedCrossRefGoogle Scholar
  174. Woods S (2013) Huperzine for Cognitive and functional impairment in schizophrenia (NCT00963846). In: Clin. Web site. http://clinicaltrials.gov/ct2/show/NCT00963846?term=huperzine+and+Schizophrenia&rank=1. Cited 17 Jun 2013
  175. Wu Q, Gu Y (2006) Quantification of huperzine A in Huperzia serrata by HPLC-UV and identification of the major constituents in its alkaloid extracts by HPLC-DAD-MS-MS. J Pharm Biomed Anal 40:993–998PubMedCrossRefGoogle Scholar
  176. Wu T-Y, Chen C-P, Chen C-P, Jinn T-R (2011) Traditional Chinese medicines and Alzheimer’s disease. Taiwan J Obs Gynecol 50:131–135CrossRefGoogle Scholar
  177. Xia Y, Kozikowski AP (1989) A practical synthesis of the Chinese “nootropic” agent huperzine A: a possible lead in the treatment of Alzheimer’s disease. J Am Chem Soc 111:4116–4117CrossRefGoogle Scholar
  178. Xiao XQ, Yang JW, Tang XC (1999) Huperzine A protects rat pheochromocytoma cells against hydrogen peroxide-induced injury. Neurosci Lett 275:73–76PubMedCrossRefGoogle Scholar
  179. Xiao XQ, Wang R, Han YF, Tang XC (2000a) Protective effects of huperzine A on β-amyloid25–35 induced oxidative injury in rat pheochromocytoma cells. Neurosci Lett 286:155–158PubMedCrossRefGoogle Scholar
  180. Xiao XQ, Wang R, Tang XC (2000b) Huperzine A and tacrine attenuate beta-amyloid peptide-induced oxidative injury. J Neurosci Res 61:564–569PubMedCrossRefGoogle Scholar
  181. Xiao XQ, Zhang HY, Tang XC (2002) Huperzine A attenuates amyloid beta-peptide fragment 25-35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. J Neurosci Res 67:30–36PubMedCrossRefGoogle Scholar
  182. Xiong Z-Q, Tang X-C (1995) Effect of huperzine A, a novel acetylcholinesterase inhibitor, on radial maze performance in rats. Pharmacol Biochem Behav 51:415–419PubMedCrossRefGoogle Scholar
  183. Xiong ZQ, Cheng DH, Tang XC (1998) Effects of huperzine A on nucleus basalis magnocellularis lesion-induced spatial working memory deficit. Zhongguo yao li xue bao 19:128–132PubMedGoogle Scholar
  184. Xu SS, Gao ZX, Weng Z et al (1995) Efficacy of tablet huperzine-A on memory, cognition, and behavior in Alzheimer’s disease. Acta Pharmacol Sin 16:391–395Google Scholar
  185. Xu SS, Cai ZY, Qu ZW et al (1999) Huperzine-A in capsules and tablets for treating patients with Alzheimer disease. Acta Pharmacol Sin 20:486–490Google Scholar
  186. Yan XF, Lu WH, Lou WJ, Tang XC (1987) Effects of huperzine A and B on skeletal muscle and the electroencephalogram. Zhongguo yao li xue bao 8:117–123PubMedGoogle Scholar
  187. Yang Y-B, Yang X-Q, Xu Y-Q et al (2008) A New Flavone Glycoside from Huperzia serrata. Chin J Nat Med 6:408–410CrossRefGoogle Scholar
  188. Yang Y-F, Qu S-J, Xiao K et al (2010) Lycopodium alkaloids from Huperzia serrata. J Asian Nat Prod Res 12:1005–1009PubMedCrossRefGoogle Scholar
  189. Ye JW, Cai JX, Wang LM, Tang XC (1999) Improving effects of huperzine A on spatial working memory in aged monkeys and young adult monkeys with experimental cognitive impairment. J Pharmacol Exp Ther 288:814–819PubMedGoogle Scholar
  190. Ye JC, Zeng S, Zheng GL, Chen GS (2008) Pharmacokinetics of huperzine A after transdermal and oral administration in beagle dogs. Int J Pharm 356:187–192PubMedCrossRefGoogle Scholar
  191. Yu D, Thakor DK, Han I et al (2013) Alleviation of chronic pain following rat spinal cord compression injury with multimodal actions of huperzine A. Proc Natl Acad Sci USA 110:E746–E755PubMedCentralPubMedCrossRefGoogle Scholar
  192. Yuan J, Zhou X, Wang S et al (2012) Advances in studies on chemical constituents of Huperzia serrata and their pharmacological effects. Chinese Tradit Herb Drugs 43:399–407Google Scholar
  193. Yue P, Tao T, Zhao Y et al (2007) Huperzine A in rat plasma and CSF following intranasal administration. Int J Pharm 337:127–132PubMedCrossRefGoogle Scholar
  194. Zangara A (2003) The psychopharmacology of huperzine A: an alkaloid with cognitive enhancing and neuroprotective properties of interest in the treatment of Alzheimer’s disease. Pharmacol Biochem Behav 75:675–686PubMedCrossRefGoogle Scholar
  195. Zhang H-Y (2012) New insights into huperzine A for the treatment of Alzheimer’s disease. Acta Pharmacol Sin 33:1170–1175PubMedCentralPubMedCrossRefGoogle Scholar
  196. Zhang RW, Tang XC, Han YY et al (1991) Drug evaluation of huperzine A in the treatment of senile memory disorders. Acta Pharmacol Sin 12:250–252Google Scholar
  197. Zhang Z, Wang X, Chen Q et al (2002) Clinical efficacy and safety of huperzine Alpha in treatment of mild to moderate Alzheimer disease, a placebo-controlled, double-blind, randomized trial. Zhonghua Yi Xue Za Zhi 82:941–944PubMedGoogle Scholar
  198. Zhang HY, Yan H, Tang XC (2004) Huperzine A enhances the level of secretory amyloid precursor protein and protein kinase C-alpha in intracerebroventricular beta-amyloid-(1–40) infused rats and human embryonic kidney 293 Swedish mutant cells. Neurosci Lett 360:21–24PubMedCrossRefGoogle Scholar
  199. Zhang Z-J, Tong Y, Wang X-Y et al (2007) Huperzine A as add-on therapy in patients with treatment-resistant schizophrenia: an open-labeled trial. Schizophr Res 92:273–275PubMedCrossRefGoogle Scholar
  200. Zhang S, Wang G, Luo G et al (2008) Effects of huperzine A on cognitive function of rats recovering from general anesthesia. Nan Fang Yi Ke Da Xue Xue Bao 28:225–227PubMedGoogle Scholar
  201. Zhang L, Cao H, Wen J, Xu M (2009) Green tea polyphenol (−)-epigallocatechin-3-gallate enhances the inhibitory effect of huperzine A on acetylcholinesterase by increasing the affinity with serum albumin. Nutr Neurosci 12:142–148PubMedCrossRefGoogle Scholar
  202. Zhang C, Kwan P, Zuo Z, Baum L (2012) The transport of antiepileptic drugs by P-glycoprotein. Adv Drug Deliv Rev 64:930–942PubMedCrossRefGoogle Scholar
  203. Zhang L, Song Y, Lu C et al (2013) The effects of huperzine A on gastrointestinal acetylcholinesterase activity and motility after single and multiple dosing in mice. Exp Ther Med 5:793–796PubMedCentralPubMedGoogle Scholar
  204. Zhao HW, Li XY (1999) Ginkgolide A, B, and huperzine A inhibit nitric oxide production from rat C6 and human BT325 glioma cells. Acta Pharmacol Sin 20:941–943Google Scholar
  205. Zhao H-W, Li X-Y (2002) Ginkgolide A, B, and huperzine A inhibit nitric oxide-induced neurotoxicity. Int Immunopharmacol 2:1551–1556PubMedCrossRefGoogle Scholar
  206. Zhao Q, Tang XC (2002) Effects of huperzine A on acetylcholinesterase isoforms in vitro: comparison with tacrine, donepezil, rivastigmine and physostigmine. Eur J Pharmacol 455:101–107PubMedCrossRefGoogle Scholar
  207. Zhao Y, Yue P, Tao T, Chen Q (2007) Drug brain distribution following intranasal administration of huperzine A in situ gel in rats. Acta Pharmacol Sin 28:273–278PubMedCrossRefGoogle Scholar
  208. Zheng CY, Zhang HY, Tang XC (2008) Huperzine A attenuates mitochondrial dysfunction after middle cerebral artery occlusion in rats. J Neurosci Res 86:2432–2440PubMedCrossRefGoogle Scholar
  209. Zhou J, Tang XC (2002) Huperzine A attenuates apoptosis and mitochondria-dependent caspase-3 in rat cortical neurons. FEBS Lett 526:21–25PubMedCrossRefGoogle Scholar
  210. Zhou GC, Zhu DY (2000) Synthesis of 5-substituted analogues of huperzine A. Bioorg Med Chem Lett 10:2055–2057PubMedCrossRefGoogle Scholar
  211. Zhou J, Fu Y, Tang XC (2001a) Huperzine A and donepezil protect rat pheochromocytoma cells against oxygen-glucose deprivation. Neurosci Lett 306:53–56PubMedCrossRefGoogle Scholar
  212. Zhou J, Zhang HY, Tang XC (2001b) Huperzine A attenuates cognitive deficits and hippocampal neuronal damage after transient global ischemia in gerbils. Neurosci Lett 313:137–140PubMedCrossRefGoogle Scholar
  213. Zhou H, Li Y-S, Tong X-T et al (2004) Serratane-type triterpenoids from Huperzia serrata. Nat Prod Res 18:453–459PubMedCrossRefGoogle Scholar
  214. Zhu X-Z (1991) Development of natural products as drugs acting on central nervous system. Mem Inst Oswaldo Cruz 86:173–175PubMedCrossRefGoogle Scholar
  215. Zhu XD, Giacobini E (1995) Second generation cholinesterase inhibitors: effect of (L)-huperzine-A on cortical biogenic amines. J Neurosci Res 41:828–835PubMedCrossRefGoogle Scholar
  216. Zhu D-Y, Jiang S-H, Huang M-F et al (1994) Huperserratinine from Huperzia serrata. Phytochemistry 36:1069–1072CrossRefGoogle Scholar
  217. Zhu XZ, Li X-Y, Liu J (2004) Recent pharmacological studies on natural products in China. Eur J Pharmacol 500:221–230PubMedCrossRefGoogle Scholar
  218. Zimmermann GR, Lehár J, Keith CT (2007) Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today 12:34–42PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ana Ferreira
    • 1
    • 2
  • Márcio Rodrigues
    • 1
    • 2
    • 3
  • Ana Fortuna
    • 2
    • 3
  • Amílcar Falcão
    • 2
    • 3
  • Gilberto Alves
    • 1
    • 2
    Email author
  1. 1.CICS-UBI – Health Sciences Research Centre, Faculty of Health SciencesUniversity of Beira InteriorCovilhãPortugal
  2. 2.CNC – Centre for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
  3. 3.Laboratory of Pharmacology, Faculty of PharmacyUniversity of CoimbraCoimbraPortugal

Personalised recommendations