Skip to main content

The pharmaceutical industry and natural products: historical status and new trends

Abstract

Owing to the high diversity of terrestrial and marine organisms, natural products (secondary metabolites) are some of the most successful source of drug leads for the treatment of many diseases and illnesses. In the 1990s, advancements in automation [high-throughput screening (HTS)] and isolation technologies resulted in the surge in research towards natural products both in the fields of human health and agriculture. These strategies and techniques generated a substantial shift towards this ‘green Eldorado’, a real ‘Green Rush’ between 1990 and 2000. However, in the early 2000s most of the big Pharmas terminated their HTS and bioprospecting endeavours but to date, the low productivity of combichem and rational drug design is silently positioning pharmacognosy back on the rails and natural product discovery is remerging as a reputable source of current drugs on the market. Meanwhile, the World Health Organization has come to the realisation of the importance of biodiversity which would be able to offer affordable, therapeutic solutions to the majority of the world population. The preservation of the world’s biodiversity and its access is a critical issue which could hamper a serene utilisation of natural products in the developing world with herbal-based phytopharmaceuticals representing a significant share of the total world pharmaceutical market. This review presents an industrial perspective discussing natural product drug discovery, lead research, botanicals, pro-drugs, synergy effects, drugs interactions with botanicals, traditional medicines, reverse pharmacognosy and presents the difficulties in accessing biodiversity.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Anonymous (1992) United Nations. Convention on biological diversity. http://www.cbd.int/doc/legal/cbd-en.pdf. Cited 20 May 2014

  • Anonymous (1973) Art 53 c of the The European Patent Convention, http://www.epo.org/law-practice/legal-texts/html/epc/2010/e/ar53.html Cited 20 May 2014

  • Anonymus (2011) The Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological diversity. http://www.cbd.int/abs/doc/protocol/nagoya-protocol-en.pdf. Cited 20 May 2014

  • Attinger P (2008) La médecine mésopotamienne. Journal des Médecines Cunéiformes 11–12:1–96

    PubMed  Google Scholar 

  • Baker DD (2007) The value of natural products to future pharmaceutical discovery. Nat Prod Rep 27:1225–1244

    Article  Google Scholar 

  • Bauer RA, Wurst JM, Tan DS (2010) Expanding the range of ‘druggable’ targets with natural product-based libraries: an academic perspective. Curr Opin Chem Biol 14:308–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berenbaum MC (1989) What is Synergy? Pharmacol Rev 41:93–141

    CAS  PubMed  Google Scholar 

  • Beutler JA (2009) Natural products as a foundation for drug discovery. Curr Protoc Toxicol Supplement 46:9.11.1–9.11.21

    Google Scholar 

  • Bhatnagar I, Se-Kwon K (2010) Marine antitumor drugs: status, shortfalls and strategies. Mar Drugs 8:2702–2720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Munro MHG et al (2011) Marine natural products. Nat Prod Rep 28:196–268

    Article  CAS  PubMed  Google Scholar 

  • Bruneton J (2009) Pharmacognosie, phytochimie, plantes médicinales. Paris, Tec & Doc – Lavoisier

  • Bunnage ME (2011) Getting pharmaceutical R&D back on target. Nat Chem Biol 7:335–339

    Article  CAS  PubMed  Google Scholar 

  • Buriani A, Garcia-Bermejo ML, Bosisio E et al (2012) Omic techniques in systems biology approaches to traditional Chinese medicine research: present and future. J Ethnopharmacol 140:535–544

    Article  PubMed  Google Scholar 

  • Butler MS (2005) Natural products to drugs: natural products derived compounds in clinical trials. Nat Prod Rep 22:162–195

    Article  CAS  PubMed  Google Scholar 

  • Challal S, Bohni N, Buenafe OE et al (2012) Zebrafish bioassay-guided microfractionation for the rapid in vivo identification of pharmacologically active natural products. Chimia 66:229–232

    Article  CAS  PubMed  Google Scholar 

  • Chen S-L, Jiang J-G (2012) Application of gene differential expression technology in the mechanism studies of nature product-derived drugs. Expert Opin Biol Ther 12:823–839

    Article  CAS  PubMed  Google Scholar 

  • Chen ST, Dou J, Temple R et al (2008) New therapies from old medicines. Nat Biotechnol 26:1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Chen CH, Dickman KG, Moriya M et al (2012) Aristolochic acid-associated urothelial cancer in Taiwan. Proc Natl Acad Sci USA 109:8241–8246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Colegate SM, Molyneux RJ (2008) Bioactive natural products: Detection, isolation and structure determination. CRC Press, Boca Raton

    Google Scholar 

  • Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  PubMed  Google Scholar 

  • Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cragg GM, Newman DJ, Snader KM (1997) Natural products in drug discovery and development. J Nat Prod 60:52–60

    Article  CAS  PubMed  Google Scholar 

  • Cuevas C, Francesch A (2009) Development of Yondelis (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat Prod Rep 26:322–337

    Article  CAS  PubMed  Google Scholar 

  • Dančík V, Seiler KP, Young DW et al (2010) Distinct biological network properties between the targets of natural products and disease genes. J Am Chem Soc 132:9259–9261

    Article  PubMed Central  PubMed  Google Scholar 

  • David B, Ausseil F (2014) David B, Ausseil F (2014) Chapter 44. In: Hostettmann J, Stuppner H, Marston A, Chen S (eds) Handbook of chemical and biological plant analytical methods, 1st edn. Wiley, New Jersey

    Google Scholar 

  • Dewick PM (2009) Medicinal natural products: A biosynthentic approach, 3rd edn. Wiley, Great Britain

    Book  Google Scholar 

  • Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Metabolites 2:303–336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dickson M, Gagnon JP (2004) Key factors in the rising cost of new drug discovery and development. Nat Rev Drug Discov 3:417–429

    Article  CAS  PubMed  Google Scholar 

  • Eldridge GR, Vervoort HC, Lee CM et al (2002) High-Throughput Method for the Production and Analysis of Large Natural Product Libraries for Drug Discovery. Anal Chem 74:3963–3971

    Article  CAS  PubMed  Google Scholar 

  • Erkens RHJ (2011) What every chemist should know about plant names. Nat Prod Rep 28:11–14

    Article  CAS  PubMed  Google Scholar 

  • Farnsworth NR (1990) The role of ethnopharmacology in drug development. In: Chadwick DJ, Marsh J (eds) Bioactive compounds from plants. John Wiley and Sons, Chichester

    Google Scholar 

  • Feher M, Schmidt JM (2003) Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci 43:218–227

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald JB, Schoeberl B, Nielsen UB et al (2006) Systems biology and combination therapy in the quest for clinical efficacy. Nat Chem Biol 2:458–466

    Article  CAS  PubMed  Google Scholar 

  • Frearson JA, Collie IT (2009) HTS and hit finding in academia–from chemical genomics to drug discovery. Drug Discov Today 14:1150–1158

    Article  PubMed Central  PubMed  Google Scholar 

  • Genilloud O (2012) Current challenges in the discovery of novel antibacterials from microbial natural products. Recent Patents on Anti-Infective Drug Dis 7:189–204

    Article  CAS  Google Scholar 

  • Gertsch J (2011) Botanical drugs, synergy, and network pharmacology: forth and back to intelligent mixtures. Plant Med 77:1086–1098

    Article  CAS  Google Scholar 

  • Gilbert N (2010) Biodiversity law could stymie research. Nature 463:598

    Article  CAS  PubMed  Google Scholar 

  • Gilbert N (2012) Chinese herbal medicine breaks into EU market. Nature News Blog, http://blogs.nature.com/news/2012/04/chinese-herbal-medicine-breaks-into-eu-market.html Cited 20 May 2014

  • Hammerness P, Basch E, Ulbricht C et al (2003) St. John’s wort: a systematic review of adverse effects and drug interactions for the consultation psychiatrist. Psychosomatics 44:271–282

    Article  CAS  PubMed  Google Scholar 

  • Harvey AL (2008) Natural products in drug discovery. Drug Discovery Today 13:894–901

    Article  CAS  PubMed  Google Scholar 

  • Helmstädter A, Staiger C (2013) Traditional use of medicinal agents: a valid source of evidence. Drug Discovery Today 19:4–7

    Article  PubMed  Google Scholar 

  • Hoffman F, Kishter SR (2013) Botanical new drug applications - The Final Frontier. Herbalgram 99:66–69

    Google Scholar 

  • Hong J (2011) Role of natural product diversity in chemical biology. Curr Opin Chem Biol 15:350–354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang GC, Lin YC, Zhou SN et al (2000) Acta Sci. Nat. Univ. Sunyatseni 39:68

    CAS  Google Scholar 

  • Jiang Y, David B, Tu PF et al (2010) Recent analytical approaches in quality control of traditional Chinese medicines- A review. Anal Chim Acta 657:9–18

    Article  CAS  PubMed  Google Scholar 

  • Kingston DGI (2011) Modern natural products drug discovery and its relevance to biodiversity cConservation. J Nat Prod 74:496–511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kleinrock M (2012) IMS institute for healthcare informatics—The global use of medicines: Outlook through 2016. www.theimsinstitute.org. Cited 20 May 2014

  • Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220

    Article  CAS  PubMed  Google Scholar 

  • Krohn K, Dai JQ, Floerke U et al (2005) Botryane metabolites from the fungus Geniculosporium sp. isolated from the marine red alga Polysiphonia. J Nat Prod 68:400–405

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798

    Article  CAS  PubMed  Google Scholar 

  • Lamottke K, Ripoll C, Walczak R (2011) The roots of innovation. European Biopharmaceutical Review 15:52–56

    Google Scholar 

  • Lauro G, Masullo M, Piacente S et al (2012) Inverse virtual screening allows the discovery of the biological activity of natural compounds. Bioorg & Med Chem 20:3596–3602

    Article  CAS  Google Scholar 

  • Lawson K (2013) Botanical and plant-derived drugs: Global markets. BCC Research, Wellesley

    Google Scholar 

  • Li YG, Huang WJ, Huang SY et al (2012) Screening of anti-cancer agent using zebrafish: comparison with the MTT assay. Biochem Biophys Res Comm 422:85–90

    Article  CAS  PubMed  Google Scholar 

  • Macarrón R, Banks MN, Bojanic D et al (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10:188–195

    Article  PubMed  Google Scholar 

  • Mackay M (1998) Prescribed drugs: a major cause of ill health. Aust Health Rev 21:260–266

    Article  CAS  PubMed  Google Scholar 

  • Matias EFF, Alves EF, Santos BS et al (2013) Biological activities and chemical characterization of Cordia verbenacea DC. as tool to validate the ethnobiological usage. Evid Based Complement Alternat Med 2013:164215

    Article  PubMed Central  PubMed  Google Scholar 

  • Mayer AM, Glaser KB, Cuevas C et al (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 31:255–265

    Article  CAS  PubMed  Google Scholar 

  • McChesney JD, Venkataraman SK, Henri JT (2007) Plant natural products: back to the future or into extinction? Phytochemistry 68:2015–2022

    Article  CAS  PubMed  Google Scholar 

  • McWilliams A (2006) Plant-derived drugs: Products, technology, applications (BIO022D) BBC Research, http://www.bbcresearch.com Cited 20 May 2014

  • Michael S, Auld D, Klumpp C et al (2008) A robotic platform for quantitative high-throughput screening. Assay Drug Dev Technol 6:637–657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller JS (2011) The discovery of medicines from plants: a current biological perspective. Econ Bot 65:396–407

    Article  Google Scholar 

  • Mishra BB, Tiwari VK (2011) Natural products: an evolving role in future drug discovery. Euro J Med Chem 46:4769–4807

    Article  CAS  Google Scholar 

  • Muller WE, Singer A, Wonnemann M (2001) Hyperforin - Antidepressant activity by a novel mechanism of action. Pharmacopsychiatry 34(suppl1):S98–S102

    Article  CAS  PubMed  Google Scholar 

  • Naoghare PK, Song JM (2010) Chip-based high throughput screening of herbal medicines. Comb Chem High Throughout Screen 13:923–931

    Article  CAS  Google Scholar 

  • Newman DJ (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem 51:2589–2599

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981-2002. J Nat Prod 66:1022–1037

    Article  CAS  PubMed  Google Scholar 

  • Ngo LT, Okogun JI, Folk WR (2013) 21st century natural product research and drug development and traditional medicines. Nat Prod Rep 30:584–592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicoletti M (2012) Nutraceuticals and botanicals: overview and perspectives. Int J Food Sci Nutr 63:2–6

    Article  PubMed  Google Scholar 

  • Novodvorsky P, Da Costa MMJ, Chico TJA (2013) Zebrafish-based small molecule screens for novel cardiovascular drug. Drug Discov Today 10:e109–e114

    Article  Google Scholar 

  • Ortholand J-Y, Ganesan A (2004) Natural products and combinatorial chemistry: back to the future. Curr Opin Chem Biol 8:271–280

    Article  CAS  PubMed  Google Scholar 

  • Paterson I, Anderson EA (2005) The renaissance of natural products as drug candidates. Science 310:451–453

    Article  PubMed  Google Scholar 

  • Posadzki P, Watson L, Ernst E (2013) Herbdrug interactions: an overview of systematic reviews. Br J Clin Pharmacol 75:603–618

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ribnicky DM, Poulev A, Schmidt B et al (2008) Evaluation of botanicals for improving human health. Am J Clin Nutr 87:472S–475S

    CAS  PubMed  Google Scholar 

  • Roessner U (2011) Metabolomics – The combination of analytical chemistry, biology and informatics. In: Moo-Young M (ed) Comprehensive Biotechnology, 2nd edn. Springer, Heidelberg, Germany

    Google Scholar 

  • Rollinger JM (2011) Combination of ethnopharmacological knowhow with modern in silico tools. Planta Med 77:1230

    Article  Google Scholar 

  • Rollinger JM, Langer T, Stuppner H (2006) Strategies for efficient lead structure discovery from natural products. Curr Med Chem 13:1491–1507

    Article  CAS  PubMed  Google Scholar 

  • Saklani A, Kutty SK (2008) Plant-derived compounds in clinical trials. DDT 13:161–171

    CAS  Google Scholar 

  • Sativex (2013) http://www.sativex.co.uk/healthcare-professionals Cited 27 Oct 2013

  • Scheinfeld N (2008) Sinecatechins. Drugs Fut 33:27–30

    Article  CAS  Google Scholar 

  • Schmidt B, Ribnicky DM, Poulev A et al (2008) A natural history of botanical therapeutics. Metabolism 57:S3–S9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmitt EK, Moore CM, Krastel P et al (2011) Natural products as catalysts for innovation: a pharmaceutical industry perspective. Curr Opin Chem Biol 15:497–504

    Article  CAS  PubMed  Google Scholar 

  • Sheridan C (2012) Recasting natural product research. Nat Biotechnol 30:385–387

  • Sertürner F (1817) Über das Morphium, eine neue salzfähige Grundlage und die Mekonsäure, als Hauptbestandtheile des Opiums. Ann Phys 55:56–89

    Article  Google Scholar 

  • Stickel F, Patsenker E, Schuppan D (2005) Herbal hepatotoxicity. J Hepatol 43:901–910

    Article  PubMed  Google Scholar 

  • Swinney DC, Anthony J (2011) How where new medicine discovered? Nat Rev Drug Discov 10:507–519

    Article  CAS  PubMed  Google Scholar 

  • Thomas GL, Johannes CW (2011) Natural product-like synthetic libraries. Curr Opin Chem Biol 15:516–522

    Article  CAS  PubMed  Google Scholar 

  • U.S. Food and Drug Administration (2013) News and Events, FDA News Release (2012) FDA approves first anti-diarrheal drug for HIV/AIDS patients. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm333701.htm. Cited 20 May 2014

  • van der Kooy F, Maltese F, Hae Choi Y et al (2009) Quality control of herbal material and phytopharmaceuticals with MS and NMR based metabolic fingerprinting. Planta Med 75:763–775

    Article  PubMed  Google Scholar 

  • van Wietmarschen H, Yuan K, Lu C et al (2009) Systems Biology Guided by Chinese Medicine Reveals New Markers for Sub-Typing Rheumatoid Arthritis Patients. J Clin Rheumatol 15:330–337

    Article  PubMed  Google Scholar 

  • Verpoorte R (2012) Good Practices: the basis for evidence-based medicines. J Ethnopharmacol 140:455–457

    Article  PubMed  Google Scholar 

  • Verpoorte R, Choi YH, Kim HK (2005) Ethnopharmacology and systems biology: a perfect holistic match. J Ethnopharmacol 100:53–56

    Article  CAS  PubMed  Google Scholar 

  • Verpoorte R, Crommelin D, Danhof M et al (2009) Commentary: “A systems view on the future of medicine: inspiration from Chinese medicine?”. J Ethnopharmacol 121:479–481

    Article  CAS  PubMed  Google Scholar 

  • Wagner H (2005) Natural products chemistry and phytomedicine in the 21st century: new developments and challenges. Pure Appl Chem 77:1–6

    Article  CAS  Google Scholar 

  • Wagner H (2011) Synergy research: approaching a new generation of phytopharmaceuticals. Fitoterapia 82:34–37

    Article  PubMed  Google Scholar 

  • Wagner H, Ulrich-Merzenich G (2009) Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 16:97–110

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Chen C (2013) Emerging applications of metabolomics in studying chemopreventive phytochemicals. Aaps Journal 15:941–950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang M, Lamers R, Korthout H et al (2005a) Metabolomics in the context of systems biology: bridging traditional Chinese medicine and molecular pharmacology. Phytother Res 19:173–182

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tang H, Nicholson JK et al (2005b) A metabonomic strategy for the detection of the metabolic effects of chamomile (Matricaria recutita L.) ingestion. J Agric Food Chem 53:191–196

    Article  CAS  PubMed  Google Scholar 

  • Woelk H (2000) Comparison of St John’s wort and imipramine for treating depression: randomised controlled trial. BMJ 321:536–539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolfender J-L, Eugster PJ, Bohni N et al (2011) Advanced methods for natural product drug discovery in the field of nutraceuticals. Chimia 65:400–406

    Article  CAS  PubMed  Google Scholar 

  • Xie G, Li X, Li H et al (2013) Toward personalized nutrition: comprehensive phytoprofiling and metabotyping. J Proteome Res 12:1547–1559

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Poon J, Wang S et al (2013) Application of Genetic Algorithm for Discovery of Core Effective Formulae in TCM Clinical Data. Comp. Math. Methods in Medicine 2013:1–16

    Google Scholar 

  • Yuliana ND, Khatib A, Choi YH et al (2011) Metabolomics for bioactivity assessment of natural products. Phytother Res 25:157–169

    CAS  PubMed  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Peng Y, Zhang Z et al (2010) GAP production of TCM herbs in China. Planta Med 76:1948–1955

    Article  CAS  PubMed  Google Scholar 

  • Zheng BC (1988) The earliest monograph on pharmaceuticals in China. J Tradit Chin Med 8:75–76

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors state no conflict of interest and have received no payment in preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Wolfender.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

David, B., Wolfender, JL. & Dias, D.A. The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev 14, 299–315 (2015). https://doi.org/10.1007/s11101-014-9367-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-014-9367-z

Keywords

  • Drug discovery
  • High-throughput screening (HTS)
  • Biodiversity
  • Pharmaceutical industry
  • Access and benefit sharing