Skip to main content

Advertisement

Log in

Compounds from Allium species with cytotoxic and antimicrobial activity

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Garlic (Allium sativum L.) is a bulb-shaped plant belonging to the Allium genus which also includes onions (Allium cepa L.), leek (Allium ampeloprasum L. var. porrum Gay), shallot (Allium ascalonicum L), scallion (A. fistulosum L.) and chives (Allium schoenoprasum L.). The biological activity of garlic has been known since ancient times. Babylonians, Egyptians, Phoenicians, Greeks and Romans used garlic as a remedy for intestinal disorders, respiratory infections, skin diseases, bacterial infections, worms, wounds and tumors. In particular, before the discovery of antibiotics, garlic has been used against amoebic dysentery and epidemic diseases such as typhus, cholera, diphtheria, and tuberculosis. To date, more than 3,000 publications scientifically supported the use of garlic in the ethno-medicine. But what makes garlic and Allium species effective against cancer? The effect of garlic may arise from its antibacterial properties or from its ability to block formation on cancer-causing substances, half the activation of cancer causing substances, enhance DNA repair, reduce cell proliferation or induce cell death. Epidemiological studies have found that an increase of consumptions of Allium spp. reduce the risk of prostate and gastric cancers and this has been mainly related to two main classes of compounds: the apolar sulphur compounds and the polar saponins. These latter compounds, compared to the more studied thiosulphinates, have the advantages of not being pungent and more stable during cooking. Recently, there has been increasing scientific attention given to such compounds. In this paper, the literature about the major volatile and non-volatile organic compounds of garlic and other Allium plants has been reviewed. Particular attention is given to the compounds possessing antibacterial and cytotoxic activity in garlic and in the other Allium species and their mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adão CR, da Silva BP, Parente JP (2011) A new steroidal saponin from Allium ampeloprasum var. porrum with antiinflammatory and gastroprotective effects. Phytochem Lett 4:306–310

    Google Scholar 

  • Ahmed N, Laverick L, Sammons J et al (2000) Ajoene, a garlic-derived natural compound, enhances chemotherapy-induced apoptosis in human myeloid leukaemia CD34-positive resistant cells. Anticancer Res 21:3519–3523

    Google Scholar 

  • Akhov LS, Musienko MM, Piacente S et al (1999) Structure of steroidal saponins from underground parts of Allium nutans L. J Agric Food Chem 47:3193–3196

    CAS  PubMed  Google Scholar 

  • Ankri S, Mirelman D (1999) Antimicrobial properties of allicin from garlic. Microbes Infect 1:125–129

    CAS  PubMed  Google Scholar 

  • Antlsperger DS, Dirsch VM, Ferreira D et al (2003) Ajoene-induced cell death in human promyeloleukemic cells does not require JNK but is amplified by the inhibition of ERK. Oncogene 22:582–589

    CAS  PubMed  Google Scholar 

  • Arditti FD, Rabinkov A, Miron T et al (2005) Apoptotic killing of B-chronic lymphocytic leukemia tumor cells by allicin generated in situ using a rituximab-alliinase conjugate. Mol Cancer Ther 4:325–332

    CAS  PubMed  Google Scholar 

  • Azadi HG, Riazi GH, Ghaffari SM et al (2009). Effects of Allium hirtifolium (Iranian shallot) and its allicin on microtubule and cancer cell lines. Afr J Biotechnol 8(19):5030–5037

  • Baba M, Ohmura M, Kishi N et al (2000) Saponins isolated from Allium chinense G. Don and antitumor-promoting activities of isoliquiritigenin and laxogenin from the same drug. Biol Pharm Bull 23:660–662

    CAS  PubMed  Google Scholar 

  • Barile E, Zolfaghari B, Sajjadi SE et al (2004) Saponins of Allium elburzense. J Nat Prod 67:2037–2042

    CAS  PubMed  Google Scholar 

  • Barile E, Capasso R, Izzo A et al (2005) Structure-activity relationships for saponins from Allium irtifolium and Allium elburzense and their antispasmodic activity. Planta Med 71:1010–1018

    CAS  PubMed  Google Scholar 

  • Barile E, Bonanomi G, Antignani V et al (2007) Saponins from Allium minutiflorum with antifungal activity. Phytochemistry 68:596–603

    CAS  PubMed  Google Scholar 

  • Bat-Chen W, Golan T, Peri I et al (2010) Allicin purified from fresh garlic cloves induces apoptosis in colon cancer cells via Nrf2. Nutr Cancer 62:947–957

    CAS  PubMed  Google Scholar 

  • Block E (1985) The chemistry of garlic and onions. Sci Am 252:114–119

    CAS  PubMed  Google Scholar 

  • Bowyer P, Clarke BR, Lunness P et al (1995) Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science 267:371–374

    CAS  PubMed  Google Scholar 

  • Candra E, Matsunaga K, Fujiwara H et al (2002) Potent apoptotic effects of saponins from Liliaceae plants in L1210 cells. J Pharm Pharmacol 54:257–262

    CAS  PubMed  Google Scholar 

  • Carotenuto A, Fattorusso E, Lanzotti V et al (1997) 12-Keto-porrigenin and the unique 2, 3-seco-porrigenin, new antiproliferative sapogenins from Allium porrum. Tetrahedron 53:3401–3406

    CAS  Google Scholar 

  • Carotenuto A, Fattorusso E, Lanzotti V et al (1999) Spirostanol saponins of Allium porrum L. Phytochemistry 51:1077–1082

    CAS  PubMed  Google Scholar 

  • Cavallito CJ, Bailey JH (1944) Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties and antibacterial action. J Am Chem Soc 66:1950–1951

    CAS  Google Scholar 

  • Cha JH, Choi YJ, Cha SH et al (2012) Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathway. Oncol Rep 28:41–48

    CAS  PubMed  Google Scholar 

  • Chen S, Snyder JK (1989) Diosgenin-bearing, molluscicidal saponins from Allium vineale: an NMR approach for the structural assignment of oligosaccharide units. J Org Chem 54:3679–3689

    CAS  Google Scholar 

  • Chen HF, Wang NL, Sun HL et al (2006) Novel furostanol saponins from the bulbs of Allium macrostemon B. and their bioactivity on [Ca2+] increase induced by KCl. J Asian Nat Prod Res 8:21–28

    PubMed  Google Scholar 

  • Chen H, Wang G, Wang N et al (2007) New furostanol saponins from the bulbs of Allium macrostemon Bunge and their cytotoxic activity. Pharmazie 62:544–548

    CAS  PubMed  Google Scholar 

  • Chen HF, Wang GH, Luo Q et al (2009) Two new steroidal saponins from Allium macrostemon Bunge and their cytotoxity on different cancer cell lines. Molecules 14:2246–2253

    CAS  PubMed  Google Scholar 

  • Chincharadze DG, Kelginbaev AN, Gorovits MB et al (1980) Steroidal saponins and sapogenins of Allium. 15. Eruboside-B from Allium erubescens. Khim Prir Soedin 509–514

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corea G, Fattorusso E, Lanzotti V (2003) Saponins and flavonoids of Allium triquetrum. J Nat Prod 66:1405–1411

    CAS  PubMed  Google Scholar 

  • Corea G, Fattorusso E, Lanzotti V et al (2005) Antispasmodic saponins from bulbs of red onion, Allium cepa L. var. Tropea. J Agric Food Chem 53:935–940

    CAS  PubMed  Google Scholar 

  • Coultas L, Strasser A (2003) The role of the Bcl-2 protein family in cancer. In: Seminars in cancer biology, vol 13, no. 2. Academic Press, pp 115–123

  • Cutler RR, Wilson P (2004) Antibacterial activity of a new, stable, aqueous extract of allicin against methicillin-resistant Staphylococcus aureus. Brit J Biomed Sci 61:71–74

    CAS  Google Scholar 

  • Davis SR (2005) An overview of the antifungal properties of allicin and its breakdown products—the possibility of a safe and effective antifungal prophylactic. Mycoses 48:95–100

    CAS  PubMed  Google Scholar 

  • Dejean LM, Martinez-Caballero S, Guo L et al (2005) Oligomeric Bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel. Mol Biol Cell 16:2424–2432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dini I, Tenore GC, Trimarco E et al (2005) Furostanol saponinsin Allium cepa L. Var. tropeana seeds. Food Chem 93:205–214

    CAS  Google Scholar 

  • Dion ME, Agler M, Milner JA (1997) S-Allyl cysteine inhibits nitrosomorpholine formation and hioactivation. Nutr Cancer 28:1–6

    CAS  PubMed  Google Scholar 

  • Dirsch VM, Gerbes AL, Vollmar AM (1998) Ajoene, a compound of garlic, induces apoptosis in human promyeloleukemic cells, accompanied by generation of reactive oxygen species and activation of nuclear factor κB. Mol Pharmacol 53:402–407

    CAS  PubMed  Google Scholar 

  • Dirsch VM, Antlsperger DS, Hentzer M et al (2002) Ajoene, an experimental anti-leukemic drug: mechanism of cell death. Leukemia 16:74–83

    CAS  PubMed  Google Scholar 

  • Do JC, Jung KY, Son KH (1992) Steroidal saponins from the subterranean part of Allium fistulosum. J Nat Prod 55:168–173

    CAS  Google Scholar 

  • Ellington A, Berhow M, Singletary KW (2005) Induction of macroautophagy in human colon cancer cells by soybean B-group triterpenoid saponins. Carcinogenesis 26:159–167

    CAS  PubMed  Google Scholar 

  • Fattorusso E, Lanzotti V, Taglialatela-Scafati O et al (2000) Cytotoxic saponins from bulbs of Allium porrum L. J Agric Food Chem 48:3455–3462

    CAS  PubMed  Google Scholar 

  • Filomeni G, Aquilano K, Rotilio G et al (2003) Reactive oxygen species-dependent c-Jun NH2-terminal kinase/c-Jun signaling cascade mediates neuroblastoma cell death induced by diallyl disulphide. Cancer Res 63:5940–5949

    CAS  PubMed  Google Scholar 

  • Freeman F, Kodera Y (1995) Garlic chemistry: stability of S-(2)-propenyl-2(propene-1-sulfothioate (allicin) in blood, solvents, and simulated physiological fluids. J Agric Food Chem 43:2332–2338

    CAS  Google Scholar 

  • Furuya S, Takayama F, Mimaki Y et al (2000) Cytotoxic activity of steroidal saponins against human oral tumor cell lines. Anticancer Res 20:4189

    CAS  PubMed  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    CAS  PubMed  Google Scholar 

  • Guang WM, Fan Y, Lin GJ et al (2004) Effect of allicin on the telomerase activity, cyclooxygenase-2 and nuclear factor-kappa B of colon cancer Lovo cell line. J Shanghai Med 6:013

    Google Scholar 

  • Gugunishvili DN, Eristavi LI, Gvazava LN et al (2006) Steroidal saponins from Allium waldsteinii. Chem Nat Compd 42:499–500

    CAS  Google Scholar 

  • Gupta KC, Viswanathan R (1955) Combined action of streptomycin and chloramphenicol with plant antibiotics against tubercle bacilli. I. Streptomycin and chloramphenicol with cepharanthine. II. Streptomycin and allicin. Antibiot Chemother 5:24–27

    CAS  Google Scholar 

  • Guyonnet D, Siess MH, Le Bon AM et al (1999) Modulation of phase II enzymes by organosulphur compounds from allium vegetables in rat tissues. Toxicol Appl Pharmacol 154:50–58

    CAS  PubMed  Google Scholar 

  • Ha MW, Yuan Y (2004) Allicin induced cell cycle arrest in human gastric cancer cell lines]. Chin J Oncol] 26:585

    CAS  Google Scholar 

  • Hassan HT (2004) Ajoene (natural garlic compound): a new anti-leukaemia agent for AML therapy. Leukemia Res 28:667–671

    CAS  Google Scholar 

  • Hirsch K, Danilenko M, Giat J et al (2000) Effect of purified allicin, the major ingredient off freshly crushed garlic, on cancer cell proliferation. Nutr Canc 38:245–254

    CAS  Google Scholar 

  • Holt SE, Wright WE, Shay JW (1996) Regulation of telomerase activity in immortal cell lines. Mol Cell Biol 16:2932–2939

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holt SE, Aisner DL, Shay JW et al (1997) Lack of cell cycle regulation of telomerase activity in human cells. Proc Natl Acad Sci USA 94:10687–10692

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hong YS, Ham YA, Choi JH et al (2000) Effects of allyl sulphur compounds and garlic extract on the expressions of Bcl-2, Bax, and p53 in non small cell lung cancer cell lines. Exp Mol Med 32:127–134

    CAS  PubMed  Google Scholar 

  • Hsing AW, Chokkalingam AP, Gao YT et al (2002) Allium vegetable and the risk of prostate cancer. A population-based study. J Natl Cancer Inst 94:1648–1651

    CAS  PubMed  Google Scholar 

  • Iberl B, Winkler G, Müller B, Knobloch K (1990) Quantitative determination of allicin and alliin from garlic by HPLC. Planta Med 56:320–326

    CAS  PubMed  Google Scholar 

  • Inoue T, Mimaki Y, Sashida Y et al (1995) Steroidal glycosides from Allium macleanii and A. senescens, and their inhibitory activity on tumour promoter-induced phospholipid metabolism of hela cells. Phytochemistry 40:521–525

    CAS  PubMed  Google Scholar 

  • Inoue M, Sakaguchi N, Isuzugawa K et al (2000) Role of reactive oxygen species in gallic acid-induced apoptosis. Biol Pharm Bull 23:1153–1157

    CAS  PubMed  Google Scholar 

  • Ismailov AI, Aliev AM (1976) Determination of the steroid saponins in the onion (Allium albiflorus) that grows in Azerbaijan. Farmatsiya 25:17–20

    CAS  PubMed  Google Scholar 

  • Ismailov AI, Tagiev SA, Rasulov EM (1976) Steroidal saponins and sapogenins from Allium rubellum and A. albanum. Khim Prir Soed 4:550–551

    Google Scholar 

  • Jabrane A, Ben Jannet H, Miyamoto T et al (2011) Spirostane and cholestane glycosides from the bulbs of Allium nigrum L. Food Chem 125:447–455

    CAS  Google Scholar 

  • Jonkers D, Sluimer J, Stobberingh E (1999) Effect of garlic on vancomycin resistant enterococci. Antimicrob Agents Chemother 43:3045

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kang LP, Liu ZJ, Zhang L et al (2007) New furostanol saponins from Allium ascalonicum L. Magn Reson Chem 45:725–733

    CAS  PubMed  Google Scholar 

  • Kannan K, Jain SK (2000) Oxidative stress and apoptosis. Pathophysiology 7:153–163

    CAS  PubMed  Google Scholar 

  • Kawashima K, Mimaki Y, Sashida Y (1991) Steroidal saponins from Allium giganteum and A. aflatunense. Phytochemistry 30:3063–3067

    CAS  Google Scholar 

  • Kawashima K, Mimaki Y, Sashida Y (1993) Steroidal saponins from the bulbs of Allium schubertii. Phytochemistry 32:1267–1272

    CAS  PubMed  Google Scholar 

  • Khanum F, Anilakumar KR, Viswanathan KR (2004) Anticarcinogenic properties of garlic: a review. Crit Rev Food Sci Nutr 44:479–488

    CAS  PubMed  Google Scholar 

  • Khristulas FS, Gorovits MB, Luchanskaya VN et al (1970) New steroidal sapogenin from Allium giganteum. Khim Prir Soedin 6:489–490

    CAS  Google Scholar 

  • Kuroda M, Mimaki Y, Kameyama A et al (1995) Steroidal saponins from Allium chinense and their inhibitory activities on cyclic AMP phosphodiesterase and Na+ K+ ATPase. Phytochemistry 40:1071–1076

    CAS  PubMed  Google Scholar 

  • Kwon KB, Yoo SJ, Ryu D et al (2002) Induction of apoptosis by diallyl disulphide through activation of caspase-3 in human leukemia HL-60 cells. Biochem Pharm 63:41–47

    CAS  PubMed  Google Scholar 

  • Kyo S, Inoue M (2002) Complex regulatory mechanisms of telomerase activity in normal and cancer cells: how can we apply them for cancer therapy? Oncogene 21:688–697

    CAS  PubMed  Google Scholar 

  • L’vora GN, Zasukhina GD (2002) Modification of repair DNA synthesis in mutagen-treated human fibroblast during adaptive response and the antimutagenic effect of garlic extract. Genetika 38:2485–2501

    Google Scholar 

  • Lai W, Wu Z, Lin H et al (2010) Anti-ischemia steroidal saponins from the seeds of Allium fistulosum. J Nat Prod 73:1053–1057

    CAS  PubMed  Google Scholar 

  • Lan HMDMW (2004) Allicin enhances cytotoxicity of antitumor drugs to cancer cells. Chin J Clin Oncol 4:001

    Google Scholar 

  • Lanzotti V (2005) Bioactive saponins from Allium and Aster plants. Phytochem Rev 4:95–110

    CAS  Google Scholar 

  • Lanzotti V (2006) The analysis of onion and garlic. J Chromat A 1112:3–22

    CAS  Google Scholar 

  • Lanzotti V (2012) Bioactive polar compounds from garlic and onion. Phytochem Rev 11:179–196

    CAS  Google Scholar 

  • Lanzotti V, Barile E, Antignani V et al (2012a) Antifungal saponins from bulbs of garlic, Allium sativum L. var. Voghiera. Phytochemistry 78:126–134

    CAS  PubMed  Google Scholar 

  • Lanzotti V, Romano A, Lanzuise S et al (2012b) Antifungal saponins from bulbs of white onion, Allium cepa L. Phytochemistry 74:133–139

    CAS  PubMed  Google Scholar 

  • Lanzotti V, Bonanomi G, Scala F (2013) What makes Allium effective against pathogenic fungi? Phytochem Rev 12:751–772

    CAS  Google Scholar 

  • Lau BHS, Tadi PP, Tosk JM (1990) Allium sativum (garlic) and cancer prevention. Nutr Res 10:937–948

    Google Scholar 

  • Lawson LD (1993) Bioactive organosulphur compounds from of garlic and garlic products. In: Kinghorn AD, Balandrin MF (eds) ACS symposium series 534, human medicine agents from plants. American Chemical Society, Washington, DC, pp 306–320

  • Ledezma E, Marcano K, Jorquera A et al (2000) Efficacy of ajoene in the treatment of Tinea pedis: a double-blind and comparative study with terbinafine. J Am Acad Dermatol 43:829–832

    CAS  PubMed  Google Scholar 

  • Ledezma E, Apitz-Castro R, Cardier J (2004) Apoptotic and anti-adhesion effect of ajoene, a garlic derived compound, on the murine melanoma B16F10 cells: possible role of caspase-3 and the α sub4 sub β sub 1sub integrin. Cancer Lett 206:35–41

    CAS  PubMed  Google Scholar 

  • Lee ES, Steiner M, Lin R (1994) Thioallyl compounds: potent inhibitors of cell proliferation. Biochim Biophys Acta 1221:73–77

    CAS  PubMed  Google Scholar 

  • Lee S, Lee H, Baek M et al (2002) MAPK signaling is involved in camptothecin-induced cell death. Mol Cells 14:348–354

    CAS  PubMed  Google Scholar 

  • Li M, Ciu JR, Ye Y et al (2002) Antitumor activity of Z-ajoene, a natural compound purified from garlic: antimitotic and microtubule-interaction properties. Carcinogenesis 23:573–579

    CAS  PubMed  Google Scholar 

  • Li M, Wei S-Y, Xu B et al (2008) Pro-apoptotic and microtubule-dissasembly effects of ardisiacrispin (A-B), triterpenoid saponins from Ardisia crenata on human hepatoma Bel-7402 cells. J Asian Nat Prod Res 10:729–736

    CAS  Google Scholar 

  • Liu M-J, Wang Z, Ju Y et al (2005) Diosgenin induces cell cycle arrest and apoptosis in human leukemia K562 cells with the disruption of Ca2+ homeostasis. Cancer Chemother Pharmacol 55:79–90

    CAS  PubMed  Google Scholar 

  • Liu P, Guo J, Liu H et al (2009) Diallyl trisulphide (DATS) effectively induced apoptosis of postharvest disease Penicillium expansum of citrus. Ann Microbiol 59:675–679

    CAS  Google Scholar 

  • Maisashvili MR, Kuchukhidze DK, Kikoladze VS et al (2012) Steroidal glycosides of gitogenin from Allium rotundum. Chem Nat Compd 48:86–90

    CAS  Google Scholar 

  • Man S, Gao W, Zhang Y et al (2009) Antitumor and anti-metastatic activities of Rhizoma Paridis saponins. Steroids 74:1051–1056

    CAS  PubMed  Google Scholar 

  • Martin-Hernandez AM, Dufresne M, Hugouvieux V et al (2000) Effects of targeted replacement of the tomatinase gene on the interaction of Septoria lycopersici with tomato plants. Mol Plant Microb Interact 13:1301–1311

    CAS  Google Scholar 

  • Matsura H, Ushiroguchi T, Itakura Y et al (1988) A furostanol glycoside from garlic, bulbs of Allium sativum L. Chem Pharm Bull 36:3659–3663

    Google Scholar 

  • Matsuura H (2001) Saponins in garlic as modifiers oft he risk of cardiovascular disease. J Nutr 131:1000–1005

    Google Scholar 

  • Millet COM, Lloyd D, Williams C et al (2011) Effect of garlic and allium-derived products on the growth and metabolism of Spironucleus vortens. Exp Parasitol 127:490–499

    CAS  PubMed  Google Scholar 

  • Mimaki Y, Kawashima K, Kanmoto T et al (1993) Steroidal glycosides from Allium albopilosum and A. ostrowskianum. Phytochemistry 34:799–805

    CAS  PubMed  Google Scholar 

  • Mimaki Y, Nikaido T, Matsumoto K et al (1994) New steroidal saponins from the bulbs of Allium giganteum exhibiting potent inhibition of cAMP phosphodiesterase activity. Chem Pharmaceut Bull 42:710–714

    CAS  Google Scholar 

  • Mimaki Y, Satou T, Kuroda M et al (1996) A new furostanol saponin with six sugars from the bulbs of Allium sphaerosephalon. Structural elucidation by modern NMR techniques. Chem Lett 25:431–432

    Google Scholar 

  • Mimaki Y, Kuroda M, Sashida Y (1999a) Steroidal saponins from the bulbs of Allium aflatunense. Nat Med 53:88–93

    CAS  Google Scholar 

  • Mimaki Y, Kuroda M, Fukasawa T et al (1999b) Steroidal glycosides from the bulbs of Allium jesdianum. J Nat Prod 62:194–197

    CAS  PubMed  Google Scholar 

  • Mimaki Y, Yokosuka A, Kuroda M et al (2001) Cytotoxic activities and structure-cytotoxic relationships of steroidal saponins. Biochem Pharm Bull 24:1286–1289

    CAS  Google Scholar 

  • Miner JA (2001) Mechanism by which garlic and allyl sulphur compounds suppress carcinogen bioacivation. Garlic and carcinogenesis. Adv Exp Med Biol 492:69–81

    Google Scholar 

  • Miron T, Mironchik M, Mirelman D et al (2003) Inhibition of tumor growth by a novel approach: in situ allicin generation using targeted alliinase delivery. Mol Cancer Ther 2:1295–1301

    CAS  PubMed  Google Scholar 

  • Miron T, Wilchek M, Sharp A et al (2008) Allicin inhibits cell growth and induces apoptosis through the mitochondrial pathway in HL60 and U937 cells. J Nutr Biochem 19:524–535

    CAS  PubMed  Google Scholar 

  • Morrisey JP, Osbourn AE (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol R 63:708–724

    Google Scholar 

  • Mskhiladze L, Legault J, Lavoie S et al (2008a) Cytotoxic steroidal saponins from the flowers of Allium leucanthum. Molecules 13:2925–2934

    CAS  PubMed  Google Scholar 

  • Mskhiladze L, Kutchukhidze J, Chincharadze D et al (2008b) In vitro antifungal and antileishmanial activities of steroidal saponins from Allium leucanthum C Koch—a Caucasian endemic species. Georgian Med News 154:39–43

    PubMed  Google Scholar 

  • Naganawa R, Iwata N, Ishikawa K et al (1996) Inhibition of microbial growth by ajoene, a sulphur-containing compound derived from garlic. Appl Environ Microbiol 62:4238–4242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ogita A, Hirooka K, Yamamoto Y et al (2005) Synergistic fungicidal activity of Cu2+ and allicin, an allyl sulphursulphur compound from garlic, and its relation to the role of alkyl hydroperoxide reductase 1 as a cell surface defense in Saccharomyces cerevisiae. Toxicology 215:205–213

    CAS  PubMed  Google Scholar 

  • Oommen S, Anto RJ, Srinivas G et al (2004) Allicin (from garlic) induces caspase-mediated apoptosis in cancer cells. Eur J Pharmacol 485:97–103

    CAS  PubMed  Google Scholar 

  • Ou WC, Chen HF, Zhong Y et al (2012) Inhibition of platelet activation and aggregation by furostanol saponins isolated from the bulbs of Allium macrostemon Bunge. Am J Med Sci 344:261–267

    PubMed  Google Scholar 

  • Padilla-Camberos E, Zaitseva G, Padilla C et al (2010) Antitumoral activity of allicin in murine lymphoma L5178Y. Asian Pac J Cancer Prev 11:1241–1244

    PubMed  Google Scholar 

  • Park EK, Kwon KB, Park KI et al (2002) Role of Ca2+ in diallyl disulphide-induced apoptotic cell death of HCT-15 cells. Exp Mol Med 34:250–257

    CAS  PubMed  Google Scholar 

  • Park SY, Cho SJ, Kwon HC et al (2005) Caspase-independent cell death by allicin in human epithelial carcinoma cells: involvement of PKA. Cancer Lett 224:123–132

    CAS  PubMed  Google Scholar 

  • Peng JP, Yao XS, Tezuka Y et al (1996) Furostanol glycosides from bulbs of Allium chinense. Phytochemistry 41:283–285

    CAS  PubMed  Google Scholar 

  • Perchellet JP, Perchellet EM, Belman S (1990) Inhibition of DMBA-induced mouse skin tumorigenesis by garlic oil and inhibition. Nutr Cancer 14:183–193

    CAS  PubMed  Google Scholar 

  • Perez HA, De La Rosa M, Apitz R (1994) In vivo activity of ajoene against rodent malaria. Antimicrob Agents Chemother 38:337–339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pinto JT, Qiao CH, Xing J et al (1997) Effects of garlic thioallylderivatives on growth, glutathione concentration, and polyamine formation of human prostate carcinoma cells in culture. Am J Clin Nutr 66:398–405

    CAS  PubMed  Google Scholar 

  • Pirtskhalava GV, Gorovits MB, Gorovits TT et al (1979) Steroid saponins and sapogenins of Allium. XVI. Turoside C from Allium turcomanicum. Chem Nat Compd 15:446–452

    Google Scholar 

  • Podolak I, Galanty A, Sobolewska D (2010) Saponins as cytotoxic agents: a review. Phytochem Rev 9:425–474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prager-Khoutorsky M, Goncharov I, Rabinkov A et al (2007) Allicin inhibits cell polarization, migration and division via its direct effect on microtubules. Cell Motil Cytoskelet 64:321–337

    CAS  Google Scholar 

  • Rose P, Whiteman M, Moore PK et al (2005) Bioactive S-alk(en)yl cysteine sulphoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents. Nat Prod Rep 22:351–368

    CAS  PubMed  Google Scholar 

  • Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruddock PS, Liao M, Foster BC et al (2005) Garlic natural health products exhibit variable constituent levels and antimicrobial activity against Neisseria gonorrhoeae, Staphylococcus aureus and Enterococcus faecalis. Phytother Res 19:327–334

    CAS  PubMed  Google Scholar 

  • Sadeghi M, Zolfaghari B, Senatore M et al (2013) Furostanol, spirostanol and cholestanol glycosides from Persian Leek with antifungal activity. Food Chem 141:1512–1521

    CAS  PubMed  Google Scholar 

  • Saidu NEB, Asali A, Czepukojc I et al (2013) Comparison between the effects of diallyl tetrasulphide on human retina pigment epithelial cells (ARPE-19) and HCT116 cells. Biochim Biophys Acta 1830:5267–5276

    CAS  PubMed  Google Scholar 

  • Sang S, Lao A, Wang H et al (1999a) Furostanol saponins from Allium tuberosum. Phytochemistry 52:1611–1615

    CAS  Google Scholar 

  • Sang S, Lao A, Wang H et al (1999b) Two new spirostanol saponins from Allium tuberosum. J Nat Prod 62:1028–1029

    CAS  PubMed  Google Scholar 

  • Sang SM, Zou ML, Zhang X et al (2002) Tuberoside M, a new cytotoxic spirostanol saponin from the seeds of Allium tuberosum. J Asian Nat Prod Res 4:67–70

    Google Scholar 

  • Sang S, Mao S, Lao A et al (2003) New steroid saponins from the seeds of Allium tuberosum L. Food Chem 83:499–506

    CAS  Google Scholar 

  • Sata N, Matsunaga S, Fusetani N et al (1998) New antifungal and cytotoxic steroidal saponins from the bulbs of an elephant garlic mutant. Biosci Biotechnol Biochem 62:1904–1911

    CAS  PubMed  Google Scholar 

  • Sautour M, Mitaine-Offer A-C (2007) The Dioscorea genus: a review of bioactive steroid saponins. J Nat Med 61:91–101

    CAS  Google Scholar 

  • Scharfenberg K, Wagner R, Wagner KG (1990) The cytotoxic effect of ajoene, a natural product from garlic, investigated with different cell lines. Cancer Lett 53:103–108

    CAS  PubMed  Google Scholar 

  • Scharfenberg K, Ryll T, Wagner R et al (1994) Injuries to cultivated BJA-B cells by ajoene, a garlic derived natural compound: cell viability, glutathione metabolism, and pools of acidic amino acids. J Cell Physiol 158:55–60

    CAS  PubMed  Google Scholar 

  • Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735

    CAS  PubMed  Google Scholar 

  • Shenoy NR, Choughuley AS (1992) Inhibitory effect of diet related sulphydryl compounds on the formation of carcinogenic nitrosamine. Cancer Lett 65:227–232

    CAS  PubMed  Google Scholar 

  • Sigounas G, Hooker JL, Li W et al (1997) S-Allylmercaptocysteine, a stable thioallyl compound, induces apoptosis in erythroleukemia cell lines. Nutri Cancer 27:186–191

    CAS  Google Scholar 

  • Sobolewska D, Janeczko Z, Kisiel W et al (2006) Steroidal glycosides from the underground parts of Allium ursinum L. and their cytostatic and antimicrobial activity. Acta Pol Pharm 63:219–223

    CAS  PubMed  Google Scholar 

  • Sun L, Wang X (2003) Effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC-7901 cells. World J Gastroenterol 9:1930–1934

    CAS  PubMed  Google Scholar 

  • Sun Y, Cai T–T, Zhou X-B et al (2009) Saikosaponin a inhibits the proliferation and activation of T cells through cell cycle arrest and induction of apoptosis. Int Immunopharmacol 9:978–983

    CAS  PubMed  Google Scholar 

  • Sundaram SG, Milner JA (1996) Diallyl disulphide inhibits the proliferation of human tumor cells in culture. Biochim Biophys Acta 1315:15–20

    PubMed  Google Scholar 

  • Taylor P, Noriega R, Farah C et al (2006) Ajoene inhibits both primary tumor growth and metastasis of B16/BL6 melanoma cells in C57BL/6 mice. Cancer Lett 239:298–304

    CAS  PubMed  Google Scholar 

  • Terrasson J, Xu B, Li M et al (2007) Activities of Z-ajoene against tumour and viral spreading in vitro. Fundam Clin Pharmacol 21:281–289

    CAS  PubMed  Google Scholar 

  • Tian F, Zhang X, Tong Y et al (2005) PE, a new sulfated saponin from sea cucumber, exhibits anti-angiogenic and anti-tumor activities in vitro and in vivo. Cancer Biol Ther 4:874–882

    CAS  PubMed  Google Scholar 

  • Tilli CMLJ, Stavast-Kooy AJW, Vuerstaek JDD et al (2003) The garlic-derived organosulphur component ajoene decreases basal cell carcinoma tumor size by inducing apoptosis. Arch Dermatol Res 295:117–123

    CAS  PubMed  Google Scholar 

  • Timité G, Mitaine-Offer AC, Miyamoto T et al (2013) Structure and cytotoxicity of steroidal glycosides from Allium schoenoprasum. Phytochemistry 88:61–66

    PubMed  Google Scholar 

  • Tolkacheva NV, Shashkov AS, Chirva VY (2012) Steroidal glycosides from Allium cyrillii bulbs. Chem Nat Compd 48:272–275

    CAS  Google Scholar 

  • Tsao SM, Yin MC (2001) In-vitro antimicrobial activity of four diallyl sulphides occurring naturally in garlic and Chinese leek oils. J Med Microb 50:646–649

    CAS  Google Scholar 

  • Vasiliev JM (1991) Polarization of pseudopodial activities: cytoskeletal mechanisms. J Cell Sci 98:1–4

    PubMed  Google Scholar 

  • Vasiliev JM, Gelfand IM, Domnina LV et al (1970) Effect of colcemid on the locomotory behaviour of fibroblasts. J Embryol Exp Morphol 24:625–640

    CAS  PubMed  Google Scholar 

  • Vollerner YS, Gorovits MB, Gorovits TT et al (1978) Steroid saponins and sapogenins of Allium XIV. The structure of karatavoiside A. Chem Nat Compd 14:630–635

    Google Scholar 

  • Wang X-H, Xu B, Liu J-T et al (2008) Effect of bescin sodium on endothelial cells proliferation, migration and apoptosis. Vasc Pharmacol 49:158–165

    CAS  Google Scholar 

  • Wang HC, Pao J, Lin SY et al (2012a) Molecular mechanisms of garlic-derived allyl sulphides in the inhibition of skin cancer progression. Ann N Y Acad Sci 1271:44–52

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Liu Z, Cao Z et al (2012b) Allicin induces apoptosis in EL-4 cells in vitro by activation of expression of caspase-3 and-12 and up-regulation of the ratio of Bax/Bcl-2. Nat Prod Res 26:1033–1037

    CAS  PubMed  Google Scholar 

  • Weber ND, Andersen DO, North JA et al (1992) In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta Med 58:417–423

    CAS  PubMed  Google Scholar 

  • Weisberger AS, Pensky J (1958) Tumour inhibition by a sulphydryl- blocking agent related to an active principle of garlic (Allium sativum). Cancer Res 18:1301–1308

    CAS  PubMed  Google Scholar 

  • Wills ED (1956) Enzyme inhibition by allicin, the active principle of garlic. Biochem J 63:514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Z-X, Liang J, Haridas V et al (2007) A plant triterpenoid, avicin D, induces autophagy by activation of AMP-activated protein kinase. Cell Death Differ 14:1948–1957

    CAS  PubMed  Google Scholar 

  • Xu Y, Chiu JF, He Q-Y et al (2009) Tubeimoside-1 exerts cytotoxicity in HeLa cells through mitochondrial dysfunction and endoplasmic reticulum stress pathways. J Proteome Res 8:1585–1593

    CAS  PubMed  Google Scholar 

  • Yamada Y, Azuma K (1977) Evaluation of the in vitro antifungal activity of allicin. Antimicrob Agents Chemother 11:743–749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida S, Kasuga S, Hayashi N et al (1987) Antifungal activity of ajoene derived from garlic. Appl Environ Microbiol 53:615–617

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida H, Iwata N, Katsuzaki H et al (1998) Antimicrobial activity of a compound isolated from an oil-macerated garlic extract. Biosci Biotechnol Biochem 62:1014–1017

    CAS  PubMed  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    CAS  PubMed  Google Scholar 

  • Zhang ZM, Yang XY, Deng SH et al (2007) Anti-tumor effects of polybutylcyanoacrylate nanoparticles of diallyl trisulphide on orthotopic transplantation tumor model of hepatocellular carcinoma in BALB/c nude mice. Chin Med J 120:1336

    CAS  PubMed  Google Scholar 

  • Zhang W, Ha M, Gong Y et al (2010) Allicin induces apoptosis in gastric cancer cells through activation of both extrinsic and intrinsic pathways. Oncol Rep 24:1585–1592

    CAS  PubMed  Google Scholar 

  • Zolfaghari B, Barile E, Capasso R et al (2006) The sapogenin atroviolacegenin and its diglycoside atroviolaceoside from Allium atroviolaceum. J Nat Prod 69:191–195

    CAS  PubMed  Google Scholar 

  • Zolfaghari B, Sadeghi M, Troiano R et al (2013) Vavilosides A1/A2-B1/B2, new furostane glycosides from the bulbs of Allium vavilovii with cytotoxic activity. Bioorg Med Chem 21:1905–1910

    CAS  PubMed  Google Scholar 

  • Zou ZM, Yu DQ, Cong PZ (2001) A steroidal saponin from the seeds of Allium tuberosum. Phytochemistry 57:1219–1222

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Lanzotti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanzotti, V., Scala, F. & Bonanomi, G. Compounds from Allium species with cytotoxic and antimicrobial activity. Phytochem Rev 13, 769–791 (2014). https://doi.org/10.1007/s11101-014-9366-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-014-9366-0

Keywords

Navigation