Skip to main content
Log in

Biotechnological advances on in vitro capsaicinoids biosynthesis in capsicum: a review

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

One of the main characteristics of chili pepper fruit is its pungent taste due to the presence of a group of compounds known as capsaicinoids. Capsaicinoids biosynthesis in chili plant is defined by two pathways: phenylpropanoid, which determines phenolic structure; and fatty acid metabolism, which determines the molecule’s fatty acids. The potency of chili pepper cells, tissue and organ to biosynthesize capsaicinoids in in vitro cultures have been a subject of intensive research. Recent findings demonstrated that manipulation of culture strategies viz., immobilization of cells, precursors feeding, cell selection, elicitors treatments, osmotic stress, influence of calcium channel modulators, nutrient stress, pH stress etc. to enhance the accumulation of capsaicinoids in in vitro cultures of chili pepper have resulted in significant increase. However, the levels of capsaicinoids accumulation in cell cultures have never reached the levels in the fruits and require more efficient strategies to enhance the capsaicinoids biosynthetic activity. The present review highlights a comprehensive overview of capsaicinoids biosynthesis, its clinical applications and consolidated results of studies on biotechnological advances in chili pepper research leading to the biosynthesis of capsaicinoids in in vitro cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aluru MR, Mazourek M, Landry LG, Curry J, Jahn M, O′Conell MA (2003) Differential expression of fatty acid synthase genes, Acl, Fat and Kas, in Capsicum fruit. J Exp Bot 54:1655–1664

    Article  CAS  PubMed  Google Scholar 

  • Bennett DJ, Kirby GW (1968) Constitution and biosynthesis of capsaicin. J Chem Soc C 2:442–446

    Google Scholar 

  • Bernal AM, Calderon AA, Pedreno MA, Munoz R, Barcelo AR, Merino FC (1993) Capsaicin oxidation by peroxidase from Capsicum annuum (var. annuum) fruits. J Agric Food Chem 41:1041–1044

    Article  CAS  Google Scholar 

  • Curry J, Aluru M, Mendoza M, Nevarez J, Melendrez M, O’Connell MA (1999) Transcripts for possible capsaicinoid biosynthetic genes are differentially accumulated in pungent and non-pungent Capsicum spp. Plant Sci 148:47–57

    Article  CAS  Google Scholar 

  • Díaz J, Pomar F, Bernal A, Merino F (2004) Peroxidases and the metabolism of capsaicin in Capsicum annuum L. Phytochem Rev 3:141–157

    Article  Google Scholar 

  • Fujiwake H, Suzuki T, Iwai K (1980) Intracellular localization of capsaicin and its analogues in Capsicum fruit II: the vacuoles as the intracellular accumulation site of capsaicinoid in the protoplast of Capsicum fruit. Plant Cell Physiol 21:1023–1030

    CAS  Google Scholar 

  • Fujiwake H, Suzuki T, Iwai K (1982) Capsaicinoid formation in the protoplast from the placenta of Capsicum fruits. Agric Biol Chem 46:2591–2592

    Article  CAS  Google Scholar 

  • Fusco BM, Giacovazzo M (1997) Peppers and pain: the promise of capsaicin. Drugs 53:909–914

    Article  CAS  PubMed  Google Scholar 

  • Guinness Book of World Records (2006) http://en.wikipedia.org/wiki/Bhut_Jolokia

  • Gutiérrez-Carbajal MG, Monforte-González M, Miranda-Ham ML, Godoy-Hernández G, Vázquez-Flota F (2010) Induction of capsaicinoid synthesis in Capsicum chinense cell cultures by salicylic acid or methyl jasmonate. Biol Plant 54:430–434

    Article  Google Scholar 

  • Hall RD, Yeoman MM (1991) The influence of intracellular pools of phenylalanine derivatives upon the synthesis of capsaicin by immobilized cell cultures of chilli pepper, Capsicum frutescens. Planta 185:72–80

    Article  CAS  PubMed  Google Scholar 

  • Hall RD, Holden MA, Yeoman MM (1987) The accumulation of phenylpropanoid and capsaicin compounds in cell cultures and whole fruit of the chilli pepper, Capsicum frutescens Mill. Plant Cell Tissue Organ Cult 8:163–176

    Article  CAS  Google Scholar 

  • Hayman M, Kam PCA (2008) Capsaicin: a review of its pharmacology and clinical applications. Curr Anaesth Crit C 30:1–6

    Google Scholar 

  • Holden PR, Yeoman MM (1994) Variation in the growth and biosynthetic activity of cloned cell cultures of Capsicum frutescens and their response to an exogenously supplied elicitor. Plant Cell Tissue Organ Cult 38:31–37

    Article  CAS  Google Scholar 

  • Holden MA, Hall RD, Lindsey K, Yeoman MM (1987) Capsaicin biosynthesis in cell cultures of Capsicum frutescens. In: Webb C, Mavituna F (eds) Plant and animal cells: process possibilities. Horwood, Chichester, pp 45–62

    Google Scholar 

  • Johnson TS, Ravishankar GA, Venkataraman LV (1990) In vitro capsaicin production by immobilized cells and placental tissues of Capsicum annuum L. grown in liquid medium. Plant Sci 70:223–229

    Article  CAS  Google Scholar 

  • Johnson TS, Ravishankar GA, Venkataraman LV (1991) Elicitation of capsaicin production in freely suspended cells and immobilized cell cultures of Capsicum frutescens mill. Food Biotechnol 5:197–205

    Article  CAS  Google Scholar 

  • Johnson TS, Ravishankar GA, Venkataraman LV (1996) Biotransformation of ferulic acid and vanillylamine to capsaicin and vanillin in immobilized cell cultures of Capsicum frutescens. Plant Cell Tissue Organ Cult 44:117–121

    Article  CAS  Google Scholar 

  • Johnson TS, Sarada R, Ravishankart GA (1998) Capsaicin formation in p-fluorophenylalanine resistant and normal cell cultures of Capsicum frutescens and activity of phenylalanine ammonia lyase. J Biosci 23:209–212

    Article  CAS  Google Scholar 

  • Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plants Res 3:1222–1239

    CAS  Google Scholar 

  • Kehie M, Kumaria S, Tandon P (2012a) In vitro plantlet regeneration from nodal segments and shoot tips of Capsicum chinense Jacq. cv. Naga King Chili. 3 Biotech 2:31–35

    Article  PubMed Central  PubMed  Google Scholar 

  • Kehie M, Kumaria S, Tandon P (2012b) Osmotic stress induced—capsaicin production in suspension cultures of Capsicum chinense Jacq.cv. Naga King Chili. Acta Physiol Plant 34:2039–2044

    Article  CAS  Google Scholar 

  • Kehie M, Kumaria S, Tandon P (2013a) In vitro plantlet regeneration from cotyledon segments of Capsicum chinense Jacq. cv. Naga King Chili, and determination of capsaicin content by high performance liquid chromatography. Sci Hortic 164:1–8

    Article  CAS  Google Scholar 

  • Kehie M, Kumaria S, Tandon P (2013b) Manipulation of culture strategies to enhance capsaicin biosynthesis in cell cultures of Capsicum chinense Jacq. cv. Naga King Chilli. Bioprocess Biosyst Eng. doi:10.1007/s00449-013-1076-2

  • Keyhaninejad N, Curry J, Romero J, O’Connell MA (2014) Fruit specific variability in capsaicinoid accumulation and transcription of structural and regulatory genes in Capsicum fruit. Plant Sci 215–216:59–68

    Article  PubMed  Google Scholar 

  • Kim M, Kim S, Kim S, Kim BD (2001) Isolation of cDNA clones differentially accumulated in the placenta of pungent pepper by suppression subtractive hybridization. Mol Cells 11:213–219

    Google Scholar 

  • Kobata K, Kawamura M, Toyoshima M, Tamura Y, Ogawa S, Watanabe T (1998) Lipase catalyzed synthesis of capsaicin analogs by amidation of vanillylamine with fatty acid derivatives. Biotechnol Lett 20:451–454

    Article  CAS  Google Scholar 

  • Kobata K, Sugawara M, Mimura M, Yazawa S, Watanabe T (2013) Potent production of capsaicinoids and capsinoids by Capsicum peppers. J Agric Food Chem 61(46):11127–11132

    Article  CAS  PubMed  Google Scholar 

  • Leete E, Louden MCL (1968) Biosynthesis of capsaicin and dihydrocapsaicin in Capsicum frutescens. J Am Chem Soc 90:6837–6841

    Article  CAS  PubMed  Google Scholar 

  • Lindsey K (1985) Manipulation, by nutrient limitation, of the biosynthetic activity of immobilized cells of Capsicum frutescens Mill. cv. annuum. Planta 165:126–133

    Article  CAS  PubMed  Google Scholar 

  • Lindsey K (1986) Incorporation of [14C] phenylalanine and [14C] cinnamic acid into capsaicin in cultured cells of Capsicum frutescens. Phytochemistry 25:2793–2801

    Article  CAS  Google Scholar 

  • Lindsey K, Yeoman MM (1984a) The viability and biosynthetic activity of cells of Capsicum frutescens Mill. cv. annuum immobilized in reticulate polyurethane. J Exp Bot 35:1684–1696

    Article  CAS  Google Scholar 

  • Lindsey K, Yeoman MM (1984b) The synthetic potential of immobilised cells of Capsicum frutescens Mill. cv. annuum. Planta 162:495–501

    Article  CAS  PubMed  Google Scholar 

  • Lindsey K, Yeoman MM, Black GM, Mavituna F (1983) A novel method for the immobilization and culture of plant cells. FEBS Lett 155:143–149

    Article  CAS  Google Scholar 

  • Liu C, Cheng X (2008) Enhancement of phenylethanoid glycosides biosynthesis in cell cultures of Cistanche deserticola by osmotic stress. Plant Cell Rep 27:357–362

    Google Scholar 

  • Liu S, Li W, Wu Y, Chen C, Lei J (2013) De novo tran-scriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids. PLoS ONE 8:e48156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mazzone SB, Geraghty DP (1999) Respiratory action of capsaicin microinjected into the nucleus of the solitary tract: involvement of vanilloid and tachykinins receptors. Br J Pharmacol 127:473–481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Min JK, Han KY, Kim EC, Kim YM, Lee KR, Kim OH, Kim KW, Gho YS, Kwon YG (2004) Capsaicin inhibits in vitro and in vivo angiogenesis. Cancer Res 64:644–651

    Article  CAS  PubMed  Google Scholar 

  • Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69–79

    CAS  Google Scholar 

  • Nuñez-Palenius HG, Ochoa-Alejo N (2005) Effect of phenylalanine and phenylpropanoids on the accumulation of capsaicinoids and lignins in cell cultures of chili peppers (Capsicum annum L.). In Vitro Dev Biol Plant 41:801–805

    Article  Google Scholar 

  • Ochoa-Alejo N, Gómez-Peralta JE (1993) Activity of enzymes involved in capsaicin biosynthesis in callus tissue and fruits of chili pepper (Capsicum annuum L.). J Plant Physiol 141:147–152

    Article  CAS  Google Scholar 

  • Ochoa-Alejo N, Salgado-Garciglia R (1992) Phenylalanine ammonia-lyase activity and capsaicin-precursor compounds in p-fluorophenylalanine-resistant and sensitive variant cells of chili pepper (Capsicum annuum). Physiol Plant 85:173–179

    Article  CAS  Google Scholar 

  • Peppin JF, Pappagallo M (2014) Capsaicinoids in the treatment of neuropathic pain: a review. Ther Adv Neurol Disord 7(1):22–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prasad BC, Gururaj HB, Kumar V, Giridhar P, Parimalan R, Sharma A, Ravishankar GA (2006a) Influence of 8-methyl-nonenoic acid on capsaicin biosynthesis in in vivo and in vitro cell cultures of Capsicum spp. J Agric Food Chem 8(54):1854–1859

    Article  Google Scholar 

  • Prasad BCN, Gururaj HB, Kumar V, Giridhar P, Ravishankar GA (2006b) Valine pathway is more crucial than phenyl propanoid pathway in regulating capsaicin biosynthesis in Capsicum frutescens mill. J Agric Food Chem 54:6660–6665

    Article  CAS  PubMed  Google Scholar 

  • Ramachandra Rao S, Ravishankar GA (2000) Biotransformation of protocatechuic aldehyde and caffeic acid to vanillin and capsaicin in freely suspended and immobilized cell cultures of Capsicum frutescens. J Biotechnol 76:137–146

    Article  Google Scholar 

  • Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  Google Scholar 

  • Ravishankar GA, Sarma KS, Venkataraman LV, Kadyan AK (1988) Effect of nutritional stress on capsaicin production in immobilized cell cultures of Capsicum annuum. Curr Sci 57:381–383

    CAS  Google Scholar 

  • Ravishankar GA, Suresh B, Giridhar P, Ramachandra Rao S, Johnson TS (2003) Capsicum. In: De Khrisna A (ed) Biotechnological studies on Capsicum for metabolite production and plant improvement. Taylor and Francis, New York, pp 96–128

    Google Scholar 

  • Reddy UK, Almeida A, Abburi VL, Alaparthi SB, Unselt D, Hankins G, Park M, Choi D, Nimmakayala P (2014) Identification of gene-specific polymorphisms and association with capsaicin pathway metabolites in Capsicum annuum L. collections. PLoS ONE 9(1):e86393. doi:10.1371/journal.pone.0086393

    Article  PubMed Central  PubMed  Google Scholar 

  • Reyes-Escogido MDL, Gonzalez-Mondragon EG, Vazquez-Tzompantzi E (2011) Determination of capsaicin and dihydrocapsaicin in Capsicum fruit samples using high performance liquid chromatography. Molecules 16:8919–8929

    Article  Google Scholar 

  • Salgado-Garciglia R, Ochoa-Alejo N (1990) Increased capsaicin content in PFP resistant cells of chili pepper (Capsicum annuum L.). Plant Cell Rep 8:617–620

    Article  CAS  PubMed  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction of growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:166–204

    Google Scholar 

  • Soderquist R, Lee JM (2005) Plant cell immobilization application. In: Nedovic V, Willaert R (eds) Applications of cell immobilization biotechnology, vol 8. Springer, Dordrecht, pp 469–478

    Chapter  Google Scholar 

  • Stewart C, Kang BC, Liu K, Mazourek M, Moore SL, Yoo EY, Kim BD, Paran I, Jahn MM (2005) The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J 42:675–688

    Google Scholar 

  • Sudha G, Ravishankar GA (2002) Influence of calcium channel modulators in capsaicin production by cell suspension cultures of Capsicum frutescens Mill. Curr Sci 83:480–484

    CAS  Google Scholar 

  • Suzuki T, Kawada T, Iwai K (1981) Biosynthesis of acyl moieties of capsaicin and its analogues from valine and leucine in Capsicum fruits. Plant Cell Physiol 22:23–32

    CAS  Google Scholar 

  • USDA-ARS (2011) Grin species records of Capsicum. National 2063 Germplasm Resources Laboratory, Beltsville, Maryland

  • Varindra P, Gosal SS (2009) Capsaicin production in cell suspension cultures derived from placenta of Capsicum annuum L. fruit. Ind J Agric Biochem 22:78–82

    Google Scholar 

  • Verpoote R, Heijden RVD, Hoopen HJGT, Memelink J (1999) Metabolic engineering of plant secondary metabolites pathways for the production of fine chemicals. Biotechnol Lett 21:467–497

    Article  Google Scholar 

  • Walpole CS, Bevan S, Bloomfield G, Breckenridge R, James IF, Ritchie T, Szallasi A, Winter J, Wrigglesworth R (1996) Similarities and differences in the structure-activity relationships of capsaicin and resiniferatoxin analogues. J Med Chem 39:2939–2952

    Article  CAS  PubMed  Google Scholar 

  • Weathers PJ, Mohd Fadzillah NA, Cheetham RD (1992) Light inhibit the formation of capsaicin from Capsicum callus. Planta Med 58:278–279

    Article  CAS  PubMed  Google Scholar 

  • Zenk MH (1965) Biosynthese von vanillin in Vanilla planifolia andr. Z Pflanzenphysiol 53:404

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Science and Technology, Science and Engineering Research Board, Government of India, for financial assistance to Mechuselie Kehie, under the Scheme for Young scientists, a prestigious start up research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Tandon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kehie, M., Kumaria, S., Tandon, P. et al. Biotechnological advances on in vitro capsaicinoids biosynthesis in capsicum: a review. Phytochem Rev 14, 189–201 (2015). https://doi.org/10.1007/s11101-014-9344-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-014-9344-6

Keywords

Navigation