Skip to main content

Advertisement

Log in

Enzymatic glycosylation of terpenoids

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

A significant number of terpenoid compounds are glycosides with the sugars linked to the active groups. Sometimes, the glycosidic residue is crucial for their activity, but in other cases glycosylation only improves pharmacokinetic parameters. Enzymatic glycosylation of terpenoids is a useful tool due to the high selectivity and the mildness of the reaction conditions, in comparison with chemical methods. Several types of biocatalysts have been used in the enzymatic glycosylation of terpenoids. These include the use of glycosyltransferases, trans-glycosidases, and whole-cell biotransformation systems capable of regenerating the cofactor, such as fungi, bacteria, plant-cell cultures, etc. Many biosynthesized terpenoid glycosides display medicinal and pharmacological properties and can be used as pro-drug substances. These terpenoid glycosides have also been employed as food additives (e.g. low-caloric sweetener compounds) and cosmetics, and even have applications as controlled-release fragrances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

ATCC:

American type culture collection

CICC:

China center of industrial culture collection

DHA:

Dehydroabietic acid

Gal:

Galactopyranose

GalT:

β-1,4-Galactosyltransferase

GHs:

Glycoside hydrolases

Glc:

Glucopyranose

GTs:

Glycosyltransferases

HeLa:

Human epithelial carcinoma cell line

HIV:

Human immunodeficiency virus

K562:

Human erythromyeloblastoid leukemia cell line

Man:

Mannopyranose

NRRL:

Agricultural research service culture collection (ARS)

POH:

Perillyl alcohol

Rha:

Rhamnopyranose

TGs:

Trans-glycosidases

UDP:

Uridine diphosphate

References

  • Abelyan VA, Balayan AM, Ghochikyan VT, Markosyan AA (2004) Transglycosylation of stevioside by cyclodextrin glucanotransferases of various groups of microorganisms. Appl Biochem Microbiol 40:129–134

    Article  CAS  Google Scholar 

  • Akihisa T, Yasukawa K, Tokuda H (2003) Potentially cancer chemopreventive and anti-inflammatory terpenoids from natural sources. Stud Nat Prod Chem 29:73–126

    Article  CAS  Google Scholar 

  • Amaral LS, Murgu M, Rodrigues-Fo E, De Souza AQL, De Moura Sarquis MI (2008) A saponin tolerant and glycoside producer xylariaceous fungus isolated from fruits of Sapindus saponaria. World J Microbiol Biotechnol 24:1341–1348

    Article  CAS  Google Scholar 

  • Bachhawat P, Mishra S, Bhatia Y, Bisaria VS (2004) Enzymatic synthesis of oligosaccharides, alkyl and terpenyl glucosides, by recombinant Escherichia coli-expressed Pichia etchellsii β-Glucosidase II. Appl Biochem Biotechnol 118:269–282

    Article  PubMed  CAS  Google Scholar 

  • Bohlmann J, Keeling CI (2008) Terpenoid biomaterials. Plant J 54:656–669

    Article  PubMed  CAS  Google Scholar 

  • Bowles D, Isayenkova J, Lim EK, Poppenberger B (2005) Glycosyltransferases: managers of small molecules. Curr Opin Plant Biol 8:254–263

    Article  PubMed  CAS  Google Scholar 

  • Brandle JE, Telmer PG (2007) Steviol glycoside biosynthesis. Phytochem 68:1855–1863

    Article  CAS  Google Scholar 

  • Cantrell CL, Franzblau SG, Fischer NH (2001) Antimycobacterial plant terpenoids. Planta Med 67:685–694

    Article  PubMed  CAS  Google Scholar 

  • Caputi L, Lim EK, Bowles DJ (2008) Discovery of new biocatalysts for the glycosylation of terpenoid scaffolds. Chem Eur J 14:6656–6662

    Article  PubMed  CAS  Google Scholar 

  • Chang A, Singh S, Phillips GN, Thorson JS (2011) Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Curr Opin Biotechnol 22:800–808

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee P, Pezzuto JM, Kouzi SA (1999) Glucosidation of betulinic acid by Cunninghamella species. J Nat Prod 62:761–763

    Article  PubMed  CAS  Google Scholar 

  • Danieli B, Luisetti M, Schubert-Zsilavecz M, Likussar W, Steurer S, Riva S, Monti D, Reiner J (1997) Regioselective enzyme-mediated glycosylation of natural polyhydroxy compounds. Part 1. Galactosylation of stevioside and steviolbioside. Helv Chim Acta 80:1153–1160

    Article  CAS  Google Scholar 

  • Danieli B, Falcone L, Monti D, Riva S, Gebhardt S, Schubert-Zsilavecz M (2001) Regioselective enzymatic glycosylation of natural polyhydroxylated compounds: galactosylation and glucosylation of protopanaxatriol ginsenosides. J Org Chem 66:262–269

    Article  PubMed  CAS  Google Scholar 

  • De las Heras B, Hortelano S (2009) Molecular basis of the anti-inflammatory effects of terpenoids. Inflamm Allergy Drug Targets 8:28–39

    Article  PubMed  CAS  Google Scholar 

  • De Roode BM, Oliehoek L, Van der Padt A, Franssen MCR, Boom RM (2001) Downstream processing of enzymatically produced geranyl glucoside. Biotechnol Prog 17:881–886

    Article  PubMed  Google Scholar 

  • De Roode BM, Franssen MCR, Van Der Padt A, Boom RM (2003) Perspectives for the industrial enzymatic production of glycosides. Biotechnol Prog 19:1391–1402

    Article  PubMed  Google Scholar 

  • Dembitsky VM (2006) Astonishing diversity of natural surfactants: 7. Biologically active hemi- and monoterpenoid glycosides. Lipids 41:1–27

    Article  PubMed  CAS  Google Scholar 

  • Desmet T, Soetaert W (2011) Enzymatic glycosyl transfer: mechanisms and applications. Biocatal Biotransform 29:1–18

    Article  CAS  Google Scholar 

  • El Sayed KA, Yousaf M, Hamann MT, Avery MA, Kelly M, Wipf P (2002) Microbial and chemical transformation studies of the bioactive marine sesquiterpenes (S)-(+)-curcuphenol and-curcudiol isolated from a deep reef collection of the jamaican sponge didiscus oxeata. J Nat Prod 65:1547–1553

    Article  PubMed  Google Scholar 

  • Gantt RW, Peltier-Pain P, Thorson JS (2011a) Enzymatic methods for glyco(diversification/randomization) of drugs and small molecules. Nat Prod Rep 28:1811–1853

    Article  PubMed  CAS  Google Scholar 

  • Gantt RW, Peltier-Pain P, Cournoyer WJ, Thorson JS (2011b) Using simple donors to drive the equilibria of glycosyltransferase-catalyzed reactions. Nat Chem Biol 7:685–691

    Article  PubMed  CAS  Google Scholar 

  • Gauthier C, Legault J, Pichette A (2009) Recent progress in the synthesis of naturally occurring triterpenoid saponins. Mini-Rev Org Chem 6:321–344

    Article  CAS  Google Scholar 

  • Grassmann J (2005) Terpenoids as plant antioxidants. Vitam Horm 72:505–535

    Article  PubMed  CAS  Google Scholar 

  • Häkkinen ST, Lackman P, Nygrén H, Oksman-Caldentey KM, Maaheimo H, Rischer H (2012) Differential patterns of dehydroabietic acid biotransformation by Nicotiana tabacum and Catharanthus roseus cells. J Biotechnol 157:287–294

    Article  PubMed  Google Scholar 

  • Jaitak V, Kumar Kaul V, Bandna, Kumar N, Singh B, Savergave LS, Jogdand VV, Nene S (2009) Simple and efficient enzymatic transglycosylation of stevioside by β-cyclodextrin glucanotransferase from Bacillus firmus. Biotechnol Lett 31:1415–1420

    Article  PubMed  CAS  Google Scholar 

  • Kochikyan VT, Markosyan AA, Abelyan LA, Balayan AM, Abelyan VA (2006) Combined enzymatic modification of stevioside and rebaudioside A. Appl Biochem Microbiol 42:31–37

    Article  CAS  Google Scholar 

  • Kren V, Martinkova L (2001) Glycosides in medicine: “the role of glycosidic residue in biological activity”. Curr Med Chem 8:1303–1328

    Article  PubMed  CAS  Google Scholar 

  • Kren V, Thiem J (1997) Glycosylation employing bio-systems: from enzymes to whole cells. Chem Soc Rev 26:463–473

    Article  CAS  Google Scholar 

  • Kuttan G, Pratheeshkumar P, Manu KA, Kuttan R (2011) Inhibition of tumor progression by naturally occurring terpenoids. Pharm Biol 49:995–1007

    Article  PubMed  CAS  Google Scholar 

  • Kwon S, Shimoda K, Hamada H, Ishihara K, Masuoka N, Hamada H (2008) High production of β-thujaplicin glycosides by immobilized plant cells of Nicotiana tabacum. Acta Biol Hung 59:347–355

    Article  PubMed  CAS  Google Scholar 

  • Li X, Kim YH, Jung JH, Kang JS, Kim DK, Choi HD, Son BW (2007) Microbial transformation of the bioactive sesquiterpene, cyclonerodiol, by the ascomycete penicillium sp. and the actinomycete streptomyces sp. Enzym Microb Technol 40:1188–1192

    Article  CAS  Google Scholar 

  • Lim EK (2005) Plant glycosyltransferases: their potential as novel biocatalysts. Chem Eur J 11:5486–5494

    Article  PubMed  CAS  Google Scholar 

  • Liu DL, Liu Y, Qiu F, Gao Y, Zhang JZ (2011) Biotransformation of oleanolic acid by Alternaria longipes and Penicillium adametzi. J Asian Nat Prod Res 13:160–167

    Article  PubMed  Google Scholar 

  • Milanova R, Han K, Moore M (1995) Oxidation and glucose conjugation of synthetic abietane diterpenes by Cunninghamella sp. II. Novel routes to the family diterpenes from Tripterygium wilfordii. J Nat Prod 58:68–73

    Article  PubMed  CAS  Google Scholar 

  • Milanova R, Stoynov N, Moore M (1996) The optimization of triptoquinone production by Cunninghamella elegans using factorial design. Enzyme Microb Technol 19:86–93

    Article  CAS  Google Scholar 

  • Monti D, Candido A, Cruz Silva MM, Kren V, Riva S, Danieli B (2005) Biocatalyzed generation of molecular diversity: selective modification of the saponin asiaticoside. Adv Synth Catal 347:1168–1174

    Article  CAS  Google Scholar 

  • Ning L, Guo H, Jiang X, Bi K, Guo D (2003) Biotransformation of triptonide by cell suspension cultures of Platycodon grandiflorum. Pure Appl Chem 75:389–392

    Article  CAS  Google Scholar 

  • Paduch R, Kandefer-Szerzen M, Trytek M, Fiedurek J (2007) Terpenes: substances useful in human healthcare. Arch Immunol Ther Exp 55:315–327

    Article  CAS  Google Scholar 

  • Park SH, Kim SU (1998) Modified monoterpenes from biotransformation of (−)-isopiperitenone by suspension cell culture of Mentha piperita. J Nat Prod 61:354–357

    Article  PubMed  CAS  Google Scholar 

  • Rasor JP, Voss E (2001) Enzyme-catalyzed processes in pharmaceutical industry. App Catal A 221:145–158

    Article  CAS  Google Scholar 

  • Shimoda K, Kondo Y, Nishida T, Hamada H, Nakajima N, Hamada H (2006) Biotransformation of thymol, carvacrol, and eugenol by cultured cells of Eucalyptus perriniana. Phytochem 67:2256–2261

    Article  CAS  Google Scholar 

  • Sun I, Kashiwada Y, Morris-Natschke SL, Lee K (2003) Plant-derived terpenoids and analogues as anti-HIV agents. Curr Top Med Chem 3:155–169

    Article  PubMed  CAS  Google Scholar 

  • Tanaka O (1997) Improvement of taste of natural sweeteners. Pure Appl Chem 69:675–683, and references therein

    Google Scholar 

  • Weignerova L, Kren V (2010) Enzymatic processing of bioactive glycosides from natural sources. Top Curr Chem 295:121–146

    Article  PubMed  CAS  Google Scholar 

  • Williams GJ, Zhang C, Thorson JS (2007) Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution. Nat Chem Biol 3:657–662

    Article  PubMed  CAS  Google Scholar 

  • Xanthakis E, Magkouta S, Loutrari H, Stamatis H, Roussos C, Kolisis FN (2009) Enzymatic synthesis of perillyl alcohol derivatives and investigation of their antiproliferative activity. Biocatal Biotransform 27:170–178

    Article  CAS  Google Scholar 

  • Xanthakis E, Theodosiou E, Magkouta S, Stamatis H, Loutrari H, Roussos C, Kolisis F (2010) Enzymatic transformation of flavonoids and terpenoids: structural and functional diversity of the novel derivatives. Pure Appl Chem 82:1–16

    Article  CAS  Google Scholar 

  • Yang LM, Hsu FL, Cheng JT, Chang CH, Liu PC, Lin SJ (2004) Hydroxylation and glucosidation of ent-16β-hydroxybeyeran-19-oic acid by Bacillus megaterium and Aspergillus niger. Planta Med 70:359–363

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Zhu J, Song L, Shi X, Li X, Yu R (2012) Three sesquiterpene compounds biosynthesized from artemisinic acid using suspension-cultured cells of Averrhoa carambola (Oxalidaceae). Nat Prod Res 26:1388–1394

    Article  PubMed  CAS  Google Scholar 

  • Yoo K, Park S (2012) Terpenoids as potential anti-Alzheimer’s disease therapeutics. Molecules 17:3524–3538

    Article  PubMed  CAS  Google Scholar 

  • Zhu YY, Qian LW, Zhang J, Liu JH, Yu BY (2011) New approaches to the structural modification of olean-type pentacylic triterpenes via microbial oxidation and glycosylation. Tetrahedron 67:4206–4211

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank David Nesbitt for reviewing the English in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francisco Rivas or Andres Parra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivas, F., Parra, A., Martinez, A. et al. Enzymatic glycosylation of terpenoids. Phytochem Rev 12, 327–339 (2013). https://doi.org/10.1007/s11101-013-9301-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-013-9301-9

Keywords

Navigation