Phytochemistry Reviews

, Volume 11, Issue 1, pp 15–37 | Cite as

Volatile sesquiterpenes from fungi: what are they good for?

  • Rolf Kramer
  • Wolf-Rainer Abraham


Fungi can be found in almost all sorts of habitats competing with an even higher number of other organisms. As a consequence fungi developed a number of strategies for protection and communication with other organisms. This review focuses on the increasing number of volatile sesquiterpenes found to be produced by fungal species. The remarkable diversity of this type of volatile organic compound (VOC) within the kingdom fungi is presented and their benefits for the fungi are discussed. The majority of these compounds are hydrocarbons comprising several dozens of carbon skeletons. Together with oxygenated sesquiterpenes they include compounds unique to fungi. Only in recent years the interest shifted from a mere detection and characterization of compounds to their biological function. This review reveals highly diverse ecological functions including interactions with bacteria, other fungi, insects and plants. VOCs act as autoinducer, defend against competing species and play essential roles in attracting pollinators for spreading fungal spores. For many sesquiterpene VOCs sophisticated responses in other organisms have been identified. Some of these interactions are complex involving several partners or transformation of the emitted sesquiterpene. A detailed description of ecological functions of selected sesquiterpenes is given as well as their potential application as marker molecules for detection of mould species. Structures of all described sesquiterpenes are given in the review and the biosynthetic routes of the most common skeletons are presented. Summarizing, this article provides a detailed overview over the current knowledge on fungal sesquiterpene VOCs and gives an outlook on the future developments.


Chemical ecology Chemodiversity Fungi Sesquiterpenes Volatile organic compounds 


  1. Abate D, Abraham WR (1994) Antimicrobial metabolites from Lentinus crinitus. J Antibiot 47:1348–1350PubMedGoogle Scholar
  2. Abraham W-R (2001) Bioactive sesquiterpenes produced by fungi: are they useful for humans as well? Curr Med Chem 8:583–606PubMedGoogle Scholar
  3. Abraham W-R, Hanssen H-P (1987) Fragrance compounds from fungal liquid cultures. II. New benzofuran-terpenoids from Cystostereum murraii. In: Proceedings of 4th European congress on biotechnology, Amsterdam/NL, vol 3, pp 294–296Google Scholar
  4. Abraham W-R, Ernst L, Witte L, Hanssen H-P, Sprecher E (1986) New trans-fused africanols from Leptographium lundbergii. Tetrahedron 42:4475–4480CrossRefGoogle Scholar
  5. Abraham W-R, Sprecher E, Hanssen H-P (1987) Accumulation of africanols in liquid cultures of Leptographium lundbergii. Flavor Fragr J 2:175–177CrossRefGoogle Scholar
  6. Abraham W-R, Hanssen H-P, Möhringer C (1988) Novel sesquiterpene ethers from liquid cultures of the wood-rotting fungus Lentinus lepideus. Z Naturforsch 43c:24–28Google Scholar
  7. Abraham W-R, Ernst L, Stumpf B (1990) Biotransformation of caryophyllene by Diplodia gossypina. Phytochemistry 29:115–120CrossRefGoogle Scholar
  8. Abraham W-R, Hanssen H-P, Urbasch I (1991) Lepistirones, major volatile metabolites from liquid cultures of Lepista irina (Basidiomycotina). Z Naturforsch 46c:169–171Google Scholar
  9. Agger S, Lopez-Gallego F, Schmidt-Dannert C (2009) Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus. Mol Microbiol 72:1181–1195PubMedCrossRefGoogle Scholar
  10. Ainsworth AM, Rayner ADM, Broxholme SJ, Beeching JR, Pryke JA, Scard PR, Berriman J, Powell KA, Floyd AJ, Branch SK (1990) Production and properties of the sesquiterpene, (+)-torreyol, in degenerative mycelial interactions between strains of Stereum. Mycol Res 94:799–809CrossRefGoogle Scholar
  11. Andersen B, Frisvad JC, Søndergaard I, Rasmussen IS, Larsen LS (2011) Associations between fungal species and water-damaged building materials. Appl Environ Microbiol 77:4180–4188PubMedCrossRefGoogle Scholar
  12. Anderson B, Terblanche JS, Ellis AG (2010) Predictable patterns of trait mismatches between interacting plants and insects. BMC Evol Biol 10:204PubMedCrossRefGoogle Scholar
  13. Asakawa Y, Ishida T, Toyota M, Takemoto T (1986) Terpenoid biotransformation in mammals. IV biotransformation of (+)-longifolene, (−)-caryophyllene, (−)-caryophyllene oxide, (−)-cyclocolorenone, (+)-nootkatone, (−)-elemol, (−)-abietic acid and (+)-dehydroabietic acid in rabbits. Xenobiotica 16:753–767PubMedCrossRefGoogle Scholar
  14. Audouin P, Vidal JP, Richard H (1989) Volatile compounds from aroma of some edible mushrooms: morel (Morchella conica), wood blewit (Lepista nuda), clouded agaric (Clitocybe nebularis) and false chanterelle (Hygrophoropsis aurantiaca). Sci Aliments 9:185–193Google Scholar
  15. Ayer WA, Saeedi-Ghomi MH (1981) 1-Sterpurene-3,12,14-triol and 1-sterpurene, metabolites of silver-leaf disease fungus Stereum purpureum. Can J Chem 59:2536–2538CrossRefGoogle Scholar
  16. Ayoub N, Lass D, Schultze W (2009) Volatile constituents of the medicinal fungus chaga Inonotus obliquus (Pers.: Fr.) Pilát (Aphyllophoromycetideae). Int J Med Mushrooms 11:55–60CrossRefGoogle Scholar
  17. Back K, He S, Kim KU, Shin DH (1998) Cloning and bacterial expression of sesquiterpene cyclase, a key branch point enzyme for the synthesis of sesquiterpenoid phytoalexin capsidiol in UV-challenged leaves of Capsicum annuum. Plant Cell Physiol 39:899–904PubMedGoogle Scholar
  18. Bahn YS, Xue C, Idnurm A, Rutherford JC, Heitman J, Cardenas ME (2007) Sensing the environment: lessons from fungi. Nat Rev Microbiol 5:57–69PubMedCrossRefGoogle Scholar
  19. Benedict CR, Lu J-L, Pettigrew DW, Liu J, Stipanovic RD, Williams HJ (2001) The cyclization of farnesyl diphosphate and nerolidyl diphosphate by a purified recombinant δ-cadinene synthase. Plant Physiol 125:1754–1765PubMedCrossRefGoogle Scholar
  20. Bicchi C, Cordero C, Liberto E, Rubiolo P, Sgorbini B (2004) Automated headspace solid-phase dynamic extraction to analyse the volatile fraction of food matrices. J Chromatogr A 1024:217–226PubMedCrossRefGoogle Scholar
  21. Börjesson T, Stöllman U, Schnürer J (1990) Volatile metabolites and other indicators of Penicillium aurantiogriseum growth on different substrates. Appl Environ Microbiol 56:3705–3710PubMedGoogle Scholar
  22. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22PubMedCrossRefGoogle Scholar
  23. Brehm-Stecher BF, Johnson EA (2003) Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Antimicrob Agents Chemother 47:3357–3360PubMedCrossRefGoogle Scholar
  24. Bruheim I, Liu X, Pawliszyn J (2003) Thin-film microextraction. Anal Chem 75:1002–1010PubMedCrossRefGoogle Scholar
  25. Calvert MJ, Ashton PR, Allemann RK (2002) Germacrene A is a product of the aristolochene synthase-mediated conversion of farnesylpyrophosphate to aristolochene. J Am Chem Soc 124:11636–11641PubMedCrossRefGoogle Scholar
  26. Cane DE (1990) Enzymatic formation of sesquiterpenes. Chem Rev 90:1089–1103CrossRefGoogle Scholar
  27. Cane DE, King GGS (1976) The biosynthesis of ovalicin: Isolation of β-trans-bergamotene. Tetrahedron Lett 17:4737–4740CrossRefGoogle Scholar
  28. Cane DE, Rawlings BJ, Yang C-C (1987) Isolation of (−)-γ-cadinene and aristolochene from Aspergillus terreus. J Antibiot 40:1331–1334PubMedGoogle Scholar
  29. Chang S-T, Chen P-F, Wang S-Y, Wu H-H (2001) Antimite activity of essential oils and their constituents from Taiwania cryptomerioides. J Med Entomol 38:455–457PubMedCrossRefGoogle Scholar
  30. Chang HT, Cheng YH, Wu CL, Chang ST, Chang TT, Su YC (2008) Antifungal activity of essential oil and its constituents from Calocedrus macrolepis var. formosana Florin leaf against plant pathogenic fungi. Bioresour Technol 99:6266–6270PubMedCrossRefGoogle Scholar
  31. Clericuzio M, Toma L, Vidari G (1999) Isolation of a new caryophyllane ester from Lactarius subumbonatus: conformational analysis and absolute configuration. Eur J Org Chem 2059–2065Google Scholar
  32. Crespo R, Pedrini N, Juárez MP, Dal Bello GM (2008) Volatile organic compounds released by the entomopathogenic fungus Beauveria bassiana. Microbiol Res 163:148–151PubMedCrossRefGoogle Scholar
  33. Cugini C, Calfee MW, Farrow JM III, Morales DK, Pesci EC, Hogan DA (2007) Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 65:896–906PubMedCrossRefGoogle Scholar
  34. Cushion MT, Collins MS, Linke MJ (2009) Biofilm formation by Pneumocystis spp. Eukaryot Cell 8:197–206PubMedCrossRefGoogle Scholar
  35. Daniewski WM, Grieco PA, Huffman JC, Rymkiewicz A, Wawrzun A (1981) Isolation of 12-hydroxycaryophyllene-4,5-oxide, a sesquiterpene from Lactarius camphoratus. Phytochemistry 20:2733–2734CrossRefGoogle Scholar
  36. Davis-Hanna A, Piispanen AE, Stateva LI, Hogan DA (2008) Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Mol Microbiol 67:47–62PubMedCrossRefGoogle Scholar
  37. de Bruyne M, Baker TC (2008) Odor detection in insects: volatile codes. J Chem Ecol 34:882–897PubMedCrossRefGoogle Scholar
  38. Demyttenaere JCR, Morina RM, Sandra P (2003) Monitoring and fast detection of mycotoxin-producing fungi based on headspace solid-phase microextraction and headspace sorptive extraction of the volatile metabolites. J Chromatogr A 985:127–135PubMedCrossRefGoogle Scholar
  39. Desjardins AE, Hohn TM, McCormick SP (1993) Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol Rev 57:595–604PubMedGoogle Scholar
  40. Deveau A, Piispanen AE, Jackson AA, Hogan DA (2010) Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the Ras-cyclic AMP signaling pathway. Eukaryot Cell 9:569–577PubMedCrossRefGoogle Scholar
  41. Dichtl K, Ebel F, Dirr F, Routier FH, Heesemann J, Wagener J (2010) Farnesol misplaces tip-localized Rho proteins and inhibits cell wall integrity signalling in Aspergillus fumigatus. Mol Microbiol 76:1191–1204PubMedCrossRefGoogle Scholar
  42. Dictionary of Natural Compounds (2008) Chapman and Hall Chemical Database, LondonGoogle Scholar
  43. Dorn F, Arigoni D (1974) Ein bicyclischer Abkömmling von (−)-Longifolen aus Helminthosporium sativum und H. victoriae. Experientia 30:851–852CrossRefGoogle Scholar
  44. Duhl TR, Helmig D, Guenther A (2007) Sesquiterpene emissions from vegetation: a review. Biogeosci Discuss 4:3987–4023CrossRefGoogle Scholar
  45. Egli S, Gfeller H, Bigler P, Schlunegger U-P (1988) Isolierung und Identifikation des Sesquiterpenalkohols (±)-Torreyol aus Reinkulturen des Ektomykorrhizapilzes Cortinarius odorifer Britz. Eur J For Path 18:351–356CrossRefGoogle Scholar
  46. Fäldt J, Jonsell M, Nordlander G, Borg-Karlson A-K (1999) Volatiles of bracket fungi Fomitopsis pinicola and Fomes fomentarius and their functions as insect attractants. J Chem Ecol 25:567–590CrossRefGoogle Scholar
  47. Fekete C, Logrieco A, Giczey G, Hornok L (1997) Screening of fungi for the presence of the trichodiene synthase encoding sequence by hybridization to the Tri5 gene cloned from Fusarium poae. Mycopathologia 138:91–97PubMedCrossRefGoogle Scholar
  48. Fischer G, Schwalbe R, Möller M, Ostrowski R, Dott W (1999) Species-specific production of microbial volatile organic compounds (MVOC) by airborne fungi from a compost facility. Chemosphere 39:795–810PubMedCrossRefGoogle Scholar
  49. Fravel DR, Connick WJ Jr, Grimm CC, Lloyd SW (2002) Volatile compounds emitted by sclerotia of Sclerotinia minor, Sclerotinia sclerotiorum, and Sclerotium rolfsii. J Agric Food Chem 50:3761–3764PubMedCrossRefGoogle Scholar
  50. Gams W (2007) Biodiversity of soil-inhabiting fungi. Biodivers Conserv 16:69–72CrossRefGoogle Scholar
  51. Griffin MA, Spakowicz DJ, Gianoulis TA, Strobel SA (2010) Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology 156:3814–3829PubMedCrossRefGoogle Scholar
  52. Gross B, Gallois A, Spinnler H-E, Langlois D (1989) Volatile compounds produced by the lignilolytic fungus Phlebia radiata Fr. (Basidiomycotes) and influence of strain specificity on the odorous profile. J Biotechnol 10:303–308CrossRefGoogle Scholar
  53. Halls SC, Gang DR, Weber DJ (1994) Seasonal variation in volatile secondary compounds of Chrysothamnus nauseosus (Pallas) Britt.; Asteraceae ssp. hololeucus (Gray) Hall. & Clem. influences herbivory. J Chem Ecol 20:2055–2063CrossRefGoogle Scholar
  54. Hanssen H-P (1982) Sesquiterpene hydrocarbons from Lentinus lepideus. Phytochemistry 21:1159–1160CrossRefGoogle Scholar
  55. Hanssen H-P (1985a) Sesquiterpenes and other volatile metabolites from liquid cultures of Ceratocystis populina (Ascomycota)-essential oil compounds from fungi. In: Baerheim Svendsen A, Scheffer JIC (eds) Essential oils and aromatic plants. Martinus Nyhoff/Dr W. Junk Publishers, Dordrecht, pp 173–177Google Scholar
  56. Hanssen H-P (1985b) Sesquiterpene alcohols from Lentinus lepideus. Phytochemistry 24:1293–1294CrossRefGoogle Scholar
  57. Hanssen H-P (2002) Von einer Laborspielerei zur Biotechnologie. Pharmazeutische Zeitung, issue 47.
  58. Hanssen H-P, Abraham W-R (1986) Volatiles from liquid cultures of Lentinellus cochleatus (Basidiomycotina). Z Naturforsch 41c:959–962Google Scholar
  59. Hanssen H-P, Abraham W-R (1988) Sesquiterpene alcohols with novel skeletons from the fungus Ceratocystis piceae (Ascomycotina). Tetrahedron 44:2175–2180CrossRefGoogle Scholar
  60. Hanssen H-P, Sinnwell V, Abraham W-R (1986a) Volatile fragrance compounds from the fungus Gloeophyllum odoratum (Basidiomycotina). Z Naturforsch 41c:825–829Google Scholar
  61. Hanssen H-P, Sprecher E, Abraham W-R (1986b) 6-Protoilludene, the major volatile metabolite from Ceratocystis piceae liquid cultures. Phytochemistry 25:1979–1980CrossRefGoogle Scholar
  62. Hanssen H-P, Sprecher E, Klingenberg A (1986c) Screening for volatile terpenes in yeasts. In: Brunke H (ed) Progress in essential oil research. Walter de Gruyter, Berlin, pp 395–403Google Scholar
  63. Harborne JB (2001) Twenty-five years of chemical ecology. Nat Prod Rep 18:361–379PubMedCrossRefGoogle Scholar
  64. Hawksworth DC, Rossman AY (1987) Where are the undescribed fungi? Phytopathology 87:888–891CrossRefGoogle Scholar
  65. Hellwig V, Dasenbrock J, Schumann ST, Steglich W, Leonhardt K, Anke T (1998) New triquinane-type sesquiterpenoids from Macrocystidia cucumis (Basidiomycetes). Eur J Org Chem 73–79Google Scholar
  66. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüssler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547PubMedCrossRefGoogle Scholar
  67. Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67:2982–2992PubMedCrossRefGoogle Scholar
  68. Hubbell SP, Wiemer DF, Adejare A (1983) An antifungal terpenoid defends a neotropical tree (Hymenaea) against attack by fungus-growing ants (Atta). Oecologia 60:321–327CrossRefGoogle Scholar
  69. Hynes J, Müller CT, Jones TH, Boddy L (2007) Changes in volatile production during the course of fungal mycelial interactions between Hypholoma fasciculare and Resinicium bicolor. J Chem Ecol 33:43–57PubMedCrossRefGoogle Scholar
  70. Inoue Y, Shiraishi A, Hada T, Hirose K, Hamashima H, Shimada J (2004) The antibacterial effects of terpene alcohols on Staphylococcus aureus and their mode of action. FEMS Microbiol Lett 237:325–331PubMedGoogle Scholar
  71. Jabra-Rizk MA, Meiller TF, James CE, Shirtliff ME (2006) Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob Agents Chemother 50:1463–1469PubMedCrossRefGoogle Scholar
  72. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox C, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold EA, Amtoft A, Stajich JE, Hosaka K, Sung G-H, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüßler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton J, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin D, Spatafora J, Vilgalys R (2006) Reconstructing the early evolution of the fungi using a six gene phylogeny. Nature 443:818–822PubMedCrossRefGoogle Scholar
  73. Jelen HH (2002) Volatile sesquiterpene hydrocarbons characteristic for Penicillium roqueforti strains producing PR toxin. J Agric Food Chem 50:6569–6574PubMedCrossRefGoogle Scholar
  74. Jelen H, Latus-Zietkiewicz D, Wasowicz E, Kaminski E (1997) Trichodiene as a volatile marker for trichothecenes biosynthesis. J Microbiol Methods 31:45–49CrossRefGoogle Scholar
  75. Jelén HH, Mirocha CJ, Wasowicz E, Kamiński E (1995) Production of volatile sesquiterpenes by Fusarium sambucinum strains with different abilities to synthesize trichothecenes. Appl Environ Microbiol 61:3815–3820PubMedGoogle Scholar
  76. Karlshøj K, Nielsen PV, Larsen TO (2007) Differentiation of closely related fungi by electronic nose analysis. J Food Sci 72:M187–M192PubMedCrossRefGoogle Scholar
  77. Koster B, Wong B, Straus N, Malloch D (2009) A multi-gene phylogeny for Stachybotrys evidences lack of trichodiene synthase (tri5) gene for isolates of one of three intrageneric lineages. Mycol Res 113:877–886PubMedCrossRefGoogle Scholar
  78. Kühne B, Hanssen H-P, Abraham W-R, Wray V (1991) A phytotoxic eremophilane ether from Hypomyces odoratus (Ascomycotina). Phytochemistry 30:1463–1466CrossRefGoogle Scholar
  79. Kunert G, Otto S, Röse USR, Gershenzon J, Weisser WW (2005) Alarm pheromone mediates production of winged dispersal morphs in aphids. Ecol Lett 8:596–603CrossRefGoogle Scholar
  80. Lago JH, Soares MG, Batista-Pereira LG, Silva MF, Corrêa AG, Fernandes JB, Vieira PC, Roque NF (2006) Volatile oil from Guarea macrophylla ssp. tuberculata: seasonal variation and electroantennographic detection by Hypsipyla grandella. Phytochemistry 67:589–594PubMedCrossRefGoogle Scholar
  81. Langford ML, Atkin AL, Nickerson KW (2009) Cellular interactions of farnesol, a quorum-sensing molecule produced by Candida albicans. Future Microbiol 4:1353–1362PubMedCrossRefGoogle Scholar
  82. Larsen TO (1998) Volatile flavour production by Penicillium caseifulvum. Int Dairy J 8:883–887CrossRefGoogle Scholar
  83. Lin H, Ji-Kai L (2002) The first humulene type sesquiterpene from Lactarius hirtipes. Z Naturforsch 57c:571–574Google Scholar
  84. Lindequist U, Niedermeyer THJ, Jülich W-D (2005) The pharmacological potential of mushrooms. Evid Based Complement Alternat Med 2:285–299PubMedCrossRefGoogle Scholar
  85. Liu J-K (2007) Secondary metabolites from higher fungi in China and their biological activity. Drug Disc Ther 1:94–103Google Scholar
  86. Liu X, Pawliszyn R, Wang L, Pawliszyn J (2004) On-site monitoring of biogenic emissions from Eucalyptus dunnii leaves using membrane extraction with sorbent interface combined with a portable gas chromatograph system. The Analyst 129:55–62PubMedCrossRefGoogle Scholar
  87. Lorek J, Pöggeler S, Weide MR, Breves R, Bockmühl DP (2008) Influence of farnesol on the morphogenesis of Aspergillus niger. J Basic Microbiol 48:99–103PubMedCrossRefGoogle Scholar
  88. Lundgren L, Bergström G (1975) Wing scents and scent-released phases in the courtship behavior of Lycaeides argyrognomon (Lepidoptera: Lycaenidae). J Chem Ecol 1:399–412CrossRefGoogle Scholar
  89. Malherbe S, Watts V, Nieuwoudt HH, Bauer FF, du Toit M (2009) Analysis of volatile profiles of fermenting grape must by headspace solid-phase dynamic extraction coupled with gas chromatography-mass spectrometry (HS-SPDE GC-MS): novel application to investigate problem fermentations. J Agric Food Chem 57:5161–5166PubMedCrossRefGoogle Scholar
  90. Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515PubMedCrossRefGoogle Scholar
  91. Martins M, Henriques M, Azeredo J, Rocha SM, Coimbra MA, Oliveira R (2007) Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells. Eukaryot Cell 6:2429–2436PubMedCrossRefGoogle Scholar
  92. Matysik S, Herbarth O, Mueller A (2008) Determination of volatile metabolites originating from mould growth on wall paper and synthetic media. J Microbiol Meth 75:182–187CrossRefGoogle Scholar
  93. McAlester G, O’Gara F, Morrissey JP (2008) Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans. J Med Microbiol 57:563–569PubMedCrossRefGoogle Scholar
  94. Mehta G, Karra SR (1991) Polyquinanes from (R)-(+)-limonene. enantioselective total synthesis of the novel tricyclic sesquiterpene (−)-ceratopicanol. J Chem Soc Chem Commun 1367–1368Google Scholar
  95. Minerdi D, Bossi S, Gullino ML, Garibaldi A (2009) Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol 11:844–854PubMedCrossRefGoogle Scholar
  96. Minerdi D, Bossi S, Maffei ME, Gullino ML, Garibaldi A (2011) Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol Ecol 76:342–351. doi: 10.1111/j.1574-6941.2011.01051.x. (Epub ahead of print)
  97. Morales DK, Hogan DA (2010) Candida albicans interactions with bacteria in the context of human health and disease. PLoS Pathog 6:e1000886PubMedCrossRefGoogle Scholar
  98. Mueller GM, Schmit JP (2007) Fungal biodiversity: what do we know? What can we predict? Biodivers Conserv 16:1–5CrossRefGoogle Scholar
  99. Nair MSR, Anchel M (1973) Metabolic products of Clitocybe illudens. X. (+)-Torreyol. Lloydia 36:106Google Scholar
  100. Nielsen GD, Larsen ST, Olsen O, Løvik M, Poulsen LK, Glue C, Wolkoff P (2007) Do indoor chemicals promote development of airway allergy? Indoor Air 17:236–255PubMedCrossRefGoogle Scholar
  101. Nishino C, Washio H, Tsuzuki K, Bowers WS, Tobin TR (1977) Electroantennogram responses to a stimulant, T-cadinol, in the American cockroach. Agric Biol Chem 41:405–406CrossRefGoogle Scholar
  102. Nozoe S, Machida Y (1972) The structures of trichodiol and trichodiene. Tetrahedron 28:5105–5111CrossRefGoogle Scholar
  103. Nozoe S, Kobayashi H, Morisaki N (1976a) Isolation of β-trans-bergamotene from Aspergillus fumigatus a fumagillin producing fungi. Tetrahedron Lett 17:4625–4626CrossRefGoogle Scholar
  104. Nozoe S, Furukawa J, Sankawa U, Shibata S (1976b) Isolation, structure and synthesis of hirsutene, a precursor hydrocarbon of coriolin biosynthesis. Tetrahedron Lett 17:195–198CrossRefGoogle Scholar
  105. Nozoe S, Kobayashi H, Urano S, Furukawa J (1977) Isolation of Δ6-protoilludene and the related alcohols. Tetrahedron Lett 18:1381–1384CrossRefGoogle Scholar
  106. Pasanen AL, Lappalainen S, Pasanen P (1996) Volatile organic metabolites associated with some toxic fungi and their mycotoxins. Analyst 121:1949–1953CrossRefGoogle Scholar
  107. Pestka JJ, Yike I, Dearborn DG, Ward MD, Harkema JR (2008) Stachybotrys chartarum, trichothecene mycotoxins, and damp building-related illness: new insights into a public health enigma. Toxicol Sci 104:4–26PubMedCrossRefGoogle Scholar
  108. Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311:808–811PubMedCrossRefGoogle Scholar
  109. Polizzi V, Fazzini L, Adams A, Picco AM, De Saeger S, Van Peteghem C, De Kimpe N (2011) Autoregulatory properties of (+)-thujopsene and influence of environmental conditions on its production by Penicillium decumbens. Microb Ecol. doi: 10.1007/s00248-011-9905-9
  110. Qina X-D, Donga Z-J, Liu J-K (2006) Two new compounds from the ascomycete Daldinia concentrica. Helv Chim Acta 89:450–455CrossRefGoogle Scholar
  111. Ramage G, Saville SP, Wickes BL, López-Ribot JL (2002) Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68:5459–5463PubMedCrossRefGoogle Scholar
  112. Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737PubMedCrossRefGoogle Scholar
  113. Rasser F, Anke T, Sterner O (2000) Secondary metabolites from a Gloeophyllum species. Phytochemistry 54:511–516PubMedCrossRefGoogle Scholar
  114. Raudaskoski M, Kothe E (2010) Basidiomycete mating type genes and pheromone signaling. Eukaryot Cell 9:847–859PubMedCrossRefGoogle Scholar
  115. Risticevic S, Niri VH, Vuckovic D, Pawliszyn J (2009) Recent developments in solid-phase microextraction. Anal Bioanal Chem 393:781–795PubMedCrossRefGoogle Scholar
  116. Rohlfs M, Churchill AC (2011) Fungal secondary metabolites as modulators of interactions with insects and other arthropods. Fungal Genet Biol 48:23–34PubMedCrossRefGoogle Scholar
  117. Rösecke J, Pietsch M, König WA (2000) Volatile constituents of wood-rotting basidiomycetes. Phytochemistry 54:747–750PubMedCrossRefGoogle Scholar
  118. Scher JM, Speakman JB, Zapp J, Becker H (2004) Bioactivity guided isolation of antifungal compounds from the liverwort Bazzania trilobata (L.) S.F. Gray. Phytochemistry 65:2583–2588PubMedCrossRefGoogle Scholar
  119. Schnürer J, Olsson J, Börjesson T (1999) Fungal volatiles as indicators of food and feeds spoilage. Fungal Genet Biol 27:209–217PubMedCrossRefGoogle Scholar
  120. Semighini CP, Hornby JM, Dumitru R, Nickerson KW, Harris SD (2006) Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol Microbiol 59:753–764PubMedCrossRefGoogle Scholar
  121. Semighini CP, Murray N, Harris S (2008) Inhibition of Fusarium graminearum growth and development by farnesol. FEMS Microbiol Lett 279:259–264PubMedCrossRefGoogle Scholar
  122. Smedsgaard J, Nielsen J (2005) Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Bot 56:273–286PubMedCrossRefGoogle Scholar
  123. Sprecher E (1963) Über ätherisches Öl aus Pilzen. Planta Med 11:119–127CrossRefGoogle Scholar
  124. Sprecher E, Kubeczka K-H, Ratschko M (1975) Flüchtige Terpene in Pilzen. Arch Pharm 308:843–851CrossRefGoogle Scholar
  125. Steele CL, Crock J, Bohlmann J, Croteau R (1998) Sesquiterpene synthases from grand fir (Abies grandis). J Biol Chem 273:2078–2089PubMedCrossRefGoogle Scholar
  126. Sterner O, Bergman R, Kihlberg J, Wickberg B (1985) The sesquiterpenes of Lactarius vellereus and their role in a proposed chemical defense system. J Nat Prod 48:279–288CrossRefGoogle Scholar
  127. Sterner O, Bergendorff O, Bocchio F (1989) The isolation of a guaiane sesquiterpene from fruit bodies of Lactarius sanguifluus. Phytochemistry 28:2501–2502CrossRefGoogle Scholar
  128. Stinson M, Ezra D, Hess WM, Sears J, Strobel G (2003) An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci 165:913–922CrossRefGoogle Scholar
  129. Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods 81:187–193PubMedCrossRefGoogle Scholar
  130. Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950PubMedGoogle Scholar
  131. Sunesson A-L, Vaes WHJ, Nilsson C-A, Blomquist G, Andersson B, Carlson R (1995) Identification of volatile metabolites from five fungal species cultivated on two media. Appl Environ Microbiol 61:2911–2918PubMedGoogle Scholar
  132. Tkachev AV (1987) The chemistry of caryophyllene and related compounds. Chem Nat Comp 23:393–412CrossRefGoogle Scholar
  133. Townsend BJ, Poole A, Blake CJ, Llewellyn DJ (2005) Antisense suppression of a (1)-d-cadinene synthase gene in cotton prevents the induction of this defense response gene during bacterial blight infection but not its constitutive expression. Plant Physiol 138:516–528PubMedCrossRefGoogle Scholar
  134. Tursch B, Braekman JC, Daloze D, Fritz P, Kelecon A, Karlsson R, Losman D (1974) Chemical studies of marine invertebrates. VIII. Africanol, an unusual sesquiterpene from Lemalia africana (Coelenterata, Octocorallia, Alcyonacea). Tetrahedron Lett 9:747–750Google Scholar
  135. Unsicker SB, Kunert G, Gershenzon J (2009) Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol 12:479–485PubMedCrossRefGoogle Scholar
  136. Urbasch I, Kühne B, Hanssen H-P, Abraham W-R (1991) Fungicidal activity of hypodoratoxide from Hypomyces odoratus (Ascomycotina). Planta Medica 57:(Suppl 2):A18Google Scholar
  137. Van Eijk GW, Roeijmans HJ, Verwiel PEJ (1984) Isolation and identification of the sesquiterpenoid (+)-torreyol from Xylobolus frustulatus. Exp Mycol 8:273–275CrossRefGoogle Scholar
  138. Van Lancker F, Adams A, Delmulle B, De Saeger S, Moretti A, Van Peteghem C, De Kimpe N (2008) Use of headspace SPME-GC-MS for the analysis of the volatiles produced by indoor molds grown on different substrates. J Environ Monit 10:1127–1133PubMedCrossRefGoogle Scholar
  139. Vandenkoornhuyse P, Baldauf SL, Leyval C, Straczek J, Young JP (2002) Extensive fungal diversity in plant roots. Science 295:2051PubMedCrossRefGoogle Scholar
  140. Wang L, Lord H, Morehead R, Dorman F, Pawliszyn J (2002) Sampling and monitoring of biogenic emissions by Eucalyptus leaves using membrane extraction with sorbent interface (MESI). J Agric Food Chem 50:6281–6286Google Scholar
  141. Wasser SP (2011) Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl Microbiol Biotechnol 89:1323–1332PubMedCrossRefGoogle Scholar
  142. Westwater C, Balish E, Schofield DA (2005) Candida albicans-conditioned medium protects yeast cells from oxidative stress: a possible link between quorum sensing and oxidative stress resistance. Eukaryot Cell 4:1654–1661PubMedCrossRefGoogle Scholar
  143. Wilkins K (2000) Volatile sesquiterpenes from Stachybotrys chartarum. Environ Sci Pollut Res 7:77–78CrossRefGoogle Scholar
  144. Wilkins K, Larsen K, Simkus M (2000) Volatile metabolites from mold growth on building materials and synthetic media. Chemosphere 41:437–446PubMedCrossRefGoogle Scholar
  145. Wilkins K, Nielsen KF, Din SU (2003) Patterns of volatile metabolites and nonvolatile trichothecenes produced by isolates of Stachybotrys, Fusarium, Trichoderma, Trichothecium and Memnoniella. Environ Sci Pollut Res 10:162–166CrossRefGoogle Scholar
  146. Winter REK, Dorn F, Arigoni D (1990) The structure of helminthogermacrene. J Org Chem 45:4786–4789CrossRefGoogle Scholar
  147. Wu SM, Krings U, Zorn H, Berger RG (2005) Volatile compounds from the fruiting bodies of beefsteak fungus Fistulina hepatica (Schaeffer: Fr.) Fr. Food Chem 92:221–226CrossRefGoogle Scholar
  148. Wu S, Zorn H, Krings U, Berger RG (2007) Volatiles from submerged and surface-cultured beefsteak fungus, Fistulina hepatica. Flavour Fragr J 22:53–60CrossRefGoogle Scholar
  149. Xu D, Sheng Y, Zhou Z-Y, Liu R, Leng Y, Liu J-K (2009) Sesquiterpenes from cultures of the Basidiomycete Clitocybe conglobata and their 11β-hydroxysteroid dehydrogenase inhibitory activity. Chem Pharm Bull 57:433–435PubMedCrossRefGoogle Scholar
  150. Yuan JS, Köllner TG, Wiggins G, Grant J, Degenhardt J, Chen F (2008) Molecular and genomic basis of volatile-mediated indirect defense against insects in rice. Plant J 55:491–503PubMedCrossRefGoogle Scholar
  151. Zeringue HJ, Bhatnagar D, Cleveland TE (1993) C(15)H(24) Volatile compounds unique to aflatoxigenic strains of Aspergillus flavus. Appl Environ Microbiol 59:2264–2270PubMedGoogle Scholar
  152. Zheng W, Miao K, Liu Y, Zhao Y, Zhang M, Pan S, Dai Y (2010) Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production. Appl Microbiol Biotechnol 87:123712–123754Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Helmholtz Center for Infection Research, Chemical MicrobiologyBraunschweigGermany

Personalised recommendations