Anderson L, Schmieder GJ, Werschler WP et al (2009) Randomized, double-blind, double-dummy, vehicle-controlled study of ingenol mebutate gel 0.025% and 0.05% for actinic keratosis. J Am Acad Dermatol 60:934–943
Article
PubMed
Google Scholar
Bakkali F, Averbeck S, Averbeck D et al (2008) Biological effects of essential oils: a review. Food Chem Toxicol 46:446–475
Article
CAS
PubMed
Google Scholar
Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods: a review. Int J Food Microbiol 94:223–253
Article
CAS
PubMed
Google Scholar
Calcabrini A, Stringaro A, Toccacieli L et al (2004) Terpinen-4-ol, the main component of Melaleuca alternifolia (tea tree) oil inhibits the in vitro growth of human melanoma cells. J Invest Dermatol 122:349–360
Article
CAS
PubMed
Google Scholar
Carneiro de Barros J, Lúcia da Conceição M, Gomes Neto NJ et al (2009) Interference of Origanum vulgare L. essential oil on the growth and some physiological characteristics of Staphylococcus aureus strains isolated from foods. LWT Food Sci Technol 42:1139–1143
Article
CAS
Google Scholar
Challacombe JM, Suhrbier A, Parsons PG et al (2006) Neutrophils are a key component of the antitumor efficacy of topical chemotherapy with ingenol-3-angelate. J Immunol 177:8123–8132
Article
CAS
PubMed
Google Scholar
Chaudhary SC, Alam MS, Siddiqui MS et al (2009) Perillyl alcohol attenuates Ras-ERK signaling to inhibit murine skin inflammation and tumorigenesis. Chem Biol Interact 179:145–153
Article
CAS
PubMed
Google Scholar
Clark SS (2006) Perillyl alcohol induces c-Myc-dependent apoptosis in Bcr/Abl-transformed leukemia cells. Oncology 70:13–18
Article
CAS
PubMed
Google Scholar
Cox SD, Mann CM, Markham JL et al (2000) The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 88:170–175
Article
CAS
PubMed
Google Scholar
da Fonseca CO, Schwartsmann G, Fischer J et al (2008) Preliminary results from a phase I/II study of perillyl alcohol intranasal administration in adults with recurrent malignant gliomas. Surg Neurol 70:259–267
Article
PubMed
Google Scholar
da Fonseca CO, Simao M, Lins IR et al (2010) Efficacy of monoterpene perillyl alcohol upon survival rate of patients with recurrent glioblastoma. J Cancer Res Clin Oncol 137:287–293
Article
PubMed
Google Scholar
Devi KP, Nisha SA, Sakthivel R et al (2010) Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J Ethnopharmacol 130:107–115
Article
CAS
PubMed
Google Scholar
Di Pasqua R, Mamone G, Ferranti P et al (2010) Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics 10:1040–1049
CAS
PubMed
Google Scholar
Echeverrigaray S, Michelim L, Delamare APL et al (2008) The effect of monoterpenes on swarming differentiation and haemolysin activity in Proteus mirabilis. Molecules 13:3107–3116
Article
CAS
PubMed
Google Scholar
Elegbede JA, Flores R, Wang RC (2003) Perillyl alcohol and perillaldehyde induced cell cycle arrest and cell death in BroTo and A549 cells cultured in vitro. Life Sci 73:2831–2840
Article
CAS
PubMed
Google Scholar
Fernandes J, Da Fonseca CO, Teixeira A et al (2005) Perillyl alcohol induces apoptosis in human glioblastoma multiforme cells. Oncol Rep 13:943–947
CAS
PubMed
Google Scholar
Fisher K, Phillips C (2009) The mechanism of action of a citrus oil blend against Enterococcus faecium and Enterococcus faecalis. J Appl Microbiol 106:1343–1349
Article
CAS
PubMed
Google Scholar
Fu YJ, Chen LY, Zu YG et al (2009) The antibacterial activity of clove essential oil against Propionibacterium acnes and its mechanism of action. Arch Dermatol 145:86–88
PubMed
Google Scholar
Greay SJ, Ireland DJ, Kissick HT et al (2010a) Inhibition of established subcutaneous murine tumour growth with topical Melaleuca alternifolia (tea tree) oil. Cancer Chemother Pharmacol 66:1095–1102
Article
CAS
PubMed
Google Scholar
Greay SJ, Ireland DJ, Kissick HT et al (2010b) Induction of necrosis and cell cycle arrest in murine cancer cell lines by Melaleuca alternifolia (tea tree) oil and terpinen-4-ol. Cancer Chemother Pharmacol 65:877–888
Article
CAS
PubMed
Google Scholar
Hammer KA, Carson CF (2011) Antibacterial and antifungal activities of essential oils. In: Thormar H (ed) Lipids and essential oils as antimicrobial agents. Wiley, West Sussex
Google Scholar
Hammer KA, Carson CF, Riley TV (2008) Frequencies of resistance to Melaleuca alternifolia (tea tree) oil and rifampicin in Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis. Int J Antimicrob Agents 32:170–173
Article
CAS
PubMed
Google Scholar
Inoue Y, Shiraishi A, Hada T et al (2004) The antibacterial effects of terpene alcohols on Staphylococcus aureus and their mode of action. FEMS Microbiol Lett 237:325–331
CAS
PubMed
Google Scholar
Lambert RJW, Skandamis PN, Coote PJ et al (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462
Article
CAS
PubMed
Google Scholar
Li L, Shukla S, Lee A et al (2010) The skin cancer chemotherapeutic agent ingenol-3-angelate (PEP005) is a substrate for the epidermal multidrug transporter (ABCB1) and targets tumor vasculature. Cancer Res 70:4509–4519
Article
PubMed Central
CAS
PubMed
Google Scholar
Ogbourne SM, Suhrbier A, Jones B et al (2004) Antitumor activity of 3-ingenyl angelate: plasma membrane and mitochondrial disruption and necrotic cell death. Cancer Res 64:2833–2839
Article
CAS
PubMed
Google Scholar
Oussalah M, Caillet S, Lacroix M (2006) Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157:H7 and Listeria monocytogenes. J Food Prot 69:1046–1055
PubMed
Google Scholar
Papadopoulos CJ, Carson CF, Chang BJ et al (2008) Role of the MexAB-OprM efflux pump of Pseudomonas aeruginosa in tolerance to tea tree (Melaleuca alternifolia) oil and its monoterpene components terpinen-4-ol, 1, 8-cineole, and alpha-terpineol. Appl Environ Microbiol 74:1932–1935
Article
PubMed Central
CAS
PubMed
Google Scholar
Paparella A, Taccogna L, Aguzzi I et al (2008) Flow cytometric assessment of the antimicrobial activity of essential oils against Listeria monocytogenes. Food Control 19:1174–1182
Article
CAS
Google Scholar
Qiu J, Feng H, Lu J et al (2010) Eugenol reduces the expression of virulence-related exoproteins in Staphylococcus aureus. Appl Environ Microbiol 76:5846–5851
Article
PubMed Central
CAS
PubMed
Google Scholar
Siller G, Gebauer K, Welburn P et al (2009) PEP005 (ingenol mebutate) gel, a novel agent for the treatment of actinic keratosis: results of a randomized, double-blind, vehicle-controlled, multicentre, phase IIa study. Australas J Dermatol 50:16–22
Article
PubMed
Google Scholar
Stratton SP, Alberts DS, Einspahr JG et al (2010) A phase 2a study of topical perillyl alcohol cream for chemoprevention of skin cancer. Cancer Prev Res (Phila) 3:160–169
Article
CAS
Google Scholar
Wiseman DA, Werner SR, Crowell PL (2007) Cell cycle arrest by the isoprenoids perillyl alcohol, geraniol, and farnesol is mediated by p21(Cip1) and p27(Kip1) in human pancreatic adenocarcinoma cells. J Pharmacol Exp Ther 320:1163–1170
Article
CAS
PubMed
Google Scholar
Xu J, Zhou F, Ji BP et al (2008) The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett Appl Microbiol 47:174–179
Article
CAS
PubMed
Google Scholar
Yeruva L, Pierre KJ, Elegbede A et al (2007) Perillyl alcohol and perillic acid induced cell cycle arrest and apoptosis in non small cell lung cancer cells. Cancer Lett 257:216–226
Article
CAS
PubMed
Google Scholar
Yeruva L, Hall C, Elegbede JA et al (2010) Perillyl alcohol and methyl jasmonate sensitize cancer cells to cisplatin. Anticancer Drugs 21:1–9
Article
PubMed Central
CAS
PubMed
Google Scholar