Phytochemistry Reviews

, Volume 9, Issue 2, pp 303–314 | Cite as

Lichens as a potential natural source of bioactive compounds: a review

  • Vertika Shukla
  • Geeta Pant Joshi
  • M. S. M. Rawat
Article

Abstract

Biological activity of material whether known in folk medicine or observed in planned screening program has been the starting point in the drug research. The general pattern is the isolation of active principles, elucidation their structures, followed by attempts for modulation of its activity potential by chemical modification. Lichens are valuable plant resources and are used as medicine, food, fodder, perfume, spice, dyes and for miscellaneous purposes throughout the world. Lichens are well known for the diversity of secondary metabolites that they produce. Compounds isolated from various lichen species have been reported to display diverse biological activities. Here we review the medicinal efficacy of lichen substances, which intends to explore the pharmaceutical potential of lichen substances.

Keywords

Lichen Lichen substances Natural product Bioactivity 

References

  1. Abo-Khatwa AN, Al-Robai AA, Al-Jawhari DA (1996) Lichen acids as uncouplers of oxidative phosphorylation of mouse liver mitochondria. Nat Toxins 4:96–102PubMedGoogle Scholar
  2. Ahad AM, Goto Y, Kiuchi F, Tsuda Y, Kondo K, Sato T (1991) Nematocidal principles in “oakmoss absolute” and nematocidal activity of 2, 4-dihydroxybenzoates. Chem Pharm Bull 39:1043–1046PubMedGoogle Scholar
  3. Armaleo D (1995) Factors affecting depside and depsidone biosynthesis in a cultured lichen fungus. Crypt Bot 5:14–21Google Scholar
  4. Asahina Y, Shibata S (1954) Chemistry of lichen substances. Japan Society for the Promotion of Science, TokyoGoogle Scholar
  5. Aslan A, Güllüce M, Sökmen M, Adιgüzel A, Sahin F, Özkan H (2006) Antioxidant and Antimicrobial Properties of the Lichens Cladonia foliacea., Dermatocarpon miniatum., Everinia divaricata., Evernia prunastri., and Neofuscella pulla. Pharmaceutical Biol 44(4):247–252Google Scholar
  6. Bayir Y, Odabasoglu F, Cakir A, Aslan A, Suleyman H, Halici M, Kazaz C (2006) The inhibition of gastric mucosal lesion, oxidative stress and neutrophil- infiltration in rats by the lichen constituent diffractaic acid. Phytomedicine 13:584–590PubMedGoogle Scholar
  7. Begora MD, Fahselt D (2001) Usnic acid and atranorin concentrations in lichens in relation to bands of UV irradiance. Bryologist 104:134–140Google Scholar
  8. Boustie J, Grube M (2005) Lichens—a promising source of bioactive secondary metabolites. Plant Genetic Resources 3(2):273–287Google Scholar
  9. Brunauer G, Hager A, Krautgartner WD, Turk R, Stocker-Wörgötter E (2006) Experimental studies on Lecanora rupicola (L.) Zahlbr.: chemical and microscopical investigations of the mycobiont and re-synthesis stages. Lichenologist 38:577–585Google Scholar
  10. Brunauer G, Hager A, Grube M, Turk R, Stocker-Wörgötter E (2007) Alterations in secondary metabolism of aposymbiotically grown mycobionts of Xanthoria elegans and cultured resynthesis stages. Plant Physiol Biochem 45:146–151PubMedGoogle Scholar
  11. Burton GW, Doba T, Gabe EJ, Hughes L, Lee FL, Prasad L, Ingold KU (1985) Autoxidation of biological molecules. 4. Maximizing the antioxidant activity of phenols. J Am Chem Soc 107:7053Google Scholar
  12. Cardarelli M, Serino G, Campanella L, Ercole P, De Cicco Nardone F, Alesiani O, Osiello F (1997) Antimitotic effects of usnic acid on different biological systems. Cell Mol Life Sci 53:667–672PubMedGoogle Scholar
  13. Cohen PA, Hudson JB, Towers GHN (1996) Antiviral activities of anthraquinones, bianthrones and hypericin derivatives from lichens. Experientia 52:180–183PubMedGoogle Scholar
  14. Correché ER, Carrasco M, Giannini F, Piovano M, Garbarino J, Enriz D (2002) Cytotoxic screening activity of secondary lichen metabolites. Act Farm Bon 21:273–278Google Scholar
  15. Correché ER, Enriz RD, Piovano M, Garbarino J, Gomez-Lechon MJ (2004) Cytotoxic and apoptotic effects on hepatocytes of secondary metabolites obtained from lichens. Alter Lab Animals 32:605–615Google Scholar
  16. Cuellar M, Quilhot W, Rubio C, Soto C, Espinoza L, Carrasco H (2008) Phenolics, depsides, triterpenes from Chilean lichen Pseudophellaria nudata (Zahlbr.) D.J Galloway. J Chilean Chem Soc 53(3):1624–1625Google Scholar
  17. Culberson CF (1969) Chemical and botanical guide to lichen products. University of North Carolina Press, Chapel HillGoogle Scholar
  18. Culberson CF, Johnson A (1976) A standardized two dimensional thin-layer chromatographic method for lichen products. J Chromatogr 128:253–259Google Scholar
  19. Cuny D, Van Haluwyn C, Shirali P, Zerimech F, Jerome L, Haguenoer JM (2004) Cellular impact of metal trace elements in terricolous lichen Diploschistis muscorum Scop.) R. Sant.–Identification of oxidative stress biomarkers. Water Air Soil Pollut 152:55–69Google Scholar
  20. Czeczuga B, Cifuentes B, Reynaud PA (1988) Carotenoids in lichens from the Canary Islands. Biochemical systematics and ecology. Biochem Sysemat Eco 16(2):117Google Scholar
  21. Dayan FE, Romagini JG (2001) Lichens as a potential source of pesticides. Pestic Outlook 12:229–232Google Scholar
  22. Dayan FE, Romagini JG (2002) Structural diversity of lichen metabolites and their potential for use. In: Upadhyaya R (ed) Advances in microbial toxin research and its biotechnological Exploration. Kluwer Academic/Plenum Publisher, New York, p 151Google Scholar
  23. Dembitsky VM, Bychek IA, Kashin AG (1992) Chemical constituents of some lichen species. J Hatt Bot Lab 255–262Google Scholar
  24. Duman DC, Aras S, Atakol O (2008) Determination of Usnic Acid Content in Some Lichen Species Found in Anatolia. J Appl Biol Sci 2(3):41–44Google Scholar
  25. Endo T, Takahagi T, Kinoshita Y, Yamamoto Y, Sato F (1998) Inhibition of photosystem II of spinach by lichen-derived depsides. Biosci Biotech Biochem 62(10):2023Google Scholar
  26. Ernst-Russell MA, Elix JA, Chai CLL, Willis AC, Hamada N, Nash TH (1999) Hybocarpone, a novel cytotoxic naphthazarin derivative from mycobiont cultures of the lichen Lecanora hybocarpa. Tetrahedron Lett 40:6321–6324Google Scholar
  27. Falk A, Green TK, Barboza P (2008) Quantitative determination of secondary metabolites in Cladina stellaris and other lichens by micellar electrokinetic chromatography. J Chromatogr A 1182:141–144PubMedGoogle Scholar
  28. Feige GB, Lumbsch HT, Huneck S, Elix JA (1993) The identification of lichen products by a standardized high-performance liquid chromatographic method. J Chromatogr 646:417–427Google Scholar
  29. Goncalo S (1987) Contact sensitivity to lichens and Compositae in Frullania dermatitis. Cont Derm 16(2):84Google Scholar
  30. González-Tejero MR, Molero-Mesa J, Casares-Porcel M, Martinez Lirrola MJ (1995) New contributions to the ethnopharmacology of Spain. J Ethnopharmacol 45:157–165PubMedGoogle Scholar
  31. Gutkind GO, Martino V, Grana N, Coussio JD, Torres RA (1981) Screening of South American plants for biological activities. Antibacterial and antifungal activity. Fitoterapia 52(5):213Google Scholar
  32. Hager A, Brunauer G, Türk R, Stocker-Wörgötter E (2008) Production and Bioactivity of Common Lichen Metabolites as Exemplified by Heterodea muelleri (Hampe) Nyl. J Chem Ecol 34:113–120PubMedGoogle Scholar
  33. Halama P, Van Haluwyn C (2004) Antifungal activity of lichen extracts and lichenic acids. Bio Control 49:95–107Google Scholar
  34. Heide R, Provatoroff N, Taas PC, Valois J, Plasse N, Wobben HJ, Timmer R (1975) Qualitative analysis of the odoriferous fraction of oakmoss (Evernia prunastri (L.) Ach.). J Agri Food Chem 23(5):950–957Google Scholar
  35. Hickey BJ, Lumsden AJ, Cole ALJ, Walker JRL (1990) Antibiotic compounds from New Zealand plants: methyl haematomate, an anti-fungal agent from Stereocaulon ramulosum. New Zealand Nat Sci 17:49–53Google Scholar
  36. Hidalgo ME, Fernández E, Quilhot W, Lissi EA (1994) Antioxidant capacity of depsides and depsidones. Phytochemistry 37:1585–1587PubMedGoogle Scholar
  37. Hirabayashi K, Iwata S, Ito M, Shigeta S, Narui T, Mori T, Shibata S (1989) Inhibitory effect of a lichen polysaccharide sulfate, GE-3-S, on the replication of human immunodeficiency virus (HIV) in vitro. Chem Pharm Bull 37:2410–2412PubMedGoogle Scholar
  38. Hirayama T, Fujikawa F, Kasahara T, Otsuka M, Nishida N, Mizuno D (1980) Anti-tumor activities of some lichen products and their degradation products. Yaku Zasshi 100:755–759Google Scholar
  39. Huneck S (1999) The significance of lichens and their metabolites. Naturwissenschaften 86:559–570PubMedGoogle Scholar
  40. Huneck S (2001) New Results on the Chemistry of Lichen Substances. In: Herz W, Falk H, Kirby GW, Moore RE (eds) Progress in the chemistry of organic natural products. Springer. Wien, New York, p 81Google Scholar
  41. Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, Berlin, pp 1–493Google Scholar
  42. Huovinen K (1987) A standard HPLC method for the analysis of aromatic lichen in Progress and Problems in Lichenology in the Eighties. Bibliotheca Lichenolog 25:457–466Google Scholar
  43. Huovinen K, Lampero M (1989) Usnic acid as a mitotic inhibitor in the Allium Test. Planta Med 55:98Google Scholar
  44. Ingólfdóttir K (2002) Usnic acid. Phytochemistry 61:729–736Google Scholar
  45. Ingólfsdóttir K, Gissurarson SR, Müller-Jakic B, Breu W, Wagner H (1996) Inhibitory effects of the lichen metabolite lobaric acid on arachidonate metabolism in vitro. Phytomedicine 2:243–246Google Scholar
  46. Ingólfsdóttir K, Chung GAC, Skúlason VG, Gissurarson SR, Vilhelmsdóttir M (1998) Antimycobacterial activity of lichen metabolites in vitro. Eur J Pharm Sci 6:141–144PubMedGoogle Scholar
  47. Inoue H, Noguchi M, Kubo K (1987) Site of inhibition of usnic acid at oxisidizing side of photosystem 2 of spinach chloroplast. Photosynthetica 21:88Google Scholar
  48. Karthikaidevi G, Thirumaran G, Manivannan K, Anantharaman P, Kathiresan K, Balasubaramanian T (2009) Screening of the Antibacterial Properties of Lichen Roccella belangeriana (Awasthi) from Pichavaram Mangrove (Rhizophora Sp.). Adv Biol Res 3(3–4):127–131Google Scholar
  49. Kinoshita K, Matsubara H, Koyama K, Takahashi K, Youhimura I, Yamamoto Y, Higuchi M, Miura Y, Kinoshita K, Kawai K (1994) New phenolics from Protousnea species. J Hatt Bot Lab 75:359–364Google Scholar
  50. Kinoshita K, Saito D, Koyama K, Takahashi K, Sato Y, Okuyama E, Fujimoto H, Yamazaki M (2002) Monoamino oxidase inhibitory effects of some lichen compounds and their synthetic analogues. J Hatt Bot Lab 92:277–284Google Scholar
  51. Kirtikar KR, Basu BD (1984) Indian Medicinal Plants. Lalit Mohan Basu Publication 49, Leader Road, Allahabad, India, 4, 2760Google Scholar
  52. Kumar KCS, Müller K (1999a) Lichen metabolites. 1. Inhibitory action against leukotriene B4 biosynthesis by a nonredox mechanism. J Nat Pro 62:817–820Google Scholar
  53. Kumar KCS, Müller K (1999b) Lichen metabolites. 2. Antiproliferative and cytotoxic activity of gyrophoric, usnic, and diffractaic acid on human keratinocyte growth. J Nat Pro 62:821–823Google Scholar
  54. Kumar KCS, Müller K (1999c) Depsides as non-redox inhibitors of leukotriene B4 biosynthesis and HaCaT cell growth. 1. Novel analogs of barbatic and diffractaic acid. Eur J Med Chem 34:1035–1042Google Scholar
  55. Kumar KCS, Banskota AH, Manandhar MD (1995) Chemical constituents and antibacterial activity of Ramalina subcomplanata. J Nepal Chem Soc 14:28–35Google Scholar
  56. Kumar KCS, Banskota AH, Manandhar MD (1996) Isolation and identification of some chemical constituents of Parmelia nepalensis. Planta Med 62:93–94PubMedGoogle Scholar
  57. Kupchan SM, Kopperman HL (1975) L-Usnic acid: tumor inhibitor isolated from lichens. Experientia 31:625PubMedGoogle Scholar
  58. Lauterwein M, Oethinger M, Belsner K, Peters T, Marre R (1995) In vitro activities of the lichen secondary metabolites vulpinic acid, (+)-usnic acid, and (−)-usnic acid against aerobic and anaerobic microorganisms. Antimicrob Agents Chemother 39:2541–2543PubMedGoogle Scholar
  59. Legaz ME, Vicente C, Pedrosa MM (2001) Binding of lichen phenolics to purified secreted arginase from the lichen Evernia prunastri. J Biochem Mol Bio 34:194–200Google Scholar
  60. Lenton JR, Goad LJ, Goodwin TW (1973) Sterols of Xanthoria parietina evidence for 2 sterol pools and the identification of a novel 28 carbon triene erosta-5–8, 22–trien-3- beta -ol. Phytochemistry 12:1135–1140Google Scholar
  61. Maass WSG (1975) The phenolic constituents of Peltigera aphthosa. Phytochemistry 14:2487Google Scholar
  62. Manojlovic NT, Novakovic M, Stevovic V, Solujic S (2005) Antimicrobial metabolites from three serbian Caloplaca. Pharm Bio 43(8):718–722Google Scholar
  63. Matsubara H, Kinoshita K, Koyama K, Ye Y, Takahashi K, Yoshimura I, Yamamoto Y, Miura Y, Kinoshita Y (1997) Antityrosinase activity of lichen metabolites and their synthetic analogues. J Hatt Bot Lab 83:179–185Google Scholar
  64. Matsubara H, Miharu K, Kinoshita K, Koyama K, Ye Y, Takahashi K, Yoshimura I, Yamamoto Y, Miura Y, Kinoshita Y (1998) Inhibitory effect of lichen metabolites and their synthetic analogues on melanin biosynthesis in cultured B-16 mouse melanoma cells. Nat Pro Sci 4:161–169Google Scholar
  65. Mayer M, O’Neill MA, Murray KE, Santos-Magalhaes NS, Carneiro-Leao AM, Thompson AM, Appleyard VCL (2005) Usnic acid: a non-genotoxic compound with anti-cancer properties. Anti Canc Drugs 16:805–809Google Scholar
  66. McEvoy M, Nybakken L, Solhaug KA, Gauslaa Y (2006) UV triggers the synthesis of the widely distributed secondary compound usnic acid. Mycol Prog 5:221–229Google Scholar
  67. McEvoy M, Gauslaa Y, Solhaug KA (2007a) Changes in pools of depsidones and melanins, and their function, during growth and acclimation under contrasting natural light in the lichen Lobaria pulmonaria. New Phytol 175:271–282PubMedGoogle Scholar
  68. McEvoy M, Solhaug KA, Gauslaa Y (2007b) Solar radiation screening in usnic acid containing cortices of the lichen Nephroma arcticum. Symbiosis 43:143–150Google Scholar
  69. Min KR, Kim Y, Kang SH, Mar W, Lee KS, Ro JS, Lee SH, Kim Y (1996) Inhibitory Effects of Herbal Extracts on Cyclooxygenase Activity of Prostaglandin H2 Synthase from Sheep Seminal Vesicle. Nat Pro Sci 2(1):56Google Scholar
  70. Mischenko NP, Maximo OB, Krivoschekova OE, Stepanenko LS (1984) Depsidones and fatty acids of Parmelia stygia. Phytochemistry 23(1):180Google Scholar
  71. Miyagawa H, Hamada N, Sato M, Ueno T (1994) Pigments from the cultured lichen mycobionts of Graphis scripta and G. desquamescens. Phytochemistry 36:1319–1332PubMedGoogle Scholar
  72. Müller K (2001) Pharmaceutically relevant metabolites from lichens. Appl Microbiol Biotechnol 56:9–16PubMedGoogle Scholar
  73. Mustafa MR, Mohammad R, Din L, Wahid S (1995) Smooth muscle relaxant activities of compounds isolated from Malaysian medicinal plants on rat aorta and guinea-pig ileum. Phytotherapy Res 9(8):555Google Scholar
  74. Neamati N, Hong H, Mazumder A, Wang S, Sunder S, Nicklaus MC, Milne GWA, Proksa B, Pommier Y (1997) Depsides and depsidones as inhibitors of HIV-1 integrase: discovery of novel inhibitors through 3D database searching. J Med Chem 40:942–951PubMedGoogle Scholar
  75. Nishitoba Y, Nishimura H, Nishiyama T, Mizutami J (1987) Lichen acids, plant growth inhibitors from Usnea longissima. Phytochemistry 26:3181Google Scholar
  76. Nybakken L, Julkunen-Tiitto R (2006) UV-B induces usnic acid in reindeer lichens. Lichenologist 38:477–485Google Scholar
  77. Okuyama E, Umeyama K, Yamazaki M, Kinoshita Y, Yamamoto Y (1995) Usnic acid and diffractaic acid as analgesic and antipyretic components of Usnea diffracta. Planta Med 61:113–115PubMedGoogle Scholar
  78. Olafsdottir ES, Ingólfsdottir K (2001) Polysaccharides from lichens: structural characteristics and biological activity. Planta Med 67:99–208Google Scholar
  79. Olafsdottir ES, Omarsottir S, Paulsen B, Turcic K, Wagner H (1999) Rhamnopyranosylgalactofuranan, a new immunilogically active polysaccharide from Thamnolia subuliformis. Phytomed 6(4):273Google Scholar
  80. Otsuka H, Komiya T, Tsukumi M, Toyosato T, Fujimura H (1972) Studies on anti-inflammatory drugs. Anti-inflammatory activity of crude drugs and plants. (II). J Takeda Res Lab 31:247–254Google Scholar
  81. Papadopoulou P, Tzakou O, Vagias C, Kefalas P, Roussis V (2007) β-Orcinol Metabolites from the Lichen Hypotrachyna revolute. Molecules 12:997–1005PubMedGoogle Scholar
  82. Pengsuparp T, Cai L, Constant H, Fong HHS, Lin L-Z, Kinghorn AD, Pezzuto JM, Cordell GA, Ingólfsdóttir K, Wagner H, Hughes SH (1995) Mechanistic evaluation of new plant derived compounds that inhibit HIV-1 reverse transcriptase. J Nat Prot 58:1024–1031Google Scholar
  83. Perry NB, Benn MH, Brennan NJ, Burgess NJ, Ellis D, Galloway DJ, Lorimer SD, Tangney RS (1999) Antimicrobial, Antiviral and Cytotoxic Activity of New Zealand Lichens. Lichenologist 31:627–636Google Scholar
  84. Proksa B, Adamcova J, Sturdikova M, Fuska J. (1994) Metabolites of Pseudevernia furfuracea (L.) Zopf. and their inhibition potential of proteolytic enzymes. Pharmazie 49:282Google Scholar
  85. Proksa B, Sturdikova M, Na Pronayova, Liptaj T (1996) (–)-Usnic acid and its derivatives: Their inhibition of fungal growth and enzyme activity. Pharmazie 51:195–196Google Scholar
  86. Quilhot W, Didyk B, Gambaro V, Garbarino JA (1983) Studies on Chilean lichens VI. Depsidones from Erioderma chilense. J Nat Pro 46(6):942–943Google Scholar
  87. Rastogi RP, Mehrotra BN. (1991) Compendium of Indian medicinal plants. Central Drug Research Institute, Lucknow and Publication and Information Directorate, New Delhi, 1(1970–1979), 425Google Scholar
  88. Rastogi RP, Mehrotra BN. (1993). Central Drug Research Institute, Lucknow and Publication and Information Directorate, New Delhi, 2(1970–1979), 577Google Scholar
  89. Safe S, Safe LM, Maass WSG (1975) Sterols of three lichen species: Lobaria pulmonaria, Lobaria scrobiculata and Usnea longissima. Phytochemistry 14:1821–1823Google Scholar
  90. Saraswathy A, Rajendiran A, Sarada A, Purushothamam KK (1990) Lichen substances of Parmelia caperata. Indian Drugs 27(9):4602Google Scholar
  91. Schmeda-Hirschmann G, Tapia A, Lima B, Pertino M, Sortino M, Zacchino S, Rojas de Arias A, Feresin GF (2007) A new antifungal and antiprotozoal depside from the andean lichen Protousnea poeppigii. Phytotherapy Res 22(3):349–355Google Scholar
  92. Seo C, Choi Y, Ahn JS, Yim JH, Lee HK, Oh H (2009) PTP1B inhibitory effects of tridepside and related metabolites isolated from the Antarctic lichen Umbilicaria antarctica. J Enz Inhibit Med Chem 24(5):1133–1137Google Scholar
  93. Shibata S, Taguchi H (1967) Occurrence of isousnic acid in lichens with reference the “isodihydrousnic acid” derived from dihydrousnic acid. Tetrahedron Lett 48:867–4871Google Scholar
  94. Shukla V, Negi S, Rawat MSM, Pant G, Nagatsu A (2004) Chemical Study of Ramalina africana (Ramaliniaceae) from Garhwal Himalayas. Biochem Systemat Ecol 32:449–453Google Scholar
  95. Smriga M, Saito H, Shibata S, Narui T, Okuyama T, Nishiyama N (1996) PC-2, Linear Homoglucan with.ALPHA.-linkages, Peripherally Enhances the Hippocampal Long-Term Potentiation. Pharm Res 13(9):1322–1326PubMedGoogle Scholar
  96. Solhaug KA, Gauslaa Y, Nybakken L, Bilger W (2003) UV-induction of sun- creening pigments in lichens. New Phytol 158:91–100Google Scholar
  97. Stocker-Wörgötter E (1998) Culture methods and culture of selected mycobionts and photobionts as exemplified by South American lichens. In: Marcelli MP, Seaward MRD (eds) Lichenology in Latin Ameria: history, current knowledge and applications. CETESB, São Paulo, p 143Google Scholar
  98. Stocker-Wörgötter E (2001a) Experimental studies of the lichen symbiosis: DNA- analyses, differentiation and secondary chemistry of selected mycobionts, artificial resynthesis of two- and tripartite symbioses. Symbiosis 30:207–227Google Scholar
  99. Stocker-Wörgötter E (2001b) Experimental lichenology and microbiology of lichens: culture experiments, secondary chemistry of cultured mycobionts, resynthesis and thallus morphogenesis. The Bryologist 104:576–581Google Scholar
  100. Stocker-Wörgötter E. (2002a) Laboratory cultures of selected lichen fungi from Brazil and Chile. Mitteilungen des Instituts für Allgemeine Botanik, Hamburg 30:253–270Google Scholar
  101. Stocker-Wörgötter E (2002b) Analysis of secondary compounds in cultured mycobionts. In: Kranner I, Beckett RP, Varma AK (eds) Protocols in lichenology, culturing, biochemistry, ecophysiology and use in biomonitoring. Springer lab manual. Springer, Berlin, pp 296–306Google Scholar
  102. Stocker-Wörgötter E, Elix JA (2004) Experimental studies of lichenized fungi: formation of rare depsides and dibenzofuranes by the culture mycobiont of Bunodophoron patagonicum (Sphaerophoraceae, lichenized Ascomycota). Bibliotheca Lichenologica 88:659–669Google Scholar
  103. Subramanian SS, Ramakrishnan S (1964) Amino acids of Peltigera canina. Curr Sci 33:522Google Scholar
  104. Swanson A, Fahselt D (1997) Effects of ultraviolet on polyphenolics of Umbilicaria americana. Can J Bot 75:284–289Google Scholar
  105. Takahagi T, Ikezawa N, Endo T, Ifuku K, Yamamoto Y, Kinoshita Y, Takeshita S, Sato F (2006) Inhibition of PSII in atrazine-tolerant tobacco cells by barbatic acid, a lichenderived depside. Biosci Biotech Biochem 70:266–268Google Scholar
  106. Takai M, Uehara Y, Beisler JA (1979) Usnic acid derivatives as potential antineoplastic agents. J Med Chem 22:1380–1384PubMedGoogle Scholar
  107. Tay T, Türk AO, Yılmaz M, Türk H, Kıvanc M (2004) Evaluation of the antimicrobial activity of the acetone extract of the lichen Ramalina farinacea and its (+)-Usnic Acid, norstictic acid and protocetraric. Acid Constituents Z Naturforsch 59c:384–388Google Scholar
  108. Thompson MJ, Dutky SR, Patterson G-W, Gooden EL (1972) NMR spectra of C-24 isomeric sterols. Phytochemistry 2:1781Google Scholar
  109. Toledo Marante FJ, Castellano AG, Rosas FE, Aguiar JQ, Barrera JB (2003) Identification and quantitation of allelochemicals from lichen Lethariella canariensis: Phytotoxicity and antioxidative activity. J Chem Ecol 29(9):2049–2071PubMedGoogle Scholar
  110. Türk H, Yılmaz M, Tay T, Türk AO, Kıvanc M (2006) Antimicrobial activity of extracts of chemical races of the lichen Pseudevemia furfuracea and their physodic acid, chloroatranorin, atranorin, and olivetoric acid constituents. Z Naturforsch 61(7–8):499–507Google Scholar
  111. Upreti DK (1994) Lichens: The great Benefactors. Applied Botany Abstract 14(3):64–75Google Scholar
  112. Vartia KO (1973) Antibiotics in lichens. In: Ahmadjiian V, Hale ME (eds) The lichens, 3rd edn. Academic, New York, pp 547–561Google Scholar
  113. Wilson CO, Gisvold O, Delgado JN, Remers WA (1998) Textbook of organic medicinal and pharmaceutical chemistry, 10th edn. Lippincott-Raven, PhiladelphiaGoogle Scholar
  114. Wojciechowski ZA, Goad LJ, Goodwin TW (1973) Sterols of lichen Pseudevernia furfuracea. Phytochemistry 12(6):1433–1436Google Scholar
  115. Yamamoto Y, Miura Y, Kinoshita Y, Higuchi M, Murakami A, Ohigashi H, Koshimizu K (1995) Screening of tissue cultures and thalli of lichens and some of their active constituents for inhibition of tumor promoter-induced Epstein–Barr virus activation. Chem Pharm Bull 43:1388–1390PubMedGoogle Scholar
  116. Yamamoto Y, Kinoshita Y, Matsubara H, Kinoshita K, Koyama K, Takahashi K, Kurokawa T, Yoshimura I (1998) Screening of biological activities and isolation of biological active compounds from lichens. Recent Res Dev Phytochem 2:23–24Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Vertika Shukla
    • 1
  • Geeta Pant Joshi
    • 2
  • M. S. M. Rawat
    • 2
  1. 1.Department of Environmental SciencesBabasaheb Bhimrao Ambedkar (Central) UniversityLucknowIndia
  2. 2.Department of ChemistryH.N.B. Garhwal UniversitySrinagar GarhwalIndia

Personalised recommendations