Skip to main content
Log in

Approaches to the total synthesis of biologically active natural products: studies directed towards bryostatins

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Progress on a total synthesis of the marine natural products, the bryostatins, is reviewed. Following studies aimed at the synthesis of the 1,16- and 17,27-fragments, procedures for the assembly of the macrocyclic ring of the bryostatins were investigated. Although ring-closing metathesis was not found to be useful for the synthesis of bryostatins with geminal dimethyl groups at C18, the modified Julia reaction was found to be useful for the stereoselective formation of the 16,17-double-bond and led to a synthesis of an advanced macrocyclic intermediate. Several novel synthetic procedures feature in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Alissa C (2009) Mechanism manifold and new developments of the Julia-Kocienski reaction. Eur J Org Chem 1831–1844

  • Alkon DL, Epstein H et al (2005) Protein synthesis required for long term memory is induced by PKC activation on days before associative learning. Proc Natl Acad Sci USA 102:16432–16437

    Article  CAS  PubMed  Google Scholar 

  • Allen J, Green AP et al (2008) On the use of the modified Julia olefination for bryostatin synthesis. Tetrahedron Lett 49:6352–6355

    Article  CAS  Google Scholar 

  • Almendros P, Rae A, Thomas EJ (2000) Synthesis of the C(17)–C(27) fragment of the 20-deoxybryostatins. Tetrahedron Lett 41:9565–9568

    Article  CAS  Google Scholar 

  • Ball M, Baron A et al (2004) A stereoselective synthesis of the C(1)–C(16)fragment of the bryostatins. Tetrahedron Lett 45:8737–8740

    Article  CAS  Google Scholar 

  • Bradshaw B, Ball M et al (2006) A preliminary evaluation of a ring-closing metathesis approach to bryostatins. Tetrahedron Lett 47:2223–2227

    Article  Google Scholar 

  • Brose N, Rosenmund C (2002) Move over protein kinase C, you’ve got company; alternative cellular effectors of diacylglycerol and phorbol esters. J Cell Sci 115:4399–4411

    Article  CAS  PubMed  Google Scholar 

  • De Brabander J, Vandewalle M (1994) Bryostatins: the asymmetric synthesis of the C1–C9 and C17–C27 fragments. Synthesis 855-865

  • Donnelly S, Fielding M, Thomas EJ (2004) 1, 5-Stereocontrol in reactions of 5-benzyloxy-4-methylpent-2-enyl bromide with aldehydes mediated by Bi(0): synthesis of aliphatic compounds with 1, 5-syn-related methyl groups. Tetrahedron Lett 45:6779–6782

    Article  CAS  Google Scholar 

  • Dowlati A, Lazarus HM et al (2003) Phase 1 and correlative study of combination bryostatin 1 and vincristine in relapsed B-cell malignancies. Clin Cancer Res 9:5929–5935

    CAS  PubMed  Google Scholar 

  • Evans DA, Carter PH et al (1998) Asymmetric synthesis of bryostatin 2. Angew Chem Int Edn 37:2354–2359

    Article  CAS  Google Scholar 

  • Evans DA, Carter PH et al (1999) Total synthesis of bryostatin 2. J Am Chem Soc 121:7540–7552

    Article  CAS  Google Scholar 

  • Gracia J, Thomas EJ (1998) An approach to the C(17)–C(24) fragment of 20-deoxybryostatins: applications of stereoselective trisubstituted alkene formation by palladium(0) coupling of enol acetates and vinylic bromides. J Chem Soc Perkin Trans I:2865–2871

    Article  Google Scholar 

  • Green AP, Hardy S, Thomas EJ (2008) A synthesis of the C(17)–C(25) fragment of bryostatins. Synlett 2103–2106

  • Hale KJ, Manaviazar S (2010) New approaches to the total snthesis of the bryostatin antitumour macrolides. Chem Asian J 5:704–754

    Article  CAS  PubMed  Google Scholar 

  • Hale KJ, Hummersone MG et al (2002) The chemistry and biology of the bryostatin antitumour macrolides. Nat Prod Rep 19:413–453

    Article  CAS  PubMed  Google Scholar 

  • Hongpaisan J, Alkon DL (2007) A structural basis for enhancement of long-term associative memory in single dendritic spines regulated by PKC. Proc Natl Acad Sci USA 104:19571–19576

    Article  CAS  PubMed  Google Scholar 

  • Kageyama M, Tamura T et al (1990) Synthesis of bryostatin 7. J Am Chem Soc 112:7407–7408

    Article  CAS  Google Scholar 

  • Kamano Y, Zhang HP et al (1995) An improved source of bryostatin 10, Bugula neritina from the Gulf of Aomori. J Nat Prod 58:1868–1875

    Article  CAS  PubMed  Google Scholar 

  • Keck GE, Kraft MB et al (2008) Convergent assembly of highly potent analogues of bryostatin 1 via pyran annulation: bryostatin look-alikes that mimic phorbol ester function. J Am Chem Soc 130:6660–6661

    Article  CAS  PubMed  Google Scholar 

  • Keck GE, Poudel YB et al (2009) Substitution on the A-ring confers to bryopyran analogues the unique biological activity characteristic of bryostatins, distinct from that of the phorbol esters. Org Lett 11:593–596

    Article  CAS  PubMed  Google Scholar 

  • Kosugi M, Hagiwara I et al (1984) Arylation and 1-alkenylation on α-position of ketones via tributyltin enolates catalysed by palladium complex. Bull Chem Soc Jpn 57:242–246

    Article  CAS  Google Scholar 

  • Koutcher JA, Motwani M et al (2000) The in vivo effect of bryostatins on paclitaxel-induced tumor growth, mitotic entry and blood flow. Clin Cancer Res 6:1498–1507

    CAS  PubMed  Google Scholar 

  • Kozmin SA, Iwama T et al (2002) An efficient approach to Aspidosperma alkaloids via [4 + 2] cycloadditions of aminosiloxydienes: stereocontrolled total synthesis of (±)-tabersonine and (+)-16-methoxytabersonine. Asymmetric syntheses of (+)-aspidospermidine and (−)-quebrachamine. J Am Chem Soc 124:4628–4641

    Article  CAS  PubMed  Google Scholar 

  • Lee ATL, Green AP, Thomas EJ (2009) Unpublished observations

  • Maguire RJ, Munt SP, Thomas EJ (1998) An approach to the C(10)–C(16) fragment of the bryostatins: stereoselective exocyclic double-bond formation by vinyl radical cyclisation. J Chem Soc Perkin Trans I:2853–2863

    Article  Google Scholar 

  • Manaviazar S, Frigerio M et al (2006) Enantioselective formal total synthesis of the antitumour macrolide bryostatin 7. Organic Lett 8:4477–4480

    Article  CAS  Google Scholar 

  • Michalak M, Wicha J (2005) Efficient olefin isomerization-ring-closing metathesis reaction in sterically hindered systems: study on simultaneous use of the Grubbs metathesis and ruthenium hydride isomerization catalysts. Synlett 2277–2280

  • Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216–1238

    Article  CAS  PubMed  Google Scholar 

  • Nicolaou KC, Bulger PG, Sarlah D (2005) Metathesis reactions in total synthesis. Angew Chem Int Ed 44:4490–4527

    Article  CAS  Google Scholar 

  • O’Brien M, Taylor NH, Thomas EJ (2002) Synthesis of the C(1)–C(16) fragment of the bryostatins. Tetrahedron Lett 43:5491–5494

    Article  Google Scholar 

  • Ohmori K, Ogawa Y et al (2000) Total synthsis of bryostatin 3. Angew Chem Int Ed 39:2290–2294

    Article  CAS  Google Scholar 

  • Piers E, Chong JM, Morton HE (1989) Reaction of (trimethylstannyl)copper(I) reagents with αβ-acetylenic esters: stereocontrolled synthesis of alkyl (E)- and (Z)-3-trimethylstannyl-2-alkenoates. Tetrahedron 45:363–380

    Article  CAS  Google Scholar 

  • Roberts JD, Smith MR et al (2006) Phase 1 study of bryostatins and fludarabine in patients with chronic lymphocytic leukemia and indolent (non-Hodgkin’s) lymphoma. Clin Cancer Res 12:5809–5816

    Article  CAS  PubMed  Google Scholar 

  • Schaufelberger DE, Koleck MP et al (1991) The large-scale isolation of bryostatins from Buluga neritina following current good laboratory practices. J Nat Prod 54:1265–1270

    Article  CAS  PubMed  Google Scholar 

  • Scholl M, Ding S et al (1999) Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1, 3-dimesityl-4, 5-dihydroimidazol-2-ylidene ligands. Org Lett 1:953–956

    Article  CAS  PubMed  Google Scholar 

  • Sharp JH, Winson MK, Porter JS (2007) Bryozoan metabolites; an ecological perspective. Nat Prod Rep 24:659–673

    Article  CAS  PubMed  Google Scholar 

  • Sun M-K, Hongpaisan J et al (2008) Poststroke neuronal rescue and synaptogenesis mediated in vivo by protein kinase C in adult brains. Proc Natl Acad Sci USA 105:13620–13625

    Article  CAS  PubMed  Google Scholar 

  • Trost B, Dong G (2008) Total synthesis of bryostatin 16 using atom economical and chemoselective approaches. Nature 456:485–488

    Article  CAS  PubMed  Google Scholar 

  • Trost BM, Yang H et al (2007) Synthesis of a ring-expanded bryostatin analogue. J Am Chem Soc 129:2206–2207

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wang Z, Grant S (2003) Bryostatin 1 and UCN-01 potentiate 1-β-d-arabinofuranosylcytosine induced apoptosis in human myeloid leukemia cells through disparate mechanisms. Mol Pharmacol 63:232–242

    Article  CAS  PubMed  Google Scholar 

  • Wender PA, Horan JC (2006) Synthesis and PKC binding of a new class of A-ring diversifiable bryostatin analogues using a double-asymmetric hydrogenation and cross coupling strategy. Org Lett 8:4581–4584

    Article  CAS  PubMed  Google Scholar 

  • Wender PA, Baryza JL et al (2002) The practical synthesis of a novel and highly potent analogue of bryostatin. J Am Chem Soc 124:13648–13649

    Article  CAS  PubMed  Google Scholar 

  • Wender PA, Horan JC, Verma VA (2006) Total synthesis and initial biological evaluation of new B-ring modified bryostatin analogues. Org Lett 8:5299–5302

    Article  CAS  PubMed  Google Scholar 

  • Wender PA, DeChristopher BA, Schrier AJ (2008) Efficient synthetic access to a new family of highly potent bryostatin analogues via a Prins-driven macrocyclisation strategy. J Am Chem Soc 130:6658–6659

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We should like to thank former members of the research group in Manchester who have worked on aspects of bryostatin synthesis including P. Almendros, M. Ball, A. Baron, B. Bradshaw, R. Dumeunier, J. Gracia, R. J. Maguire, M. O’Brien, A. Rae, S. P. Munt and N. H. Taylor. We should also like to acknowledge financial support from the EPSRC and AstraZeneca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, A.P., Hardy, S., Lee, A.T.L. et al. Approaches to the total synthesis of biologically active natural products: studies directed towards bryostatins. Phytochem Rev 9, 501–513 (2010). https://doi.org/10.1007/s11101-010-9186-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-010-9186-9

Keywords

Navigation