Skip to main content

Tricin—a potential multifunctional nutraceutical

Abstract

This review throws light on the natural occurrence and distribution of tricin (5,7,4′-trihydroxy-3′,5′-dimethoxyflavone) and its conjugated forms, as more common natural plant constituents than previously known. It examines the current literature dealing with its biosynthesis, regulation, biological significance, pharmacological effects, and potential role as a chemopreventive and anticancer agent. Because of its common occurrence in cereal grain plants and the wide spectrum of its health promoting effects, a metabolic engineering strategy is proposed to produce tricin in sufficient amounts for further experimentation, and increase its accumulation in wheat grain endosperm as a nutraceutical.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adjei-Afriyie F, Kim CS, Takemura M et al (2000a) Probing stimulants from the rice plant towards the smaller brown planthopper, Laodelphax striatellus (Homoptera: Delphacidae). Z Naturforsch C 55:1038–1043

    CAS  PubMed  Google Scholar 

  2. Adjei-Afriyie F, Kim CS, Takemura M et al (2000b) Isolation and identification of the probing stimulants in the rice plant for the white-back planthopper, Sogatella furcifera. Biosci Biotechnol Biochem 64:443–446

    CAS  PubMed  Google Scholar 

  3. Almada-Ruiz E, Martinez-Tellez MA (2003) Fungicidal potential of methoxylated flavones from citrus for in vitro control of Colletotrichum gloeosporioides, causal agent of anthracnose disease in tropical fruits. Pest Manag Sci 59:1245–1249

    CAS  PubMed  Google Scholar 

  4. Anderson JA (1932) The yellow coloring matter of Khapli wheat, Triticum dicoccum. II. The constitution of tricetin. Can J Res 7:285–292

    CAS  Google Scholar 

  5. Anderson OM, Markham KR (2006) Flavonoids: chemistry, biochemistry and applications. CRC Taylor and Francis Group

  6. Anderson JA, Perkin AG (1931) The yellow coloring matter of Khapli wheat, Triticum dicoccum. I. J Chem Soc: 2624–2625

  7. Arroo RR, Androutsopoulos V, Beresford K et al (2009) Phytoestrogens as natural prodrugs in cancer prevention: dietary flavonoids. Phytochem Rev 8:375–586

    CAS  Google Scholar 

  8. Awaad AS, Mohamed NH, Maitland DJ et al (2008) Anti-ulcerogenic activity of extract and some isolated flavonoids from Desmostachia bipinnata L. Stapf. Rec Nat Prod 2:76–82

    CAS  Google Scholar 

  9. Ayabe S, Akashi T (2006) Cytochrome P450 s in flavonoid metabolism. Phytochem Rev 5:271–282

    CAS  Google Scholar 

  10. Bichoff EM, Livingston AL, Booth AN (1964) Tricin from alfalfa: isolation and physiological activity. J Pharm Sci 53:1411–1412

    Google Scholar 

  11. Bouaziz M, Veitch NC, Grayer RJ et al (2002) Flavonolignans from Hyparrhenia hirta. Phytochemistry 60:515–520

    CAS  PubMed  Google Scholar 

  12. Bylka W, Matlawska I, Pilewski NA (2004) Natural flavonoids as antimicrobial agents. J Am Nutraceut Assoc 7:24–31

    Google Scholar 

  13. Cai H, Hudson EA, Mann P et al (2004) Growth-inhibitory and cell cycle-arresting properties of the rice bran constituent tricin in human-derived breast cancer cells in vitro and in nude mice in vivo. Br J Cancer 91:1364–1371

    CAS  PubMed  Google Scholar 

  14. Cai H, Al-Fayez M, Tunstall RG et al (2005) The rice bran constituent tricin potently inhibits cyclooxygenase enzymes and interferes with intestinal carcinogenesis in Apc Min mice. Mol Cancer Ther 4:1287–1292

    CAS  PubMed  Google Scholar 

  15. Cai H, Boocock DJ, Steward WP et al (2007) Tissue distribution in mice and metabolism in murine and human liver of apigenin and tricin, flavones with putative cancer chemopreventive properties. Cancer Chemother Pharmacol 60:257–266

    CAS  PubMed  Google Scholar 

  16. Cai H, Sale S, Schmid R et al (2009) Flavones as colorectal cancer chemopreventive agents: phenol-O-methylation enhances efficacy. Cancer Prev Res 2:743–750

    CAS  Google Scholar 

  17. Cavalière C, Foglia P, Pastorini E et al (2005) Identification and mass spectrometric characterization of glycosylated flavonoids in Triticum durum plants by high-performance liquid chromatography with tandem mass spectrometry. Rapid Commun Mass Spectrom 19:3143–3158

    PubMed  Google Scholar 

  18. Century K, Ratcliffe OJ, Reuber TL (2008) Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol 147:20–29

    CAS  PubMed  Google Scholar 

  19. Chemier JA, Koffas MA (2008) Metabolic engineering for plant natural product biosynthesis in microbes. Curr Opin Biotechnol 19:597–605

    Google Scholar 

  20. Chung I-M, Hahn S-J, Ahmad A (2005) Confirmation of potential herbicidal agents in hulls of rice, Oryza sativa. J Chem Ecol 31:1339–1352

    CAS  PubMed  Google Scholar 

  21. Colombo R, Yariwake JH, Queiroz EF et al (2006) On-line identification of further flavone C- and O-glycosides from sugarcane (Saccharum officinarum L., Gramineae) by HPLC-UV-MS. Phytochem Anal 17:337–343

    CAS  PubMed  Google Scholar 

  22. Colombo R, Yariwake JH, McCullagh M (2008) Study of C- and O-glycosylflavones in sugarcane extracts using liquid chromatography-exact mass measurement mass spectrometry. J Brazil Chem Soc 19:483–490

    CAS  Google Scholar 

  23. Cooper R, Gottlieb H, Lavie D (1977) A new flavolignan of biogenetic interest from Aegilops ovata L.—part I. Isr J Chem 16:12–15

    CAS  Google Scholar 

  24. Cummins I, Brazier-Hicks M, Stobiecki M et al (2006) Selective disruption of wheat secondary metabolism by herbicide safeners. Phytochemistry 67:1722–1730

    CAS  PubMed  Google Scholar 

  25. DeFelice SL (1992) The nutraceutical initiative: a recommendation for U.S. economic and regulatory reforms. Genet Eng News 12:13–15

    Google Scholar 

  26. Deng D, Zhang J, Cooney JM et al (2006) Methylated polyphenols are poor “chemical” antioxidants but can still effectively protect cells from hydrogen peroxide-induced cytotoxcity. FEBS Lett 580:5247–5250

    CAS  PubMed  Google Scholar 

  27. Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids—a gold mine for metabolic engineering. Trends Plant Sci 4:394–400

    PubMed  Google Scholar 

  28. Dreyer DL, Jones KC (1981) Feeding deterrency of flavonoids and related phenolics towards Schizaphis graminum and Myzus persicae: aphid feeding deterrents in wheat. Phytochemistry 20:2489–2493

    CAS  Google Scholar 

  29. Duarte-Almeida JM, Negri G, Salatino A et al (2007) Antiproferative and antioxidant activities of a tricin acylated glycoside from sugarcane (Saccharum officinarum) juice. Phytochemistry 68:1165–1171

    CAS  PubMed  Google Scholar 

  30. Estiarte M, Penuelas J, Canigueral S et al (1997) A reverse-phase HPLC method for tricin separation from wheat leaves. Cereal Chem 74:495–496

    CAS  Google Scholar 

  31. Forkmann G, Heller W (1999) Biosynthesis of flavonoids. In: Sankawa U (ed) Comprehensive natural products chemistry, vol I. Elsevier, Amsterdam, pp 713–748

    Google Scholar 

  32. Forkmann G, Martens S (2001) Metabolic engineering and applications of flavonoids. Curr Opin Biotechnol 12:155–160

    CAS  PubMed  Google Scholar 

  33. Griffiths LA, Smith GE (1972) Metabolism of myricetin and related compounds in the rat. Metabolite formation in vivo and by the intestinal microflora in vitro. Biochem J 130:141–151

    CAS  PubMed  Google Scholar 

  34. Gu JQ, Wang Y, Franzblau SG et al (2004) Antitubercular constituents of Valeriana laxiflora. Planta Med 70:509–514

    CAS  PubMed  Google Scholar 

  35. Gulati KC, Venkataraman K (1933) Synthetical experiments in the chromone group. IX. A synthesis of 5,7,4′-trihydroxy-3′,5′-dimethoxyflavone, believed to be identical to tricin. J Chem Soc: 942–943

  36. Harborne JB (1975) Biochemical systematics of flavonoids. In: Harborne JB, Mabry TJ, Mabry H (eds) The flavonoids (part 2). Academic Press, New York, pp 1064–1095

    Google Scholar 

  37. Harborne JB, Hall E (1964) Plant polyphenols. XII. Occurrence of tricin and of glycoflavones in grasses. Phytochemistry 3:421–428

    CAS  Google Scholar 

  38. Harborne JB, Williams C (1976) Flavonoid patterns in leaves of the Gramineae. Biochem Syst Ecol 4:267–280

    CAS  Google Scholar 

  39. Harborne JB, Boardley M, Froest S et al (1986) The flavonoids in leaves of diploid Triticum species (Gramineae). Plant Syst Evol 154:251–257

    CAS  Google Scholar 

  40. Harris RM, Waring RH (2008) Sulfotransferase inhibition: potential impact of diet and environmental chemicals on steroid metabolism and drug detoxification. Curr Drug Metab 9:269–275

    CAS  PubMed  Google Scholar 

  41. Hasegawa T, Tanaka A, Hosoda A et al (2008) Antioxidant C-glycosyl flavones from the leaves of Sasa kurilensis var. gigantean. Phytochemistry 69:1419–1424

    CAS  PubMed  Google Scholar 

  42. Himi E, Noda K (2005) Red grain colour gene (R) of wheat is a Myb-type transcription factor. Euphytica 143:239–242

    CAS  Google Scholar 

  43. Holst B, Williamson G (2008) Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotech 19:1–10

    Google Scholar 

  44. Hudson EA, Dinh PA, Kokubun T et al (2000) Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol Biomarkers Prev 9:1163–1170

    CAS  PubMed  Google Scholar 

  45. Jang CS, Johnson JW, Seo YW (2005) Differential expression of TaLTP3 and TaCOMT1 induced by Hessian fly larval infestation in a wheat line possessing H21 resistance gene. Plant Sci 168:1319–1326

    CAS  Google Scholar 

  46. Jiao J, Zhang Y, Liu C et al (2007) Separation and purification of tricin from an antioxidant product derived from bamboo leaves. J Agric Food Chem 55:10086–10092

    CAS  PubMed  Google Scholar 

  47. Joseph CO, Grotewold E (2004) The biology and structural distribution of surface flavonoids. Rec Res Develop Plant Sci 2:1–19

    Google Scholar 

  48. Jung JH, Hong MJ, Kim DY (2008) Structural and expressional divergence of genes encoding O-methyltransferases in wheat. Genome 51:856–869

    CAS  PubMed  Google Scholar 

  49. Kaneta M, Sugiyama N (1973) Identification of flavone compounds in eighteen Gramineae species. Agric Biol Chem 37:2663–2665

    CAS  Google Scholar 

  50. Kim JH, Cheon YM, Kim BG et al (2008) Analysis of flavonoids and characterization of the OsFNS gene involved in flavone biosynthesis in rice. J Plant Biol 51:97–101

    CAS  Google Scholar 

  51. Kong C, Xu X, Zhou B (2004) Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens. Phytochemistry 65:1123–1128

    CAS  PubMed  Google Scholar 

  52. Kowalska I, Stochmal A, Kapusta I et al (2007) Flavonoids from barrel medic (Medicago truncatula) aerial parts. J Agric Food Chem 55:2645–2652

    CAS  PubMed  Google Scholar 

  53. Kuo S-M (1997) Dietary flavonoids and cancer prevention: evidence and potential mechanism. Crit Rev Oncogen 8:47–69

    CAS  Google Scholar 

  54. Kuwabara H, Mouri K, Otsuka H et al (2003) Tricin from a Malagasy connoraceous plant with potential antihistaminic activity. J Nat Prod 66:1273–1275

    CAS  PubMed  Google Scholar 

  55. Kwon YS, Kim CM (2003) Antioxidant constituents from the stem of Sorghum bicolor. Arch Pharm Res 26:535–539

    CAS  PubMed  Google Scholar 

  56. Kwon YS, Kim EY, Kim WJ et al (2002) Antioxidant constituents from Setaria viridis. Arch Pharm Res 25:300–305

    CAS  PubMed  Google Scholar 

  57. Laas HJ, Eicher T (1989) New syntheses of tricetin and some of its analogues. J Hattorti Bot Lab 67:383–387

    Google Scholar 

  58. Laks PE, Pruner MS (1989) Flavonoid biocides: structure–activity relations of flavonoid phytoalexin analogues. Phytochemistry 28:87–91

    CAS  Google Scholar 

  59. Leckband G, Lörz H (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. for increased fungal in barley and wheat for increased fungal resistence. Theor Appl Genet 96:1004–1012

    CAS  Google Scholar 

  60. Lee KH, Tagahara K, Suzuki H et al (1981) Antitumor agents. 49 tricin, kaempferol-3-O-β-d-glucopyranoside and (+)-nortrachelogenin, antileukemic principles from Wikstroemia indica. J Nat Prod 44:530–535

    CAS  PubMed  Google Scholar 

  61. Lei N, Du S, Li L et al (2007) Chemical constituents from a Tibetan medicine, Arenaria kansuensis. Zhongguo Zhongyao Zazhi 32:918–920

    CAS  PubMed  Google Scholar 

  62. Lepinièc L, Debeaujon I, Routaboul J-M et al (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    PubMed  Google Scholar 

  63. Li H, Zhou C-X, Pan Y et al (2005) Evaluation of antiviral activity of compounds isolated from Ranunculus sieboldii and R. sceleratus. Planta Med 71:1128–1133

    CAS  PubMed  Google Scholar 

  64. Li C, Li L, Zhang Q (2006) HPLC determination of tricin in Medicago sativa L. Yaowu Fenxi Zazhi 26:494–496

    CAS  Google Scholar 

  65. Liang HR, Vuorela P, Vuorela H et al (1997) Isolation and immunomodulatory effect of flavonol glycosides from Epimedium hunanense. Planta Med 63:316–319

    CAS  PubMed  Google Scholar 

  66. Lin YP, Chen TY, Tseng HW et al (2009) Neural cell protective compounds isolated from Phoenix hanceana var. formosana. Phytochemistry 70:1173–1181

    CAS  PubMed  Google Scholar 

  67. Ling B, Dong H-X, Zhang M-X et al (2007) Potential resistance of tricin in rice against brown planthopper Nilaparvata lugens. Acta Ecol Sinica 27:1300–1307

    CAS  Google Scholar 

  68. Lu B, Wu X, Shi Y et al (2006) Toxicology and safety of antioxidant of bamboo leaves. Part 2. Food Chem Toxicol 44:1613–1782

    Google Scholar 

  69. Mabry TJ, Liu Y, Pearce J et al (1984) New flavonoids from sugarcane (Saccharum). J Nat Prod 47:127–130

    CAS  Google Scholar 

  70. Marin PD, Grayer RJ, Grujic-Jovanovic S et al (2004) Glycosides of tricetin methyl ethers as chemosystematic markers in Stachys subgenus Betonica. Phytochemistry 65:1247–1253

    CAS  PubMed  Google Scholar 

  71. Markham KR, Porter LJ (1973) Flavonoids of the liverwort Marchantia foliacea. Phytochemistry 12:2007–2010

    CAS  Google Scholar 

  72. Martens S, Mithöfer A (2005) Flavones and flavone synthases. Phytochemistry 66:2399–2407

    CAS  PubMed  Google Scholar 

  73. Maurício Duarte-Almeida J, Novoa AV, Linares AF et al (2006) Antioxidant activity of phenolics compounds from sugar cane (Saccharum officinarum L.) juice. Plant Foods Hum Nutr 61:187–192

    PubMed  Google Scholar 

  74. Mehrtens F, Kranz H, Bednarek P et al (2005) Arabidopsis transcription factor MYB12 is a flavone-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138:1083–1096

    CAS  PubMed  Google Scholar 

  75. Melek FR, Aboutabl EA, Elsehrawy H (1992) Tricin from Orobanche ramosa L. Egypt. J Pharm Sci 33:753–756

    CAS  Google Scholar 

  76. Mentzer C, Pillon D (1953) Flavone derivatives. II. A new synthesis of tricin. Bull Soc Chim France 538–540

  77. Miles DH, Stagg DD, Parish EJ (1983) Investigation of the constituents and antitumor activity of Spartina cynosuroides. J Nat Prod 46:596

    CAS  Google Scholar 

  78. Miles DH, Tunsuwan K, Chittawong V et al (1993) Boll weevil antifeedants from Arundo donax. Phytochemistry 34:1277–1279

    CAS  Google Scholar 

  79. Mu LL, Kou J-P, Zhu D-N et al (2008) Antioxidant activities of the chemical constituents isolated from the leaves of Ginkgo biloba. Zhongguo Tianran Yaowu 6:26–29

    CAS  Google Scholar 

  80. Naczk M, Shahidi F (2006) Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J Pharm Biomed Anal 41:1523–1542

    CAS  PubMed  Google Scholar 

  81. Nagarathnam N, Cushman M (1991) A short and facile synthetic route to hydroxylated flavones. New syntheses of apigenin, tricin, and luteolin. J Org Chem 56:4884–4887

    CAS  Google Scholar 

  82. Nakajima Y, Yun YS, Kunugi A (2003) Six new flavonolignans from Sasa veitchii (Carr.). Tetrahedron 59:8011–8015

    CAS  Google Scholar 

  83. Owada E, Mieno M (1970) Improved synthesis of tricin. Nippon Kagaku Zasshi 91:1002–1003

    CAS  Google Scholar 

  84. Padmavati M, Sakthivel N, Tahara KV et al (1997) Differential sensitivity of rice pathogens to growth inhibition by flavonoids. Phytochemistry 46:499–502

    CAS  Google Scholar 

  85. Park HS, Lim JH, Kim HJ et al (2007) Antioxidant flavone glycosides from the leaves of Sasa borealis. Arch Pharm Res 30:161–166

    CAS  PubMed  Google Scholar 

  86. Pelletier MK, Shirley BW (1996) Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings: coordinate regulation with chalcone synthase and chalcone isomerase. Plant Physiol 111:339–345

    CAS  PubMed  Google Scholar 

  87. Pietta P-G (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    CAS  PubMed  Google Scholar 

  88. Plochmann K, Korte G, Koutsilieri E et al (2007) Structure–activity relationships of flavonoid-induced cytotoxicity on human leukemia cells. Arch Biochem Biophys 460:1–9

    CAS  PubMed  Google Scholar 

  89. Polyakova LV (1992) Flavonoids of Medicago falcata L. and Medicago romanica Prod. in connection with age and vitality of individuals in natural populations. Biologicheskie Nauki (Moscow) 96–105

  90. Pretorius JC (2003) Flavonoids: a review of its commercial application potential as anti-infective agents. Curr Med Chem Anti-Infective Agents 2:335–353

    CAS  Google Scholar 

  91. Quattrocchio F, Baudry A, Lepinièc L et al (2006) The regulation of flavonoid biosynthesis. In, The Science of Flavonoids (E Grotewold, ed.) Springer Science, pp 97–122

    Google Scholar 

  92. Ramos S (2007) Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem 18:427–442

    CAS  PubMed  Google Scholar 

  93. Rice-Evans C, Miller NJ, Paganga G (1997) Antioxidant properties of phenolics compounds. Trends Plant Sci 4:152–159

    Google Scholar 

  94. Sakai A, Watanabe K, Koketsu M et al (2008) Anti-human cytomegalovirus activity of constituents from Sasa albo-marginata. Antivir Chem Chemother 19:125–132

    CAS  PubMed  Google Scholar 

  95. Schijlen EG, de Vos CHR, van Tunen AJ et al (2004) Modification of flavonoid biosynthesis in crop plants. Phytochemistry 65:2631–2648

    CAS  PubMed  Google Scholar 

  96. Seitz C, Eder C, Deiml B et al (2006) Cloning, functional identification and sequence analysis of flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase cDNA reveals independent evolution of flavonoids 3′,5′-hydroxylase in the Asteraceae family. Plant Mol Biol 61:365–381

    CAS  PubMed  Google Scholar 

  97. Shang M, Cai S, Ha J et al (1998) Studies on flavonoids from Fenugreek (Trigonella foenumgraecum L.). Zhongguo Zhong Yao Za Zhi 23:614–616

    CAS  PubMed  Google Scholar 

  98. Shao L, Huang WH, Zhang CF et al (2008) Study on chemical constituents from stem of Dendrobium aphyllum. Zhongguo Zhong Yao Za Zhi 33:1693–1695

    CAS  PubMed  Google Scholar 

  99. Shi CH, Chu H, Tang LK et al (2008) Functional characterization of key structural genes in rice flavonoid biosynthesis. Planta 228:1043–1054

    Google Scholar 

  100. Shimmyo Y, Kihara T, Akaike A et al (2008) Flavonols and flavone as BACE-1 inhibitors: structure-activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features. Biochim Biophys Acta 1780:819–825

    CAS  PubMed  Google Scholar 

  101. Shong X-H, Wu X-Y, Lin Y-C et al (1999) Synthesis of tricin, the vir-gene inducing expression factor. Zhongshan Daxue Zueban 38:127–128

    CAS  Google Scholar 

  102. Simmonds MSJ (2003) Flavonoid-insect interactions: recent advances in our knowledge. Phytochemisty 64:21–30

    CAS  Google Scholar 

  103. Steffen Y, Gruber C, Schewe T et al (2007) Mono-O-methylated flavonols and other flavonoids as inhibitors of endothelial NADPH oxidase. Arch Biochem Biophys 469:209–219

    PubMed  Google Scholar 

  104. Stelzig DA, Ribeiro S (1972) Metabolism of quercetin and tricin in the male rat. Proc Soc Exp Biol Med 141:346–349

    CAS  PubMed  Google Scholar 

  105. Stochmal A, Simonet AM, Macias FA et al (2001) Alfalfa (Medicago sativa L.) flavonoids: tricin and chrysoeriol glycosides from aerial parts. J Agric Food Chem 49:5310–5314

    CAS  PubMed  Google Scholar 

  106. Syrchina AI, Chernousova AV, Zaikov KL et al. (1992) Tricin apioside from Salsola collina. Khim Prirodnykh Soedinenii 439–440

  107. Theodor R, Zinsmeister HD, Mues R et al (1980) Flavone C-glycosides of Apometzgeria pubescens. Phytochemistry 19:1695–1700

    CAS  Google Scholar 

  108. Theodor R, Zinsmeister HD, Mues R et al (1981) Flavone C-glycosides of two Metzgeria species. Phytochemistry 20:1851–1852

    CAS  Google Scholar 

  109. Timoteo P, Karioti A, Leitao SG et al (2008) HPLC/DAD/ESI-MS analysis of non-volatile constituents of 3 Brazilian chemotypes of Lippia alba (Mill.). Nat Prod Commun 3:2017–2020

    CAS  Google Scholar 

  110. Tsuchida Y (2008) Antimicrobial agent and antimicrobial composition. Europ Patent Appl WO 2007/105581

  111. Verschoyle RE, Greaves P, Cai H et al (2006) Preliminary safety evaluation of the putative cancer chemopreventive agent tricin, a naturally occurring flavone. Cancer Epidemiol Biomarkers Prev 57:1–6

    CAS  Google Scholar 

  112. Wallace JW (1974) Tricin-5-O-glucoside and other flavonoids of Cirsium arvense. Phytochemistry 13:2320–2321

    CAS  Google Scholar 

  113. Walle T (2007a) Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass? Semin Cancer Biol 17:354–362

    CAS  PubMed  Google Scholar 

  114. Walle T (2007b) Bioavailable flavonoids: cytochrome P450-mediated metabolism of methoxyflavones. Drug Metab Dispos 35:1985–1989

    CAS  PubMed  Google Scholar 

  115. Wang HB, Yao H, Bao G-H et al (2004) Flavone glucosides with immunomodulatory activity from the leaves of Pleioblastus amarus. Phytochemistry 65:969–974

    CAS  PubMed  Google Scholar 

  116. Watanabe M (1999) Antioxidative phenolic compounds from Japanese barnyard millet (Echinochloa utilis) grains. J Agric Food Chem 7:4500–4505

    Google Scholar 

  117. Weidenborner M, Iha HC (1997) Antifungal spectrum of flavone and flavanone tested against 34 different fungi. Mycol Res 101:733–736

    Google Scholar 

  118. Wen X, Walle T (2006) Methylation protects dietary flavonoids from rapid hepatic metabolism. Xenobiotica 36:387–397

    CAS  PubMed  Google Scholar 

  119. Wenzig E, Kunert O, Ferreira D et al (2005) Flavonolignans from Avena sativa. J Nat Prod 68:289–292

    CAS  PubMed  Google Scholar 

  120. Williams CA, Fronczyk JH, Harborne JB (1983) Leaf flavonoid and other phenolic glycosides as indicators of parentage in six ornamental Fuchsia species and their hybrids. Phytochemistry 22:1953–1957

    CAS  Google Scholar 

  121. Williams R, Spencer JPE, Rice-Evans C (2004) Flavonoids: antioxidants or signaling molecules? Free Radic Biol Med 36:838–849

    CAS  PubMed  Google Scholar 

  122. Winkel BSJ (2006) The biosynthesis of flavonoids. In: Grotewold E (ed) The science of flavonoids. Springer Science, New York, pp 71–96

  123. Winkel-Shirley B (2001a) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol 126:485–493

    CAS  PubMed  Google Scholar 

  124. Winkel-Shirley B (2001b) It takes a garden. How work on diverse plant species has contributed to an understanding of flavonoid metabolism. Plant Physiol 127:1399–1404

    CAS  PubMed  Google Scholar 

  125. Wollenweber E, Dörr M (2008) Occurrence and distribution of the flavone tricetin and its methyl derivatives as free aglycones. Nat Prod Commun 3:1293–1298

    CAS  Google Scholar 

  126. Xiong Y, Wang Y, Sun J-H et al (2006) The influence of Sedum sarmentosum tricin glucoside on lymphocyte proliferation of normal mice in vitro. Zhongguo Shiyan Fangjixue Zazhi 12:29–31

    CAS  Google Scholar 

  127. Xu D, Li B, Liu Y et al (1996) Identification of rice (Oryza sativa L.) signal factors capable of inducing Agrobacterium vir gene expression. Sci China Ser C 39:8–16

    CAS  Google Scholar 

  128. Xu G, Zhao X, Zhao L et al (1999) Inhibition of human breast cancer cell line BCap-37 by flavonoid extract of wheat germ in vitro. Int Bibliogr Inform Diet Suppl 28:151–152

    CAS  Google Scholar 

  129. Yamazaki K, Iwashina T, Kitajima J et al (2007) External and internal flavonoids from Madagascarian Uncarina species (Pedaliaceae). Biochem Syst Ecol 35:743–749

    CAS  Google Scholar 

  130. Yan J, Sun L, Zhang X et al (2005) A new flavone from Lycopodium japonicum. Heterocycles 65:661–666

    CAS  Google Scholar 

  131. Yang A, Liu X, Lu R et al (2006) Isolation and structural elucidation of flavonoids from Pyrethrum tatsienense. Zhongcaoyao 37:25–27

    CAS  Google Scholar 

  132. Zhang WF, Tan TX, Liu ZL (1996) Two flavones from Artemisia giraldii and their antimicrobial activity. Planta Med 62:160–162

    Google Scholar 

  133. Zhang J, Subramanian S, Zhang Y et al (2007) Flavone synthases from Medicago truncatula are flavanone-2-hydroxylase and are important for nodulation. Plant Physiol 144:741–751

    CAS  PubMed  Google Scholar 

  134. Zhang LH, Fan CL, Ye WC et al (2008a) Study on flavonoids and phenolic acids from the herb of Lygodium japonicum. Zhong Yao Cai 31:22422–22426

    Google Scholar 

  135. Zhang XQ, Jiang WW, Wang Y et al (2008b) A new phenylpropanoic acid derivatives from the roots of Ficus stenophylla. Yao Xue Xue Bao 43:281–283

    CAS  PubMed  Google Scholar 

  136. Zhao J, He J, Yan M et al (2007) Studies on chemical constituents in flower of Nymphaea candida. Zhongguo Zhongyao Zazhi 32:1232–1234

    CAS  Google Scholar 

  137. Zhao S, Zhao L-J, Gu X-H et al (2009) Determination of tricin in wheat grain by ultra performance liquid chromatography tandem mass spectrometry. Fenxi Huaxue 37:873–876

    CAS  Google Scholar 

  138. Zhou J-M, Gold ND, Martin VJJ et al (2006a) Sequential O-methylation of tricetin by a single gene product in wheat. Biochim Biophys Acta 1760:1115–1124

    CAS  PubMed  Google Scholar 

  139. Zhou J-M, Fukushi Y, Wang X et al (2006b) Characterization of a novel flavone O-methyltransferase gene in rice. Nat Prod Commun 1:981–984

    CAS  Google Scholar 

  140. Zhou J-M, Fukushi Y, Wollenweber E et al (2008) Characterization of two O-methyltransferase-like genes in barley and maize. Pharm Biol 46:26–34

    CAS  Google Scholar 

  141. Zhou J-M, Seo YW, Ibrahim RK (2009) Biochemical characterization of a putative wheat caffeic acid O-methyltransferase. Plant Physiol Biochem 47:322–326

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank the Natural Sciences and Engineering Research Council (NSERC) of Canada for financial support of the work cited from the authors’ laboratory.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ragai K. Ibrahim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhou, JM., Ibrahim, R.K. Tricin—a potential multifunctional nutraceutical. Phytochem Rev 9, 413–424 (2010). https://doi.org/10.1007/s11101-009-9161-5

Download citation

Keywords

  • Tricin
  • Natural occurrence
  • Biology
  • Metabolic engineering
  • Nutraceutical