Phytochemistry Reviews

, Volume 9, Issue 2, pp 217–253 | Cite as

Mallotus species from Vietnamese mountainous areas: phytochemistry and pharmacological activities

  • C. Rivière
  • V. Nguyen Thi Hong
  • Q. Tran Hong
  • G. Chataigné
  • N. Nguyen Hoai
  • B. Dejaegher
  • C. Tistaert
  • T. Nguyen Thi Kim
  • Y. Vander Heyden
  • M. Chau Van
  • J. Quetin-Leclercq


The genus Mallotus belongs to Malphighiales order and Euphorbiaceae family. Mallotus, commonly known as “Ba bet” in Vietnam, is one of the most diverse and richest genera of the Euphorbiaceae family in Vietnam, where about 40 Mallotus species may be found. Some Mallotus species are used in traditional medicine in Vietnam for different indications. They are concentrated in mountainous areas with an altitude below 1,000 m, but some species can grow at an altitude of 2,000 m, such as Mallotus oreophilus Müll. Arg. Some Mallotus species are known to contain different natural compounds, mainly diterpenoids, triterpenoids, steroids, flavonoids, coumarinolignoids, phloroglucinol derivatives or benzopyrans, and to exhibit interesting biological activities such as antimicrobial, antioxidant, antiviral, or cytototoxic ones. Some of these properties may be explained by their chemical composition as, for example, benzopyrans accounting for the cytotoxicity of Mallotus apelta extracts. However, although these species seem to have a great medicinal potential, the existing knowledge about most Mallotus species is still in most cases very limited. This review underlines the interest to continue the study of this genus of the Euphorbiaceae.


Mallotus Euphorbiaceae Vietnam Natural compounds Biological activities 



The authors are grateful to Dr. Nguyen Nghia Thin (botanist of Department Biology, University of Natural Science, National University Hanoi, Vietnam), Dr. Tran Huy Thai and Dr. La Dinh Moi (botanists of Institute of Ecology and Biological Resources, VAST, Vietnam) and wish to thank Marie-Christine Fayt for her skillfull technical assistance. The authors gratefully thank the Belgian Science Policy Office (BELSPO) Bilateral Project (BIL/03/V09) between Belgium and Vietnam, the Belgian National Fund for Scientific Research (FNRS) (FRFC 2.4555.08), the Special Fund for Research (FSR) and the faculty of medicine of UCL and the Research Foundation Flanders (FWO) for financial support on this research.


  1. Abreu PM, Matthew S, Gonzalez T et al (2008) Isolation and identification of antioxidants from Pedilanthus tithymaloides. J Nat Med 62:67–70CrossRefPubMedGoogle Scholar
  2. Akhtar MS, Ahmad I (1992) Comparative efficacy of Mallotus philippinensis fruit (Kamala) or Nilzan® drug against gastrointestinal cestodes in Beetal goats. Small Rumin Res 8:121–128CrossRefGoogle Scholar
  3. An TY, Hu LH, Cheng XF et al (2001) Benzopyran derivatives from Mallotus apelta. Phytochemistry 57:273–278CrossRefPubMedGoogle Scholar
  4. An TY, Hu LH, Cheng XF et al (2003) Two new benzopyran derivatives from Mallotus apelta. Nat Prod Res 17:325–328CrossRefPubMedGoogle Scholar
  5. Arfan M, Amin H, Karamac M et al (2007) Antioxidant activity of extracts of Mallotus philippinensis fruit and bark. J Food Lipids 14:280–297CrossRefGoogle Scholar
  6. Arfan M, Hazrat K, Magdalena K et al (2009) Antioxidant activity of phenolic fractions of Mallotus philippinensis bark extract. J Food Sci 27:109–117Google Scholar
  7. Bagalkotkar G, Sagineedu SR, Saad MS et al (2006) Phytochemicals from Phyllanthus niruri Linn. and their pharmacological properties: a review. J Pharm Pharmacol 58:1559–1570CrossRefPubMedGoogle Scholar
  8. Bai Y, Yang YP, Ye Y (2006) Hookerianolides A–C: three novel casbane-type diterpenoid lactones from Mallotus hookerianus. Tetrahedron Lett 47:6637–6640CrossRefGoogle Scholar
  9. Bandopadhyay M, Dhingra VK, Mukerjee SK et al (1972) Triterpenoid and other components of Mallotus philippinensis. Phytochemistry 11:1511CrossRefGoogle Scholar
  10. Castenada P, Bahena A, Garcia E et al (1993) Chemical studies on Mexican plants used in traditional medicine, XXIX. Secondary metabolites from the stem bark of Celaenodendron mexicanum. J Nat Prod 56:1575–1579CrossRefGoogle Scholar
  11. Chattopadhyay D, Arunachalam G, Mandal Asit B et al (2002a) Antimicrobial and anti-inflammatory activity of folklore: Mallotus peltatus leaf extract. J Ethnopharmacol 82:229–237CrossRefPubMedGoogle Scholar
  12. Chattopadhyay D, Arunachalam G, Mandal Asit B et al (2002b) Evaluation of antipyretic activity of leaf extracts of Mallotus peltatus (Geist) Muell. arg. var. acuminatus: a folk medicine. Phytomedicine 9:727–730CrossRefPubMedGoogle Scholar
  13. Chattopadhyay D, Arunachalam G, Mandal Subash C et al (2003) CNS activity of the methanol extract of Mallotus peltatus (Geist) Müll. Arg. leaf: an ethnomedicine of onge. J Ethnopharmacol 85:99–105CrossRefPubMedGoogle Scholar
  14. Chattopadhyay D, Arunachalam G, Mandal Asit B et al (2006) Dose-dependent therapeutic antiinfectives from ethnomedicines of bay islands. Chemotherapy 52:151–157CrossRefPubMedGoogle Scholar
  15. Cheng XF, Chen ZL (1999) Three new diterpenoids from Mallotus apelta Muell. Arg. J Asian Nat Prod Res 1:319–325CrossRefPubMedGoogle Scholar
  16. Cheng XF, Chen ZL (2000) Coumarinolignoids of Mallotus apelta. Fitoterapia 71:341–342CrossRefPubMedGoogle Scholar
  17. Cheng XF, Chen ZL (2002) Chemical study on M. apelta. In: Abstracts of the 223rd ACS National Meeting, Orlando, 7–11 April 2002Google Scholar
  18. Cheng XF, Meng ZM, Chen ZL (1998) A pyridine-type alkaloid from Mallotus apelta. Phytochemistry 49:2193–2194CrossRefGoogle Scholar
  19. Cheng XF, Chen ZL, Meng ZM (1999) Two new diterpenoids from Mallotus apelta Muell. Arg. J Asian Nat Prod Res 1:163–168CrossRefPubMedGoogle Scholar
  20. Daikonya A, Katsuki S, Kitanaka S (2004) Antiallergic agents from natural sources 9. Inhibition of nitric oxide production by novel chalcone derivatives from Mallotus philippinensis (Euphorbiaceae). Chem Pharm Bull 52:1326–1329CrossRefPubMedGoogle Scholar
  21. Fang SH, Rao YK, Tseng YM (2008) Anti-oxidant and inflammatory mediator’s growth inhibitory effects of compounds isolated from Phyllanthus urinaria. J Ethnopharmacol 116:333–340CrossRefPubMedGoogle Scholar
  22. Groweiss A, Cardellina JH II, Gray GN et al (1994) A novel furanocarboxamide from Mallotus cuneatus. Nat Prod Lett 5:175–178Google Scholar
  23. Gschwendt M, Mueller HJ, Kielbassa K et al (1994) Rottlerin, a novel protein kinase inhibitor. Biochem Biophy Res Commun 199:93–98CrossRefGoogle Scholar
  24. Gujral ML, Varma DR, Sareen KN et al (1960) Oral contraceptives. II. Antifertility effect of Mallotus philippinensis. Indian J Med Res 48:52–58PubMedGoogle Scholar
  25. Gupta SC, Gupta SS, Aggarwal JS (1953) Chemical examination of the seeds of Mallotus philippinensis. III. Constitution of kamlolenic acid isolated from the oil. J Sci Ind Res 12:240–242Google Scholar
  26. Guz NR, Stermitz FR (2000) Synthesis and structures of regioisomeric hydnocarpin-type flavonolignans. J Nat Prod 63:1140–1145CrossRefPubMedGoogle Scholar
  27. Hikino H, Tamada M, Yen KY (1978) Mallorepine, cyano-γ-pyridone from Mallotus repandus. Planta Med 33:385–388CrossRefPubMedGoogle Scholar
  28. Huang PL, Wang LW, Lin CN (1999) New triterpenoids of Mallotus repandus. J Nat Prod 62:891–892CrossRefPubMedGoogle Scholar
  29. Hui WH, Li MM (1976) An examination of the Euphorbiaceae of Hong Kong. Part 13. Triterpenoids from two Mallotus species: a nor-triterpene and two new acids. Phytochemistry 15:985–986CrossRefGoogle Scholar
  30. Hui WH, Li MM (1977) An examination of the Euphorbiaceae of Hong Kong. Part 14. Triterpenoids from Mallotus repandus: three new δ-lactones. Phytochemistry 16:113–115CrossRefGoogle Scholar
  31. Hui WH, Chan CK, Chow LC et al (1969) Examination of the Euphorbiaceae of Hong Kong. IV. Triterpenoids and sterols of Aporosa chinensis and Mallotus paniculatus. Phytochemistry 8:519CrossRefGoogle Scholar
  32. Intahphuak S, Panthong A, Kanjanapothi D et al (2004) Anti-inflammatory and analgesic activities of Mallotus spodocarpus Airy Shaw. J Ethnopharmacol 90:69–72CrossRefPubMedGoogle Scholar
  33. Jabbar A, Raza MA, Iqbal Z et al (2006) An inventory of the ethnobotanicals used as anthelmintics in the southern Punjab (Pakistan). J Ethnopharmacol 108:152–154CrossRefPubMedGoogle Scholar
  34. Kang F, Lu H (2007) Separation and analysis of the chemical constituents of Mallotus apelta. Guangdong Yaoxueyuan Xuebao 23:121–123Google Scholar
  35. Karioti A, Skaltsa H, Heilmann J et al (2003) Acylated flavonoid and phenylethanoid glycosides from Marrubium velutinum. Phytochemistry 64:655–660CrossRefPubMedGoogle Scholar
  36. Kawashima T, Hirayama H, Ichino M et al. (1975) Uterus muscle-active principle from Mallotus repandus. Japanese Patent 1973-124028, 6 Nov 1973Google Scholar
  37. Kawashima T, Nakatsu T, Fukazawa Y et al (1976a) Diterpenic lactones of Mallotus repandus. Heterocycles 5:227–232CrossRefGoogle Scholar
  38. Kawashima T, Ohtama H, Hirayama H et al. (1976b) Antitumor AK-3A and AK-3B from Mallotus repandus. Japanese Patent 1975-74310, 20 June 1975Google Scholar
  39. Kumar VP, Chauhan NS, Padh H et al (2006) Search for antibacterial and antifungal agents from selected Indian medicinal plants. J Ethnopharmacol 107:182–188CrossRefPubMedGoogle Scholar
  40. Li Y, Luo Y, Huang W et al (2006) Total synthesis of mallotophilippen C. Tetrahedron Lett 47:4153–4155CrossRefGoogle Scholar
  41. Liao YF, Hung YC, Chang WH et al (2005) The PKC delta inhibitor, rottlerin, induces apoptosis of haematopoietic cell lines through mitochondrial membrane depolarization and caspases’ cascade. Life Sci 77:707–719CrossRefPubMedGoogle Scholar
  42. Likhitwitayawuid K, Supudompol B (2005) A new phloroglucinol dimer from Mallotus pallidus. Heterocycles 65:161–164CrossRefGoogle Scholar
  43. Likhitwitayawuid K, Supudompol B, Sritularak B et al (2005) Phenolics with anti-HSV and anti-HIV activities from Artocarpus gomezianus, Mallotus pallidus, and Triphasia trifolia. Pharm Biol 43:651–657CrossRefGoogle Scholar
  44. Lin JM, Lin CC, Chen MF et al (1995) Scavenging effects of Mallotus repandus on active oxygen species. J Ethnopharmacol 46:175–181CrossRefPubMedGoogle Scholar
  45. Liu Y, Murakami N, Ji H et al (2007) Antimalarial flavonol glycosides from Euphorbia hirta. Pharm Biol 45:278–281CrossRefGoogle Scholar
  46. Lounasmaa M, Widen CJ, Tuuf CM et al (1975) Phloroglucinol derivatives of Mallotus philippinensis. Planta Med 28:16–31CrossRefPubMedGoogle Scholar
  47. Ma J, Jones Shannon H, Hecht Sidney MA (2004) Coumarin from Mallotus resinosus that mediates DNA cleavage. J Nat Prod 67:1614–1616CrossRefPubMedGoogle Scholar
  48. Manga HM, Brkic D, Marie DEP et al (2004) In vivo anti-inflammatory activity of Alchornea cordifolia (Schumach. & Thonn.) Müll. Arg. (Euphorbiaceae). J Ethnopharmacol 92:209–214CrossRefPubMedGoogle Scholar
  49. Moorthy K, Srinivasan K, Subramanian C et al (2007) Phytochemical screening and antibacterial evaluation of stem bark of Mallotus philippinensis var. tomentosus. Afr J Biotechnol 6:1521–1523Google Scholar
  50. Nahrstedt A, Hungeling M, Petereit F (2006) Flavonoids from Acalypha indica. Fitoterapia 77:484–486CrossRefPubMedGoogle Scholar
  51. Nair SP, Rao JM (1993) Kamaladiol-3-acetate from the stem bark of Mallotus phillippinensis. Phytochemistry 32:407–409CrossRefGoogle Scholar
  52. Nakatsu T, Ito S, Kawashima T (1981) Mallotucin C and D, two diterpenic lactones from Mallotus repandus. Heterocycles 15:241–244CrossRefGoogle Scholar
  53. Nguyen Hoai N, Dejaegher B, Tistaert C et al. (2009) Development of HPLC fingerprints for Mallotus species extracts and evaluation of the peaks responsible for their antioxidant activity. J Pharm Biomed Anal 50:753–763Google Scholar
  54. Nguyen MCL, Caple R, Karim R et al. (1997) Isolation of active components of traditional medicines found in the BA-VI forests of Vietnam. In: Abstracts of the 213th ACS National Meeting, San Francisco, 13–17 April 1997Google Scholar
  55. Nowicke JW, Takahashi M (2002) Pollen morphology, exine structure, and systematics of Acaphyloideae (Euphorbiaceae), Part 4 Tribes Acalypheae pro parte (Erythrococca, Claoxylon, Claoxylopsis, Mareya, Mareyopsis, Discoclaoxylon, Micrococca, Amyrea, Lobanilia, Mallotus, Deuteromallotus, Cordemoya, Cococceras, Trewia, Neotrewia, Rockinghamia, Octospermum, Acalypha, Lasiococca, Spathiostemon, Homonoia), Plukenetieae (Haematostemon, Astrococcus, Angostyles, Romanoa, Eleutherostigma, Plukenetia, Vigia, Cnesmone, Megistostigma, Sphaerostylis, Tragiella, Platygyna, Tragia, Acidoton, Pachystylidium, Dalechampia), Omphaleae (Omphalea), and discussion and summary of the complete subfamily. Rev Paleobot Palynol 121:231–336CrossRefGoogle Scholar
  56. Ogata T, Higuchi H, Mochida S et al (1992) HIV-1 reverse transcriptase inhibitor from Phyllanthus niruri. IDS Res Human Retrovir 8:1937–1944CrossRefGoogle Scholar
  57. Ono K, Nakane H, Meng ZM et al (1989) Differential inhibitory effects of various herb extracts on the activities of reverse transcriptase and various deoxyribonucleic acid (DNA) polymerases. Chem Pharm Bull 3:1810–1812Google Scholar
  58. Pan L, Chin YW, Chai HB et al (2009) Bioactivity-guided isolation of cytotoxic constituents of Brucea javanica collected in Vietnam. Bioorg Med Chem 17:2219–2224CrossRefPubMedGoogle Scholar
  59. Qi X, Yang Y, Ye Y (2005) Study on chemical constituents from stem of Mallotus apelta. J Chin Med Mater 28:765–766Google Scholar
  60. Qiu H, Gilbert MG (2008) Mallotus Loureiro, Fl. Cochinch. 2: 635. 1790. Flora of China 11:225–237Google Scholar
  61. Ranjan R, Marczewski A, Chojnacki T et al (2001) Search for polyprenols in leaves of evergreen and deciduous Ericaceae plants. Acta Biochim Pol 48:579–584PubMedGoogle Scholar
  62. Rivière C, Nguyen VTH, Pieters L et al (2009) Polyphenols isolated from antiradical extracts of Mallotus metcalfianus. Phytochemistry 70:86–94CrossRefPubMedGoogle Scholar
  63. Roberts KD, Weiss E, Reichstein T (1963) Glycosides and aglycons. CCLII. Cardenolides of the seed of Mallotus philippinensis. Helv Chim Acta 46:2886–2893CrossRefGoogle Scholar
  64. Roberts KD, Weiss E, Reichstein T (1966) Glycosides and aglycons. CCLXXII. The cardenolides of the seeds of Mallotus paniculatus. Helv Chim Acta 49:316–329CrossRefGoogle Scholar
  65. Roberts KD, Weiss E, Reichstein T (1967) Glycosides and aglycons. CCXCV. Cardenolides from seeds of Mallotus paniculatus. 2. Structural proof. Helv Chim Acta 50:1645–1664CrossRefGoogle Scholar
  66. Sahpaz S, Skaltsounis AL, Bailleul F (2002) Polyphenols from Ballota acetabulosa. Biochem Syst Ecol 30:601–604CrossRefGoogle Scholar
  67. Saijo R, Nonaka G, Nishioka I (1989a) Tannins and related compounds. LXXXVII. Isolation and characterization of four new hydrolyzable tannins from the leaves of Mallotus repandus. Chem Pharm Bull 37:2624–2630Google Scholar
  68. Saijo R, Nonaka G, Nishioka I et al (1989b) Tannins and related compounds. LXXXVIII. Isolation and characterization of hydrolyzable tannins from Mallotus japonicus (Thunb.) Mueller-Arg. and M. philippinensis (Lam.) Mueller-Arg. Chem Pharm Bull 37:2940–2947Google Scholar
  69. Saleh AMN (1985) Flavonol glycosides of Euphorbia retusa and Euphorbia sanctae-catharinae. Phytochemistry 24:371–372CrossRefGoogle Scholar
  70. Sasak W, Chonjnacki T (1973) Long-chain polyprenols of tropical and subtropical plants. Acta Biochim Pol 20:343–350PubMedGoogle Scholar
  71. Schatz GE (2001) Flore générique des arbres de Madagascar. Royal Botanic gardens, Kew & Missouri Botanical Gardens, Saint-Louis, p 503Google Scholar
  72. Shan X, Feng L, Wu C (1985) Chemical constituents of the roots of Mallotus apelta (Lour.) Müell.-Arg. Zhiwu Xuebao 27:192–195Google Scholar
  73. Shang X, Zhang C, Li C et al (2002) Studies on chemical constituents of Meconopsis quintuplinervia Regel. J Chin Med Mater 25:250–252Google Scholar
  74. Soobrattee MA, Bahorun T, Aruoma OI (2006) Chemopreventive actions of polyphenolic compounds in cancer. Biofactors 27:19–35CrossRefPubMedGoogle Scholar
  75. Supudompol B, Likhitwitayawuid K, Houghton PJ (2004) Phloroglucinol derivatives from Mallotus pallidus. Phytochemistry 65:2589–2594CrossRefPubMedGoogle Scholar
  76. Sutthivaiyakit S, Thongtan J, Pisutjaroenpong S et al (2001) D:A Friedo-oleanane Lactones from the Stems of Mallotus repandus. J Nat Prod 64:569–571CrossRefPubMedGoogle Scholar
  77. Tanaka T, Ito T, Linuma M et al (1998) Dimeric chalcone derivatives from Mallotus philippinensis. Phytochemistry 48:1423–1427CrossRefGoogle Scholar
  78. Tapiero H, Tew KD, Ba GN et al (2002) Polyphenols: do they play a role in the prevention of human pathologies? Biomed Pharmacother 56:200–207CrossRefPubMedGoogle Scholar
  79. Thakur SC, Thakur SS, Chaube SK et al (2005) An etheral extract of Kamala (Mallotus philippinensis (Moll. Arg.) Lam.) seed induce adverse effects on reproductive parameters of female rats. Reprod Toxicol 20:149–156CrossRefPubMedGoogle Scholar
  80. Thin NN (2003) Euphorbiaceae Juss., 1789—Thau dau (Dai kich) family. In: Ban NT (ed) The appendix of Vietnamese plant species, vol II. Agriculture Publishing House, Hanoi, pp 626–633Google Scholar
  81. Tistaert C, Dejaegher B, Nguyen HN et al (2009) Potential antioxidant compounds in Mallotus species fingerprints. Part I: indication, using linear multivariate calibration techniques. Anal Chim Acta 649:24–32CrossRefPubMedGoogle Scholar
  82. Tomizawa S, Asuke K, Suguro N (1976) Bergenin: isocoumarin from the stems of Mallotus repandus. Phytochemistry 15:328CrossRefGoogle Scholar
  83. Van Chau M, Phan VK, Nguyen HN et al (2004) Chemical investigations and biological studies of Mallotus apelta. V. Flavonoids and other compounds from Mallotus apelta. Tap Chi Hoa Hoc 42:ii–iiiGoogle Scholar
  84. Van Chau M, Le MH, Phan VK et al (2005a) Chemical investigations and biological studies of Mallotus apelta. VI. Cytotoxic constituents from Mallotus apelta. Tap Chi Hoa Hoc 43:v–viGoogle Scholar
  85. Van Chau M, Phan VK, Hoang TH et al (2005b) Chemical investigations and biological studies of Mallotus apelta. I. Pentacyclic triterpenoids from Mallotus apelta. Tap Chi Hoa Hoc 43:235–239Google Scholar
  86. Van Chau M, Phan VK, Hoang TH et al (2005c) Chemical investigations and biological studies of Mallotus apelta. II. Malloapelta A—a new pentacyclic triterpenoid from Mallotus apelta. Tap Chi Hoa Hoc 43:388–391Google Scholar
  87. Van Chau M, Phan VK, Nguyen HN et al (2005d) Chemical investigations and biological studies of Mallotus apelta. IV. Constituents with inhibitory activity against NFAT transcription and NF-κB activation from Mallotus apelta. Tap Chi Hoa Hoc 43:773–777Google Scholar
  88. Van Kiem P, Minh CV, Huong HT et al (2004) Pentacyclic triterpenoids from Mallotus apelta. Archiv Pharm Res 27:1109–1113CrossRefGoogle Scholar
  89. Van Kiem P, Nguyen HD, Ha VB et al (2005) New cytotoxic benzopyrans from the leaves of Mallotus apelta. Arch Pharm Res 28:1131–1134CrossRefPubMedGoogle Scholar
  90. Wansi JD, Wandji J, Kamdem WA et al (2006) Triterpenoids from Drypetes chevalieri Beille (Euphorbiaceae). Nat Prod Res 20:586–592CrossRefPubMedGoogle Scholar
  91. Wu GF, Wei S, Lan SB et al (2006) Isopentenyl flavanone from Mallotus apelta. Zhongcaoyao 37:126–128Google Scholar
  92. Xu S, Lu ZP, Cai HB et al (2006) Inhibiting effects of root of Mallotus apelta on duck hepatitis B virus. J Chin Integr Med 4:285–288CrossRefGoogle Scholar
  93. Xu JF, Feng ZM, Liu J et al (2008) New hepatoprotective coumarinolignoids from Mallotus apelta. Chem Biodivers 5:591–597CrossRefPubMedGoogle Scholar
  94. Yang LL, Yen KY, Kiso Y et al (1987) Antihepatotoxic actions of Formosan plant drugs. J Ethnopharmacol 19:103–110CrossRefPubMedGoogle Scholar
  95. Yu X, Wang H, Zhang J et al (1991) Structural determination of fatty acid components in the seeds oils of five species of Euphorbiaceae. Zhiwu Xuebao 33:199–205Google Scholar
  96. Yuan W, Li S, Ownby S et al (2007) Flavonoids, coumarins and triterpenes from the aerial parts of Cnidoscolus texanus. Planta Med 73:1304–1308CrossRefPubMedGoogle Scholar
  97. Zaidi SFH, Yoshida I, Butt F et al (2009) Potent bactericidal constituents from Mallotus philippinensis against clarithromycin and metronidazole resistant strains of Japanese and Pakistani Helicobacter pylori. Biol Pharm Bull 32:631–636CrossRefPubMedGoogle Scholar
  98. Zhang YJ, Abe T, Tanaka T et al (2002) Two new acylated flavanone glycosides from the leaves and branches of Phyllanthus emblica. Chem Pharm Bull 50:841–843CrossRefPubMedGoogle Scholar
  99. Zhao PJ, Shen YM (2004) Neo-lignans in the seed crusts of Trewia nudiflora. Chin Chem Lett 15:921–924Google Scholar
  100. Zhao J, Lu Z, Wang X et al (2002) The study on the anti-oxidation effect of root of Mallotus apelta in the rat model of liver fibrosis. J Chin Med Mater 25:185–187Google Scholar
  101. Zhao J, Pawar RS, Ali Z, Khan IA (2007) Phytochemical investigation of Turnera diffusa. J Nat Prod 70:289–292CrossRefPubMedGoogle Scholar
  102. Zhu B, Bai G, Jiang S et al (2007) Studies on chemical constituent and quantitative determination of Mallotus apelta. Zhongguo Zhongyao Zazhi 32:932–934PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • C. Rivière
    • 1
    • 2
  • V. Nguyen Thi Hong
    • 3
  • Q. Tran Hong
    • 3
  • G. Chataigné
    • 1
  • N. Nguyen Hoai
    • 3
    • 4
  • B. Dejaegher
    • 4
  • C. Tistaert
    • 4
  • T. Nguyen Thi Kim
    • 3
    • 5
  • Y. Vander Heyden
    • 4
  • M. Chau Van
    • 3
  • J. Quetin-Leclercq
    • 1
  1. 1.Analytical Chemistry, Drug Analysis and Pharmacognosy UnitUniversité Catholique de LouvainBrusselsBelgium
  2. 2.Department of Pharmacology, INSERM U657Université Victor Segalen Bordeaux 2Bordeaux CedexFrance
  3. 3.Institute of Natural Products ChemistryVietnamese Academy of Science and TechnologyNghia Do Cau Giay, HanoiVietnam
  4. 4.Analytical Chemistry and Pharmaceutical Technology (FABI)Vrije Universiteit BrusselBrusselsBelgium
  5. 5.University of Natural ScienceVietnamese National UniversityHanoiVietnam

Personalised recommendations