Skip to main content

Advertisement

Log in

Cultivation-independent approaches to investigate the chemistry of marine symbiotic bacteria

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Sessile marine animals like sponges, tunicates, and bryozoans are a rich source of bioactive natural products, many of which exhibit potent anticancer activities. However, most of these substances are available in very limited amounts only, which has prohibited further drug development. Recent evidence suggests that symbiotic bacteria might be the true producers of many animal-derived metabolites. In addition to revealing fascinating perspectives for research in marine chemical ecology, these findings suggest new solutions to the supply problem. Although most symbionts remain uncultivated, bacterial production systems might be created by isolating biosynthetic genes from marine metagenomes, and expressing them in culturable bacterial hosts. This review discusses cell-sorting, natural product visualization, and phylogenetic approaches to identify symbiotic producers. In addition, strategies to isolate genes and gene clusters from marine species consortia are described. These techniques have provided insights into the bacterial origin and biosynthesis of polyketides like the onnamides, swinholides, and bryostatins, of peptides including the patellamides, chlorinated dipeptides, and theopalauamide as well as of brominated biphenylethers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAC:

Bacterial artificial chromosome

CARD-FISH:

Catalyzed reporter deposition fluorescence in situ hybridization

CMF-ASW:

Calcium–magnesium-free artificial sea water

CoA:

Coenzyme A

DGGE:

Denaturing gradient gel electrophoresis

FACS:

Fluorescence-activated cell-sorting

FISH:

Fluorescence in situ hybridization

HRP:

Horseradish peroxidase

MALDI-TOF MS:

Matrix-assisted laser desorption ionization–time of flight mass spectrometry

NRPS:

Nonribosomal peptide synthetase

PAC:

P1-derived artificial chromosome

PKS:

Polyketide synthase

SSCP:

Single-strand conformation polymorphism analysis

YAC:

Yeast artificial chromosome

References

  • Amann R, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6:339–348. doi:10.1038/nrmicro1888

    PubMed  CAS  Google Scholar 

  • Anderson CM, Haygood MG (2007) α-Proteobacterial symbionts of marine bryozoans in the genus Watersipora. Appl Environ Microbiol 73:303–311. doi:10.1128/AEM.00604-06

    PubMed  CAS  Google Scholar 

  • Ansari MZ, Yadav G, Gokhale RS, Mohanty D (2004) NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res 32:W405–W413. doi:10.1093/nar/gkh359

    PubMed  CAS  Google Scholar 

  • Banik JJ, Brady SF (2008) Cloning and characterization of new glycopeptide gene clusters found in an environmental DNA megalibrary. Proc Natl Acad Sci USA 105:17273–17277. doi:10.1073/pnas.0807564105

    PubMed  CAS  Google Scholar 

  • Banskota AH et al (2006) Genomic analyses lead to novel secondary metabolites. J Antibiot 59:533–542. doi:10.1038/ja.2006.74

    PubMed  CAS  Google Scholar 

  • Bergmann S, Schumann J, Scherlach K, Lange C, Brakhage AA, Hertweck C (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217. doi:10.1038/nchembio869

    PubMed  CAS  Google Scholar 

  • Bewley CA, Faulkner DJ (1998) Lithistid sponges: star performers or hosts to the stars. Angew Chem Int Ed 37:2163–2178. doi:10.1002/(SICI)1521-3773(19980904)37:16<2162::AID-ANIE2162>3.0.CO;2-2

    CAS  Google Scholar 

  • Bewley CA, Holland ND, Faulkner DJ (1996) Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52:716–722. doi:10.1007/BF01925581

    PubMed  CAS  Google Scholar 

  • Brady SF (2007) Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules. Nat Protoc 2:1297–1305. doi:10.1038/nprot.2007.195

    PubMed  CAS  Google Scholar 

  • Brady SF, Clardy J (2000) Long-chain N-acyl amino acid antibiotics isolated from heterologously expressed environmental DNA. J Am Chem Soc 122:12903–12904. doi:10.1021/ja002990u

    CAS  Google Scholar 

  • Brady SF, Clardy J (2004) Palmitoylputrescine, an antibiotic isolated from the heterologous expression of DNA extracted from bromeliad tank water. J Nat Prod 67:1283–1286. doi:10.1021/np0499766

    PubMed  CAS  Google Scholar 

  • Brady SF, Clardy J (2005) N-acyl derivatives of arginine and tryptophan isolated from environmental DNA expressed in Escherichia coli. Org Lett 7:3613–3616. doi:10.1021/ol0509585

    PubMed  CAS  Google Scholar 

  • Brady SF, Chao CJ, Handelsman J, Clardy J (2001) Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA. Org Lett 3:1981–1984. doi:10.1021/ol015949k

    PubMed  CAS  Google Scholar 

  • Brendel N, Partida-Martinez LP, Scherlach K, Hertweck C (2007) A cryptic PKS-NRPS gene locus in the plant commensal Pseudomonas fluorescens Pf-5 codes for the biosynthesis of an antimitotic rhizoxin complex. Org Biomol Chem 5:2211–2213. doi:10.1039/b707762a

    PubMed  CAS  Google Scholar 

  • Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141–2153. doi:10.1021/np040106y

    PubMed  CAS  Google Scholar 

  • Challis GL (2008a) Genome mining for novel natural product discovery. J Med Chem 51:2618–2628. doi:10.1021/jm700948z

    PubMed  CAS  Google Scholar 

  • Challis GL (2008b) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology-(UK) 154:1555–1569

    Article  CAS  Google Scholar 

  • Corre C, Song LJ, O’Rourke S, Chater KF, Challis GL (2008) 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc Natl Acad Sci USA 105:17510–17515. doi:10.1073/pnas.0805530105

    PubMed  CAS  Google Scholar 

  • Cuevas C et al (2000) Synthesis of ecteinascidin ET-743 and phthalascidin Pt-650 from cyanosafracin B. Org Lett 2:2545–2548. doi:10.1021/ol0062502

    PubMed  CAS  Google Scholar 

  • Davidson SK, Allen SW, Lim GE, Anderson CM, Haygood MG (2001) Evidence for the biosynthesis of bryostatins by the bacterial symbiont “Candidatus Endobugula sertula” of the bryozoan Bugula neritina. Appl Environ Microbiol 67:4531–4537. doi:10.1128/AEM.67.10.4531-4537.2001

    PubMed  CAS  Google Scholar 

  • Degnan BM et al (1989) New cyclic peptides with cytotoxic activity from the ascidian Lissoclinum patella. J Med Chem 32:1349–1354. doi:10.1021/jm00126a034

    PubMed  CAS  Google Scholar 

  • Dimise EJ, Widboom PF, Bruner SD (2008) Structure elucidation and biosynthesis of fuscachelins, peptide siderophores from the moderate thermophile Thermobifida fusca. Proc Natl Acad Sci USA 105:15311–15316. doi:10.1073/pnas.0805451105

    PubMed  CAS  Google Scholar 

  • Donadio S, Monciardini P, Sosio M (2007) Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24:1073–1109. doi:10.1039/b514050c

    PubMed  CAS  Google Scholar 

  • Donia MS et al (2006) Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nat Chem Biol 2:729–735. doi:10.1038/nchembio829

    PubMed  CAS  Google Scholar 

  • Droege M, Hill B (2008) The genome sequencer FLX (TM) system-longer reads, more applications, straight forward bioinformatics and more complete data sets. J Biotechnol 136:3–10. doi:10.1016/j.jbiotec.2008.03.021

    PubMed  CAS  Google Scholar 

  • Esquenazi E, Coates C, Simmons L, Gonzalez D, Gerwick WH, Dorrestein PC (2008) Visualizing the spatial distribution of secondary metabolites produced by marine cyanobacteria and sponges via MALDI-TOF imaging. Mol Biosyst 4:562–570. doi:10.1039/b720018h

    PubMed  CAS  Google Scholar 

  • Faulkner DJ (2000) Highlights of marine natural products chemistry (1972–1999). Nat Prod Rep 17:1–6. doi:10.1039/a909113k

    PubMed  CAS  Google Scholar 

  • Fernandez-Busquets X, Burger MM (1999) Cell adhesion and histocompatibility in sponges. Microsc Res Tech 44:204–218. doi:10.1002/(SICI)1097-0029(19990215)44:4<204::AID-JEMT2>3.0.CO;2-I

    PubMed  CAS  Google Scholar 

  • Fisch KM et al (2009) Polyketide assembly lines of uncultivated sponge symbionts from structure-based gene targeting. Nat Chem Biol, accepted

  • Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496. doi:10.1021/cr0503097

    PubMed  CAS  Google Scholar 

  • Flatt P, Gautschi J, Thacker R, Musafija-Girt M, Crews P, Gerwick W (2005) Identification of the cellular site of polychlorinated peptide biosynthesis in the marine sponge Dysidea (Lamellodysidea) herbacea and symbiotic cyanobacterium Oscillatoria spongeliae by CARD-FISH analysis. Mar Biol (Berl) 147:761–774. doi:10.1007/s00227-005-1614-9

    CAS  Google Scholar 

  • Flowers AE, Garson MJ, Webb RI, Dumdei EJ, Charan RD (1998) Cellular origin of chlorinated diketopiperazines in the dictyoceratid sponge Dysidea herbacea (Keller). Cell Tissue Res 292:597–607. doi:10.1007/s004410051089

    PubMed  CAS  Google Scholar 

  • Fraser-Liggett CM (2005) Insights on biology and evolution from microbial genome sequencing. Genome Res 15:1603–1610. doi:10.1101/gr.3724205

    PubMed  CAS  Google Scholar 

  • Garson MJ, Thompson JE, Larsen RM, Battershill CN, Murphy PT, Bergquist PR (1992) Terpenes in sponge cell membranes: cell separation and membrane fractionation studies with the tropical marine sponge Amphimedon sp. Lipids 27:378–388. doi:10.1007/BF02536153

    CAS  Google Scholar 

  • Garson MJ, Zimmermann MP, Battershill CN, Holden JL, Murphy PT (1994) The distribution of brominated long-chain fatty acids in sponge and symbiont cell types from the tropical marine sponge Amphimedon terpenensis. Lipids 29:509–516. doi:10.1007/BF02578249

    PubMed  CAS  Google Scholar 

  • Gillespie DE et al (2002) Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68:4301–4306. doi:10.1128/AEM.68.9.4301-4306.2002

    PubMed  CAS  Google Scholar 

  • Gillor O, Carmeli S, Rahamim Y, Fishelson Z, Ilan M (2000) Immunolocalization of the toxin latrunculin B within the Red Sea sponge Negombata magnifica (Demospongiae, Latrunculiidae). Mar Biotechnol 2:213–223

    PubMed  CAS  Google Scholar 

  • Grabley S, Thiericke R (1999) Bioactive agents from natural sources: trends in discovery and application. Adv Biochem Eng Biotechnol 64:101–154

    PubMed  CAS  Google Scholar 

  • Gross H (2007) Strategies to unravel the function of orphan biosynthesis pathways: recent examples and future prospects. Appl Microbiol Biotechnol 75:267–277. doi:10.1007/s00253-007-0900-5

    PubMed  CAS  Google Scholar 

  • Gross H, Stockwell VO, Henkels MD, Nowak-Thompson B, Loper JE, Gerwick WH (2007) The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol 14:53–63. doi:10.1016/j.chembiol.2006.11.007

    PubMed  CAS  Google Scholar 

  • Gutell RR, Larsen N, Woese CR (1994) Lessons from an evolving ribosomal RNA—16S and 23S ribosomal RNA structures from a comparative perspective. Microbiol Rev 58:10–26

    PubMed  CAS  Google Scholar 

  • Hayashi K (1992) PCR-SSCP: a method for the detection of mutations. Genet Anal Biomol Eng 9:73–79

    CAS  Google Scholar 

  • Haygood MG, Davidson SK (1997) Small-subunit rRNA genes and in situ hybridization with oligonucleotides specific for the bacterial symbionts in the larvae of the bryozoan Bugula neritina and proposal of ‘‘Candidatus Endobugula sertula’’. Appl Environ Microbiol 63:4612–4616

    PubMed  CAS  Google Scholar 

  • Hildebrand M, Waggoner LE, Lim GE, Sharp KH, Ridley CP, Haygood MG (2004a) Approaches to identify, clone, and express symbiont bioactive metabolite genes. Nat Prod Rep 21:122–142. doi:10.1039/b302336m

    PubMed  CAS  Google Scholar 

  • Hildebrand M et al (2004b) bryA: an unsual polyketide synthase gene from the uncultivated bacterial symbiont of the bryozoan Bugula neritina. Chem Biol 11:1543–1552. doi:10.1016/j.chembiol.2004.08.018

    PubMed  CAS  Google Scholar 

  • Hill RT, Peraud O (2005) Manzamine-producing actinomycetes. Patent. WO2004013297, USA

  • Hill RT, Hamann MT, Enticknap J, Karumanchi RV (2005) Kahalalide-producing bacteria. Patent. 20070196901, USA

  • Hrvatin S, Piel J (2007) Rapid isolation of rare clones from highly complex DNA libraries by PCR analysis of liquid gel pools. J Microbiol Methods 68:434–436. doi:10.1016/j.mimet.2006.09.009

    PubMed  CAS  Google Scholar 

  • Jobes DV, Hurley DL, Thien LB (1995) Plant DNA isolation: a method to efficiently remove polyphenolics, polysaccharides, and RNA. Taxon 44:379–386. doi:10.2307/1223408

    Google Scholar 

  • Kamra P, Gokhale RS, Mohanty D (2005) SEARCHGTr: a program for analysis of glycosyltransferases involved in glycosylation of secondary metabolites. Nucleic Acids Res 33:W220–W225. doi:10.1093/nar/gki449

    PubMed  CAS  Google Scholar 

  • Khurana PK, Gokhale RS, Mohanty D (2007) In silico prediction and analysis of substrate specificity for acyl adenylate and glycosyltransferase superfamily of enzymes. J Biomol Struct Dyn 24:205

    Google Scholar 

  • Kittelmann S, Harder T (2005) Species- and site-specific bacterial communities associated with four encrusting bryozoans from the North Sea, Germany. J Exp Mar Biol Ecol 327:201–209. doi:10.1016/j.jembe.2005.06.020

    Google Scholar 

  • König GM, Kehraus S, Seibert SF, Abdel-Lateff A, Müller D (2006) Natural products from marine organisms and their associated microbes. ChemBioChem 7:229–238. doi:10.1002/cbic.200500087

    PubMed  Google Scholar 

  • Laroche M et al (2007) Cellular localisation of secondary metabolites isolated from the Caribbean sponge Plakortis simplex. Mar Biol (Berl) 151:1365–1373. doi:10.1007/s00227-006-0572-1

    CAS  Google Scholar 

  • Lasken RS (2007) Single-cell genomic sequencing using multiple displacement amplification. Curr Opin Microbiol 10:510–516. doi:10.1016/j.mib.2007.08.005

    PubMed  CAS  Google Scholar 

  • Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1:265–269. doi:10.1038/nchembio731

    PubMed  CAS  Google Scholar 

  • Lebar MD, Heimbegner JL, Baker BJ (2007) Cold-water marine natural products. Nat Prod Rep 24:774–797. doi:10.1039/b516240h

    PubMed  CAS  Google Scholar 

  • Lim GE, Haygood MG (2004) “Candidatus Endobugula glebosa”, a specific bacterial symbiont of the marine bryozoan Bugula simplex. Appl Environ Microbiol 70:4921–4929. doi:10.1128/AEM.70.8.4921-4929.2004

    PubMed  CAS  Google Scholar 

  • Long PF, Dunlap WC, Battershill CN, Jaspars M (2005) Shotgun cloning and heterologous expression of the patellamide gene cluster as a strategy to achieving sustained metabolite production. ChemBioChem 6:1760–1765. doi:10.1002/cbic.200500210

    PubMed  CAS  Google Scholar 

  • Loper JE, Henkels MD, Shaffer BT, Valeriote FA, Gross H (2008) Isolation and identification of rhizoxin analogs from Pseudomonas fluorescens Pf-5 by using a genomic mining strategy. Appl Environ Microbiol 74:3085–3093. doi:10.1128/AEM.02848-07

    PubMed  CAS  Google Scholar 

  • Margulies M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  • Martinez-Garcia M, Diaz-Valdes M, Wanner G, Ramos-Espla A, Anton J (2007) Microbial community associated with the colonial ascidian Cystodytes dellechiajei. Environ Microbiol 9:521–534. doi:10.1111/j.1462-2920.2006.01170.x

    PubMed  CAS  Google Scholar 

  • McAlpine JB et al (2005) Microbial Genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J Nat Prod 68:493–496. doi:10.1021/np0401664

    PubMed  CAS  Google Scholar 

  • Monaco AP, Larin Z (1994) YACs, BACs, PACs and MACs: artificial chromosomes as research tools. Trends Biotechnol 12:280–286. doi:10.1016/0167-7799(94)90140-6

    PubMed  CAS  Google Scholar 

  • Moore BS (1999) Biosynthesis of marine natural products: microorganisms and macroalgae. Nat Prod Rep 16:653–674. doi:10.1039/a805873c

    PubMed  CAS  Google Scholar 

  • Moore BS (2006) Biosynthesis of marine natural products: macroorganisms (Part B). Nat Prod Rep 23:615–629. doi:10.1039/b508781n

    PubMed  CAS  Google Scholar 

  • Moss C, Green DH, Pérez B, Velasco A, Henríquez R, McKenzie JD (2003) Intracellular bacteria associated with the ascidian Ecteinascidia turbinata: phylogenetic and in situ hybridisation analysis. Mar Biol (Berl) 143:99–110. doi:10.1007/s00227-003-1060-5

    CAS  Google Scholar 

  • Müller WEG, Diehlseifert B, Sobel C, Bechtold A, Kljajic Z, Dorn A (1986) Sponge secondary metabolites—biochemical and ultrastructural localization of the antimitotic agent avarol in Dysidea avara. J Histochem Cytochem 34:1687–1690

    PubMed  Google Scholar 

  • Munro MHG et al (1999) The discovery and development of marine compounds with pharmaceutical potential. J Biotechnol 70:15–25. doi:10.1016/S0168-1656(99)00052-8

    PubMed  CAS  Google Scholar 

  • Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322. doi:10.1016/S1369-5274(99)80055-1

    PubMed  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216–1238. doi:10.1021/np040031y

    PubMed  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477. doi:10.1021/np068054v

    PubMed  CAS  Google Scholar 

  • Nguyen T et al (2008) Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat Biotechnol 26:225–233. doi:10.1038/nbt1379

    PubMed  CAS  Google Scholar 

  • Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314:1464–1467. doi:10.1126/science.1131370

    PubMed  CAS  Google Scholar 

  • Perez-Matos AE, Rosado W, Govind NS (2007) Bacterial diversity associated with the Caribbean tunicate Ecteinascidia turbinata. Anton. Leeuw. Int. J Gen Mol Microbiol 92:155–164. doi:10.1007/s10482-007-9143-9

    Google Scholar 

  • Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101. doi:10.1128/AEM.68.6.3094-3101.2002

    PubMed  CAS  Google Scholar 

  • Piel J (2002) A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci USA 99:14002–14007. doi:10.1073/pnas.222481399

    PubMed  CAS  Google Scholar 

  • Piel J (2004) Metabolites from symbiotic bacteria. Nat Prod Rep 21:519–538. doi:10.1039/b310175b

    PubMed  CAS  Google Scholar 

  • Piel J, Hui D, Fusetani N, Matsunaga S (2004a) Targeting polyketide synthases with iteratively acting acyltransferases from metagenomes of uncultured bacterial consortia. Environ Microbiol 6(9):921–927. doi:10.1111/j.1462-2920.2004.00531.x

    PubMed  CAS  Google Scholar 

  • Piel J et al (2004b) Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci USA 101:16222–16227. doi:10.1073/pnas.0405976101

    PubMed  CAS  Google Scholar 

  • Piel J, Wen G, Platzer M, Hui D (2004c) Unprecedented diversity of catalytic domains in the first four modules of the putative pederin polyketide synthase. ChemBioChem 5:93–98. doi:10.1002/cbic.200300782

    PubMed  CAS  Google Scholar 

  • Proksch P, Edrada RA, Ebel R (2002) Drugs from the seas—current status and microbiological implications. Appl Microbiol Biotechnol 59:125–134. doi:10.1007/s00253-002-1006-8

    PubMed  CAS  Google Scholar 

  • Raap AK, Vandecorput MPC, Vervenne RAW, Vangijlswijk RPM, Tanke HJ, Wiegant J (1995) Ultra-sensitive FISH using peroxidase-mediated deposition of biotin-tyramide or fluorochrome tyramide. Hum Mol Genet 4:529–534. doi:10.1093/hmg/4.4.529

    PubMed  CAS  Google Scholar 

  • Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394. doi:10.1146/annurev.micro.57.030502.090759

    PubMed  Google Scholar 

  • Rausch C, Weber T, Kohlbacher O, Wohlleben W, Huson DH (2005) Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 33:5799–5808. doi:10.1093/nar/gki885

    PubMed  CAS  Google Scholar 

  • Richelle-Maurer E et al (2001) Cellular location of (2R, 3R, 7Z)-2-aminotetradec-7-ene-1,3-diol, a potent antimicrobial metabolite produced by the Caribbean sponge Haliclona vansoesti. Cell Tissue Res 306:157–165. doi:10.1007/s004410100437

    PubMed  CAS  Google Scholar 

  • Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26:1117–1124. doi:10.1038/nbt1485

    PubMed  CAS  Google Scholar 

  • Salomon CE, Faulkner DJ (2002) Localization studies of bioactive cyclic peptides in the ascidian Lissoclinum patella. J Nat Prod 65:689–692. doi:10.1021/np010556f

    PubMed  CAS  Google Scholar 

  • Salomon CE, Deerinck T, Ellisman MH, Faulkner DJ (2001) The cellular localization of dercitamide in the Palauan sponge Oceanapia sagittaria. Mar Biol (Berl) 139:313–319. doi:10.1007/s002270100493

    CAS  Google Scholar 

  • Salomon CE, Magarvey NA, Sherman DH (2004) Merging the potential of microbial genetics with biological and chemical diversity: an even brighter future for marine natural product drug discovery. Nat Prod Rep 21:105–121. doi:10.1039/b301384g

    PubMed  CAS  Google Scholar 

  • Scherlach K, Hertweck C (2006) Discovery of aspoquinolones A-D, prenylated quinoline-2-one alkaloids from Aspergillus nidulans, motivated by genome mining. Org Biomol Chem 4:3517–3520. doi:10.1039/b607011f

    PubMed  CAS  Google Scholar 

  • Schirmer A, Gadkari R, Reeves CD, Ibrahim F, Delong EF, Hutchinson CR (2005) Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol 71:4840–4849. doi:10.1128/AEM.71.8.4840-4849.2005

    PubMed  CAS  Google Scholar 

  • Schmidt EW (2008) Trading molecules and tracking targets in symbiotic interactions. Nat Chem Biol 4:466–473. doi:10.1038/nchembio.101

    PubMed  CAS  Google Scholar 

  • Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium, Candidatus Entotheonella palauensis. Mar Biol (Berl) 136:969–977. doi:10.1007/s002270000273

    CAS  Google Scholar 

  • Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, Haygood MG (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Natl Acad Sci USA 102:7315–7320. doi:10.1073/pnas.0501424102

    PubMed  CAS  Google Scholar 

  • Schmitt S, Wehrl M, Bayer K, Siegl A, Hentschel U (2007) Marine sponges as models for commensal microbe-host interactions. Symbiosis 44:43–50

    Google Scholar 

  • Schuett C, Doepke H, Groepler W, Wichels A (2005) Diversity of intratunical bacteria in the tunic matrix of the colonial ascidian Diplosoma migrans. Helgol Mar Res 59:136–140. doi:10.1007/s10152-004-0212-4

    Google Scholar 

  • Seleghim MHR, de Lira SP, Campana PT, Berlinck RGS, Custodio MR (2007) Localization of granulatimide alkaloids in the tissues of the ascidian Didemnum granulatum. Mar Biol (Berl) 150:967–975. doi:10.1007/s00227-006-0410-5

    CAS  Google Scholar 

  • Sharp KH, Davidson SK, Haygood MG (2007) Localization of ‘Candidatus Endobugula sertula’ and the bryostatins throughout the life cycle of the bryozoan Bugula neritina. ISME J 1:693–702. doi:10.1038/ismej.2007.78

    PubMed  Google Scholar 

  • Singh R, Sharma M, Joshi P, Rawat DS (2008) Clinical status of anti-cancer agents derived from marine sources. Anticancer Agents Med Chem 8:603–617

    PubMed  CAS  Google Scholar 

  • Smid N, Gross H (2008) Genomics-guided isolation of cryptic secondary metabolites from Pseudomonas syringae pv. syringae. Planta Med 74:1079–1091. doi:10.1055/s-0028-1084539

    Google Scholar 

  • Starcevic A, Zucko J, Simunkovic J, Long PF, Cullum J, Hranueli D (2008) ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures. Nucleic Acids Res 36:6882–6892. doi:10.1093/nar/gkn685

    PubMed  CAS  Google Scholar 

  • Steffan B, Brix K, Putz W (1993) Biosynthesis of shermilamine B. Tetrahedron 49:6223–6228. doi:10.1016/S0040-4020(01)87960-6

    CAS  Google Scholar 

  • Sudek S, Haygood MG, Youssef DTA, Schmidt EW (2006) Structure of trichamide, a cyclic peptide from the bloom-forming cyanobacterium Trichodesmium erythraeum, predicted from the genome sequence. Appl Environ Microbiol 72:4382–4387. doi:10.1128/AEM.00380-06

    PubMed  CAS  Google Scholar 

  • Sudek S et al (2007) Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. J Nat Prod 70:67–74. doi:10.1021/np060361d

    PubMed  CAS  Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347. doi:10.1128/MMBR.00040-06

    PubMed  CAS  Google Scholar 

  • Turon X, Becerro MA, Uriz MJ (2000) Distribution of brominated compounds within the sponge Aplysina aerophoba: coupling of X-ray microanalysis with cryofixation techniques. Cell Tissue Res 301:311–322. doi:10.1007/s004410000233

    PubMed  CAS  Google Scholar 

  • Unson MD, Faulkner DJ (1993) Cyanobacterial symbiont biosynthesis of chlorinated metabolites from Dysidea herbacea (Porifera). Experientia 49:349–353. doi:10.1007/BF01923420

    CAS  Google Scholar 

  • Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol (Berl) 119:1–11. doi:10.1007/BF00350100

    CAS  Google Scholar 

  • Uriz MJ, Becerro MA, Tur JM, Turon X (1996a) Location of toxicity within the Mediterranean sponge Crambe crambe (Demospongiae: Poecilosclerida). Mar Biol (Berl) 124:583–590. doi:10.1007/BF00351039

    CAS  Google Scholar 

  • Uriz MJ, Turon X, Galera J, Tur JM (1996b) New light on the cell location of avarol within the sponge Dysidea avara (Dendroceratida). Cell Tissue Res 285:519–527. doi:10.1007/s004410050668

    Google Scholar 

  • Webster NS, Hill RT (2001) The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an α-Proteobacterium. Mar Biol (Berl) 138:843–851. doi:10.1007/s002270000503

    CAS  Google Scholar 

  • Wender PA et al (1998) The design, computer modeling, solution structure, and biological evaluation of synthetic analogs of bryostatin 1. Proc Natl Acad Sci USA 95:6624–6629. doi:10.1073/pnas.95.12.6624

    PubMed  CAS  Google Scholar 

  • Wilkinson B, Micklefield J (2007) Mining and engineering natural-product biosynthetic pathways. Nat Chem Biol 3:379–386. doi:10.1038/nchembio.2007.7

    PubMed  CAS  Google Scholar 

  • Williams JA, Day M, Heavner JE (2008) Ziconotide: an update and review. Expert Opin Pharmacother 9:1575–1583. doi:10.1517/14656566.9.9.1575

    PubMed  CAS  Google Scholar 

  • Yadav G, Gokhale RS, Mohanty D (2003) SEARCHPKS: a program for detection and analysis of polyketide synthase domains. Nucleic Acids Res 31:3654–3658. doi:10.1093/nar/gkg607

    PubMed  CAS  Google Scholar 

  • Yadav G, Gokhale RS, Mohanty D (2004) Computational analysis of type I polyketide synthases. In: 18th Symposium of the Protein-Society. Cold Spring Harbor Lab Press, Publications Dept, San Diego, CA, p 410

    Google Scholar 

  • Yarza P et al (2008) The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250. doi:10.1016/j.syapm.2008.07.001

    PubMed  CAS  Google Scholar 

  • Yu WH, Su SC, Lee CY (2008) A novel retrieval system for nearly complete microbial genomic fragments from soil samples. J Microbiol Methods 72:197–205. doi:10.1016/j.mimet.2007.11.022

    PubMed  CAS  Google Scholar 

  • Zazopoulos E et al (2003) A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat Biotechnol 21:187–190. doi:10.1038/nbt784

    PubMed  CAS  Google Scholar 

  • Zheng W et al (2004) Macrocyclic ketone analogues of halichondrin B. Bioorg Med Chem Lett 14:5551–5554. doi:10.1016/j.bmcl.2004.08.069

    PubMed  CAS  Google Scholar 

  • Zimmermann K, Engeser M, Blunt JW, Munro MHG, Piel J (2009) Pederin-type pathways of uncultivated bacterial symbionts: analysis of O-methyltransferases and generation of a biosynthetic hybrid. J Am Chem Soc 131:2780–2781. doi:10.1021/ja808889k

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work on marine symbiosis in the authors’ laboratory was funded by grants of the DFG (PI 430/1-1 to 1-3, PI 430/2-1 to 2-2, PI 430/5-1 to 5-2, PI 430/6-1), the JSPS and the BMBF (03F0414F) to J.P. and a DAAD scholarship to A. U. We thank S. Matsunaga, N. Fusetani, U. Hentschel, P. Crews, M. Munro, J. Blunt, M. Platzer, V. Webb, R. Quinn, B. S. Moore and W. Boland for collaborative opportunities and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Piel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uria, A., Piel, J. Cultivation-independent approaches to investigate the chemistry of marine symbiotic bacteria. Phytochem Rev 8, 401–414 (2009). https://doi.org/10.1007/s11101-009-9127-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-009-9127-7

Keywords

Navigation