Skip to main content

Advertisement

Log in

Physiological effects of broccoli consumption

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Epidemiological studies suggest that broccoli can decrease risk for cancer. Broccoli contains many bioactives, including vitamins C and E, quercetin and kaempferol glycosides and, like other members of the Brassicaceae, several glucosinolates, including glucobrassicin (3-indolylmethyl glucosinolate) and glucoraphanin (4-methylsulphinylbutyl glucosinolate). A key bioactive component responsible for much of this activity may be sulforaphane (1-isothiocyanato-4-methylsulfinylbutane), a hydrolysis product of glucoraphanin. Sulforaphane not only upregulates a number of phase II detoxification enzymes involved in clearance of chemical carcinogens and reactive oxygen species, but has anti-tumorigenic properties, causing cell cycle arrest and apoptosis of cancer cells. The bioequivalency of sulforaphane and whole broccoli have not been fully evaluated, leaving it unclear whether whole broccoli provides a similar effect to purified sulforaphane, or whether the presence of other components in broccoli, such as indole-3-carbinol from glucobrassicin, is an added health benefit. Dietary indole-3-carbinol is known to alter estrogen metabolism, to cause cell cycle arrest and apoptosis of cancer cells and, in animals, to decrease risk for breast cancer. Recent research suggests that both dietary broccoli and the individual components sulforaphane and indole-3-carbinol may offer protection from a far broader array of diseases than cancer, including cardiovascular and neurodegenerative diseases. A common link between these oxidative degenerative diseases and cancer may be aggravation by inflammation. A small body of literature is forming suggesting that both indole-3-carbinol and sulforaphane may protect against inflammation, inhibiting cytokine production. It remains to be seen whether cancer, cardiovascular disease, dementia and other diseases of aging can all benefit from a diet rich in broccoli and other crucifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

AhR:

Aryl hydrocarbon receptor

ARE:

Antioxidant response element

CNS:

Central nervous system

COX-2:

Cyclooxygenase-2

CYP:

Cytochrome P450

DIM:

Diindolyl methane

DMBA:

Dimethyl benzanthracene

ERK:

Extracellular signal-regulated kinase

EROD:

Ethoxyresorufin O-deethylase

GCS:

γ-Glutamyl cysteine synthetase

GSH:

Glutathione

GST:

Glutathione S-transferase

Hnqo1 :

Human quinone reductase 1 gene

IBD:

Inflammatory bowel disease

IL-6:

Interleukin 6

IL-1β:

Interleukin 1 beta

iNOS:

Inducible nitric oxide synthase

I3C:

Indole-3-carbinol

Keap-1:

Kelch-like ECH-associated protein 1

NF-κB:

Nuclear factor kappa B

Nrf2:

Nuclear factor E2 p45-related factor 2

PI3K:

Phosphatidylinositol 3-kinase

PhIP:

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine

PKC:

Protein kinase C

ROS:

Reactive oxygen species

SF:

Sulforaphane

SXR:

Steroid and xenobiotic receptor

TNFα:

Tumor necrosis factor alpha

TPA:

Tetradecanoyl phorbol acetate

TRE:

TPA response element

XRE:

Xenobiotic response element

References

  • Agerbirk N, De Vos M, Kim J-H, Jander G (2008) Indole glucosinolate breakdown and its biological effects. Phytochem Rev (this issue)

  • Aggarwal BB, Ichikawa H (2005) Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle 4:1201–1215

    PubMed  CAS  Google Scholar 

  • Barcelo S, Gardiner JM, Gescher A, Chipman JK (1996) CYP2E1-mediated mechanism of anti-genotoxicity of the broccoli constituent sulforaphane. Carcinogenesis 17:277–282. doi:10.1093/carcin/17.2.277

    Article  PubMed  CAS  Google Scholar 

  • Bell MC, Crowley-Nowick P, Bradlow HL, Sepkovic DW, Schmidt-Grimminger D, Howell P et al (2000) Placebo-controlled trial of indole-3-carbinol in the treatment of CIN. Gynecol Oncol 78:123–129. doi:10.1006/gyno.2000.5847

    Article  PubMed  CAS  Google Scholar 

  • Bjeldanes LF, Kim JY, Grose KR, Bartholomew JC, Bradfield CA (1991) Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci USA 88:9543–9547. doi:10.1073/pnas.88.21.9543

    Article  PubMed  CAS  Google Scholar 

  • Bradfield CA, Bjeldanes LF (1991) Modification of carcinogen metabolism by indolylic autolysis products of Brassica oleraceae. Adv Exp Med Biol 289:153–163

    PubMed  CAS  Google Scholar 

  • Bradlow H, Michnovicz J, Telang N, Osborne M (1991) Effects of dietary indole-3-carbinol on estradiol metabolism and spontaneous mammary tumors in mice. Carcinogenesis 12:1571–1576. doi:10.1093/carcin/12.9.1571

    Article  PubMed  CAS  Google Scholar 

  • Brooks JD, Paton VG, Vidanes G (2001) Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidemiol Biomarkers Prev 10:949–954

    PubMed  CAS  Google Scholar 

  • Canene-Adams K, Lindshield BL, Wang S, Jeffery EH, Clinton SK, Erdman JW Jr (2007) Combinations of tomato and broccoli enhance antitumor activity in dunning r3327-h prostate adenocarcinomas. Cancer Res 67:836–843. doi:10.1158/0008-5472.CAN-06-3462

    Article  PubMed  CAS  Google Scholar 

  • Chen MF, Chen LT, Boyce HW Jr (1995) Cruciferous vegetables and glutathione: their effects on colon mucosal glutathione level and colon tumor development in rats induced by DMH. Nutr Cancer 23:77–83

    Article  PubMed  CAS  Google Scholar 

  • Cho H, Seon M, Lee Y, Kim J, Kim J, Kim S et al (2008) 3, 3′-Diindolylmethane suppresses the inflammatory response to lipopolysaccharide in murine macrophages. J Nutr 138:17–23

    PubMed  CAS  Google Scholar 

  • Cohen JH, Kristal AR, Stanford JL (2000) Fruit and vegetable intakes and prostate cancer risk. J Natl Cancer Inst 92:61–68. doi:10.1093/jnci/92.1.61

    Article  PubMed  CAS  Google Scholar 

  • Copple IM, Goldring CE, Kitteringham NR, Park BK (2008) The Nrf2-Keap1 defence pathway: role in protection against drug-induced toxicity. Toxicology 246:24–33

    PubMed  CAS  Google Scholar 

  • Cornelis MC, El-Sohemy A, Campos H (2007) GSTT1 genotype modifies the association between cruciferous vegetable intake and the risk of myocardial infarction. Am J Clin Nutr 86:752–758

    PubMed  CAS  Google Scholar 

  • Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y et al (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA 99:11908–11913. doi:10.1073/pnas.172398899

    Article  PubMed  CAS  Google Scholar 

  • Dinkova-Kostova AT, Liby KT, Stephenson KK, Holtzclaw WD, Gao X, Suh N (2005) Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress. Proc Natl Acad Sci USA 102:4584–4589. doi:10.1073/pnas.0500815102

    Article  PubMed  CAS  Google Scholar 

  • Dinkova-Kostova AT, Jenkins SN, Fahey JW, Ye L, Wehage SL, Liby KT et al (2006) Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer Lett 240:243–252. doi:10.1016/j.canlet.2005.09.012

    Article  PubMed  CAS  Google Scholar 

  • Dinkova-Kostova AT, Fahey JW, Wade KL, Jenkins SN, Shapiro TA, Fuchs EJ et al (2007) Induction of the phase 2 response in mouse and human skin by sulforaphane-containing broccoli sprout extracts. Cancer Epidemiol Biomarkers Prev 16:847–851. doi:10.1158/1055-9965.EPI-06-0934

    Article  PubMed  CAS  Google Scholar 

  • Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA 94:10367–10372. doi:10.1073/pnas.94.19.10367

    Article  PubMed  CAS  Google Scholar 

  • Faulkner K, Mithen R, Williamson G (1998) Selective increase of the potential anti-carcinogen 4-methylsulphinylbutyl glucosinolate in broccoli. Carcinogenesis 19:605–609. doi:10.1093/carcin/19.4.605

    Article  PubMed  CAS  Google Scholar 

  • Felton JS, Knize MG, Bennett LM, Malfatti MA, Colvin ME, Kulp KS (2004) Impact of environmental exposures on the mutagenicity/carcinogenicity of heterocyclic amines. Toxicology 198:135–145. doi:10.1016/j.tox.2004.01.024

    Article  PubMed  CAS  Google Scholar 

  • Fowke JH, Chung FL, Jin F, Qi D, Cai Q, Conaway C et al (2003) Urinary isothiocyanate levels, brassica, and human breast cancer. Cancer Res 63:3980–3986

    PubMed  CAS  Google Scholar 

  • Galan MV, Kishan AA, Silverman AL (2004) Oral broccoli sprouts for the treatment of Helicobacter pylori infection: a preliminary report. Dig Dis Sci 49:1088–1090. doi:10.1023/B:DDAS.0000037792.04787.8a

    Article  PubMed  Google Scholar 

  • Ganji V, Kafai MR (2004) Frequent consumption of milk, yogurt, cold breakfast cereals, peppers, and cruciferous vegetables and intakes of dietary folate and riboflavin but not vitamins B-12 and B-6 are inversely associated with serum total homocysteine concentrations in the US population. Am J Clin Nutr 80:1500–1507

    PubMed  CAS  Google Scholar 

  • Gasper AV, Traka M, Bacon JR, Smith JA, Taylor MA, Hawkey CJ et al (2007) Consuming broccoli does not induce genes associated with xenobiotic metabolism and cell cycle control in human gastric mucosa. J Nutr 137:1718–1724

    PubMed  CAS  Google Scholar 

  • Genkinger JM, Platz EA, Hoffman SC, Comstock GW, Helzlsouer KJ (2004) Fruit, vegetable, and antioxidant intake and all-cause, cancer, and cardiovascular disease mortality in a community-dwelling population in Washington County, Maryland. Am J Epidemiol 160:1223–1233

    PubMed  Google Scholar 

  • Gills JJ, Jeffery EH, Matusheski NV, Moon RC, Lantvit DD, Pezzuto JM (2006) Sulforaphane prevents mouse skin tumorigenesis during the stage of promotion. Cancer Lett 236:72–79. doi:10.1016/j.canlet.2005.05.007

    Article  PubMed  CAS  Google Scholar 

  • Ginn-Pease ME, Whisler RL (1996) Optimal NF-κB mediated transcriptional responses in Jurkat T cells exposed to oxidative stress are dependent on intracellular glutathione and costimulatory signals. Biochem Biophys Res Commun 226:695–702. doi:10.1006/bbrc.1996.1416

    Article  PubMed  CAS  Google Scholar 

  • Godtel-Armbrust U, Metzger A, Kroll U, Kelber O, Wojnowski L (2007) Variability in PXR-mediated induction of CYP3A4 by commercial preparations and dry extracts of St. John’s Wort. Naunyn Schmiedebergs Arch Pharmacol 375:377–382. doi:10.1007/s00210-007-0172-8

    Article  PubMed  CAS  Google Scholar 

  • Gopalakrishnan A, Kong AN (2008) Anticarcinogenesis by dietary phytochemicals: cytoprotection by Nrf2 in normal cells and cytotoxicity by modulation of transcription factors NF-kappaB and AP-1 in abnormal cancer cells. Food Chem Toxicol 46:1257–1270. doi:10.1016/j.fct.2007.09.082

    Article  PubMed  CAS  Google Scholar 

  • Haddad JJ, Safieh-Garabedian B, Saade NE, Lauterbach R (2002) Inhibition of glutathione-related enzymes augments LPS-mediated cytokine biosynthesis: involvement of an IkappaB/NF-kappaB-sensitive pathway in the alveolar epithelium. Int Immunopharmacol 2:1567–1583. doi:10.1016/S1567-5769(02)00117-0

    Article  PubMed  CAS  Google Scholar 

  • Hakooz N, Hamdan I (2007) Effects of dietary broccoli on human in vivo caffeine metabolism: a pilot study on a group of Jordanian volunteers. Curr Drug Metab 8:9–15. doi:10.2174/138920007779315080

    Article  PubMed  CAS  Google Scholar 

  • Hart AR, Kennedy H, Harvey I (2008) Pancreatic cancer: a review of the evidence on causation. Clin Gastroenterol Hepatol 6:275–282. doi:10.1016/j.cgh.2007.12.041

    Article  PubMed  Google Scholar 

  • Hecht SS, Chung FL, Richie JP Jr, Akerkar SA, Borukhova A, Skowronski L et al (1995) Effects of watercress consumption on metabolism of a tobacco-specific lung carcinogen in smokers. Cancer Epidemiol Biomarkers Prev 4:877–884

    PubMed  CAS  Google Scholar 

  • Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C (2001) Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem 276:32008–32015. doi:10.1074/jbc.M104794200

    Article  PubMed  CAS  Google Scholar 

  • Herrmann S, Seidelin M, Bisgaard HC, Vang O (2002) Indolo[3,2-b]carbazole inhibits gap junctional intercellular communication in rat primary hepatocytes and acts as a potential tumor promoter. Carcinogenesis 23:1861–1868. doi:10.1093/carcin/23.11.1861

    Article  PubMed  CAS  Google Scholar 

  • Hintze KJ, Wald KA, Zeng H, Jeffery EH, Finley JW (2003) Thioredoxin reductase in human hepatoma cells is transcriptionally regulated by sulforaphane and other electrophiles via an antioxidant response element. J Nutr 133:2721–2727

    PubMed  CAS  Google Scholar 

  • Hoelzl C, Glatt H, Meinl W, Sontag G, Haidinger G, Kundi M et al (2008) Consumption of Brussels sprouts protects peripheral human lymphocytes against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and oxidative DNA-damage: results of a controlled human intervention trial. Mol Nutr Food Res 5:330–341. doi:10.1002/mnfr.200700406

    Article  CAS  Google Scholar 

  • Hung H-C, Joshipura KJ, Jiang R (2004) Fruit and vegetable intake and risk of major chronic disease. J Natl Cancer Inst 96:1577–1584

    Article  PubMed  Google Scholar 

  • Iskander K, Li J, Han S, Zheng B, Jaiswal AK (2006) NQO1 and NQO2 regulation of humoral immunity and autoimmunity. J Biol Chem 281:30917–30924. doi:10.1074/jbc.M605809200

    Article  PubMed  CAS  Google Scholar 

  • Jeffery EH, Keck AS (2008) Translating knowledge generated by epidemiological and in vitro studies into dietary cancer prevention. Mol Nutr Food Res 52:S7–S17

    Article  PubMed  CAS  Google Scholar 

  • Juge N, Mithen R, Traka M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64:1105–1127. doi:10.1007/s00018-007-6484-5

    Article  PubMed  CAS  Google Scholar 

  • Kall MA, Vang O, Clausen J (1996) Effects of dietary broccoli on human in vivo drug metabolizing enzymes: evaluation of caffeine, oestrone and chlorzoxazone metabolism. Carcinogenesis 17:793–799. doi:10.1093/carcin/17.4.793

    Article  PubMed  CAS  Google Scholar 

  • Keck AS, Qiao Q, Jeffery EH (2003) Food matrix effects on bioactivity of broccoli-derived sulforaphane in liver and colon of F344 rats. J Agric Food Chem 51:3320–3327. doi:10.1021/jf026189a

    Article  PubMed  CAS  Google Scholar 

  • Kensler TW, Chen JG, Egner PA, Fahey JW, Jacobson LP, Stephenson KK et al (2005) Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenanthrene tetraols in a randomized clinical trial in He Zuo township, Qidong, People’s Republic of China. Cancer Epidemiol Biomarkers Prev 14:2605–2613. doi:10.1158/1055-9965.EPI-05-0368

    Article  PubMed  CAS  Google Scholar 

  • Kim B, Kim R, Keum Y, Hebbar V, Shen G, Nair S et al (2003) Effects of glutathione on antioxidant response element-mediated gene expression and apoptosis elicited by sulforaphane. Cancer Res 63:7520–7525

    PubMed  CAS  Google Scholar 

  • Kolonel LN, Hankin JH, Whittemore AS, Wu AH, Gallagher RP, Wilkens LR et al (2000) Vegetables, fruits, legumes and prostate cancer: a multiethnic case–control study. Cancer Epidemiol Biomarkers Prev 9:795–804

    PubMed  CAS  Google Scholar 

  • Kyung JW, Taeg KK (2007) Sulforaphane suppresses lipopolysaccharide-induced cyclooxygenase-2 (COX-2) expression through the modulation of multiple targets in COX-2 gene promoter. Int Immunopharmacol 7:1776–1783. doi:10.1016/j.intimp. 2007.09.018

    Article  CAS  Google Scholar 

  • Lampe JW, King IB, Li S, Grate MT, Barale KV, Chen C et al (2000) Brassica vegetables increase and apiaceous vegetables decrease cytochrome P450 1A2 activity in humans: changes in caffeine metabolite ratios in response to controlled vegetable diets. Carcinogenesis 21:1157–1162. doi:10.1093/carcin/21.6.1157

    Article  PubMed  CAS  Google Scholar 

  • Lauber SN, Ali S, Gooderham NJ (2004) The cooked food derived carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine is a potent oestrogen: a mechanistic basis for its tissue-specific carcinogenicity. Carcinogenesis 25:2509–2517. doi:10.1093/carcin/bgh268

    Article  PubMed  CAS  Google Scholar 

  • Lynn A, Collins A, Fuller Z, Hillman K, Ratcliffe B (2006) Cruciferous vegetables and colo-rectal cancer. Proc Nutr Soc 65:135–144. doi:10.1079/PNS2005486

    Article  PubMed  CAS  Google Scholar 

  • Mahéo K, Morel F, Lagouet S, Kramer H, Le Ferrec E, Ketterer B et al (1997) Inhibition of cytochromes P-450 and induction of glutathione S-transferases by sulforaphane in primary human and rat hepatocytes. Cancer Res 57:3649–3652

    PubMed  Google Scholar 

  • Matusheski NV, Jeffery EH (2001) Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. J Agric Food Chem 49:5743–5749. doi:10.1021/jf010809a

    Article  PubMed  CAS  Google Scholar 

  • Matusheski NV, Juvik JA, Jeffery EH (2004) Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry 65:1273–1281. doi:10.1016/j.phytochem.2004.04.013

    Article  PubMed  CAS  Google Scholar 

  • McDanell R, McLean AE, Hanley AB, Heaney RK, Fenwick GR (1988) Chemical and biological properties of indole glucosinolates (glucobrassicins): a review. Food Chem Toxicol 26:59–70. doi:10.1016/0278-6915(88)90042-7

    Article  PubMed  CAS  Google Scholar 

  • Michaud DS, Spiegelman D, Clinton SK, Rimm EB, Willett WC, Giovannucci EL (1999) Fruit and vegetable intake and incidence of bladder cancer in a male prospective cohort. J Natl Cancer Inst 91:605–613. doi:10.1093/jnci/91.7.605

    Article  PubMed  CAS  Google Scholar 

  • Michnovicz JJ, Bradlow HL (1990) Induction of estradiol metabolism by dietary indole-3-carbinol in humans. J Natl Cancer Inst 82:947–949. doi:10.1093/jnci/82.11.947

    Article  PubMed  CAS  Google Scholar 

  • Moreno RL, Goosen T, Kent UM, Chung FL, Hollenberg PF (2001) Differential effects of naturally occurring isothiocyanates on the activities of cytochrome P450 2E1 and the mutant P450 2E1 T303A. Arch Biochem Biophys 391:99–110. doi:10.1006/abbi.2001.2390

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Gangopadhyay H, Das DK (2008) Broccoli: a unique vegetable that protects mammalian hearts through the redox cycling of the thioredoxin superfamily. J Agric Food Chem 56:609–617. doi:10.1021/jf0728146

    Article  PubMed  CAS  Google Scholar 

  • Munday R, Munday CM (2004) Induction of phase II detoxification enzymes in rats by plant-derived isothiocyanates: comparison of allyl isothiocyanate with sulforaphane and related compounds. J Agric Food Chem 52:1867–1871. doi:10.1021/jf030549s

    Article  PubMed  CAS  Google Scholar 

  • Murashima M, Watanabe S, Zhou XG, Uehara M, Kurashige A (2004) Phase 1 study of multiple biomarkers for metabolism and oxidative stress after one-week intake of broccoli sprouts. Biofactors 22:271–275

    Article  PubMed  CAS  Google Scholar 

  • Myzak MC, Dashwood RH (2006) Chemoprotection by sulforaphane: keep one eye beyond Keap1. Cancer Lett 233:208–218. doi:10.1016/j.canlet.2005.02.033

    Article  PubMed  CAS  Google Scholar 

  • Myzak MC, Tong P, Dashwood WM, Dashwood R, Ho E (2007) Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med 232:227–234

    CAS  Google Scholar 

  • Nguyen T, Sherrat P, Pickett C (2003) Regulatory mechanism controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43:233–260. doi:10.1146/annurev.pharmtox.43.100901.140229

    Article  PubMed  CAS  Google Scholar 

  • Noyan-Ashraf MH, Sadeghinejad Z, Juurlink BH (2005) Dietary approach to decrease aging-related CNS inflammation. Nutr Neurosci 8:101–110. doi:10.1080/10284150500069470

    Article  PubMed  CAS  Google Scholar 

  • Osburn W, Karim H, Dolan P, Liu G, Yamamoto M, Huso D et al (2007) Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment. Int J Cancer 121:1883–1891. doi:10.1002/ijc.22943

    Article  PubMed  CAS  Google Scholar 

  • Pantuck EJ, Pantuck CB, Garland WA, Min BH, Wattenberg LW, Anderson KE et al (1979) Stimulatory effect of brussels sprouts and cabbage on human drug metabolism. Clin Pharmacol Ther 25:88–95

    PubMed  CAS  Google Scholar 

  • Pappa G, Strathmann J, Löwinger M, Bartsch H, Gerhäuser C (2007) Quantitative combination effects between sulforaphane and 3, 3′-diindolylmethane on proliferation of human colon cancer cells in vitro. Carcinogenesis 28:1471–1477. doi:10.1093/carcin/bgm044

    Article  PubMed  CAS  Google Scholar 

  • Petri N, Tannergren C, Holst B, Mellon FA, Bao Y, Plumb GW et al (2003) Absorption/metabolism of sulforaphane and quercetin, and regulation of phase II enzymes, in human jejunum in vivo. Drug Metab Dispos 31:805–813. doi:10.1124/dmd.31.6.805

    Article  PubMed  CAS  Google Scholar 

  • Prochaska HJ, Santamaria AB, Talalay P (1992) Rapid detection of inducers of enzymes that protect against carcinogens. Proc Natl Acad Sci USA 89:2394–2398. doi:10.1073/pnas.89.6.2394

    Article  PubMed  CAS  Google Scholar 

  • Rahman I (2005) Regulation of glutathione in inflammation and chronic lung diseases. Mutat Res 579:58–80. doi:10.1016/j.mrfmmm.2005.02.025

    PubMed  CAS  Google Scholar 

  • Rahman I, Biswas SK, Jimenez LA, Torres M, Forman HJ (2005) Glutathione, stress responses, and redox signaling in lung inflammation. Antioxid Redox Signal 7:42–59. doi:10.1089/ars.2005.7.42

    Article  PubMed  CAS  Google Scholar 

  • Rakoff-Nahoum S (2006) Why cancer and inflammation? Yale J Biol Med 79:123–130

    PubMed  CAS  Google Scholar 

  • Ramos-Gomez M, Kwak MK, Dolan PM, Itoh K, Yamamoto M, Talalay P et al (2001) Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci USA 98:3410–3415. doi:10.1073/pnas.051618798

    Article  PubMed  CAS  Google Scholar 

  • Ritz SA, Wan J, Diaz-Sanchez D (2007) Sulforaphane-stimulated phase II enzyme induction inhibits cytokine production by airway epithelial cells stimulated with diesel extract. Am J Physiol Lung Cell Mol Physiol 292:L33–L39. doi:10.1152/ajplung.00170.2006

    Article  PubMed  CAS  Google Scholar 

  • Rogan EG (2006) The natural chemopreventive compound indole-3-carbinol: state of the science. In Vivo 20:221–228

    PubMed  CAS  Google Scholar 

  • Sato K, Kawakami N, Ohtsu T, Tsutsumi A, Miyazaki S, Masumoto T et al (2004) Broccoli consumption and chronic atrophic gastritis among Japanese males: an epidemiological investigation. Acta Med Okayama 58:127–133

    PubMed  Google Scholar 

  • Shertzer H, Sainsbury M (1991) Chemoprotective and hepatic enzyme induction properties of indole and indenoindole antioxidants in rats. Food Chem Toxicol 29:391–400. doi:10.1016/0278-6915(91)90079-M

    Article  PubMed  CAS  Google Scholar 

  • Sparnins VL, Venegas PL, Wattenberg LW (1982) Glutathione S-transferase activity: enhancement by compounds inhibiting chemical carcinogenesis and by dietary constituents. J Natl Cancer Inst 68:493–496

    PubMed  CAS  Google Scholar 

  • Steinkellner H, Rabot S, Freywald C, Nobis E, Scharf G, Chabicovsky M et al (2001) Effects of cruciferous vegetables and their constituents on drug metabolizing enzymes involved in the bioactivation of DNA-reactive dietary carcinogens. Mutat Res 480–481:285–297. doi:10.1016/S0027-5107(01)00188-9

    PubMed  Google Scholar 

  • Stoner G, Casto B, Ralston S, Roebuck B, Pereira C, Bailey G (2002) Development of a multi-organ rat model for evaluating chemopreventive agents: efficacy of indole-3-carbinol. Carcinogenesis 23:265–272. doi:10.1093/carcin/23.2.265

    Article  PubMed  CAS  Google Scholar 

  • Sundar SN, Kerekatte V, Equinozio CN, Doan VB, Bjeldanes LF, Firestone GL (2006) Indole-3-carbinol selectively uncouples expression and activity of estrogen receptor subtypes in human breast cancer cells. Mol Endocrinol 20:3070–3082. doi:10.1210/me.2005-0263

    Article  PubMed  CAS  Google Scholar 

  • Surh Y-J, Kundu JK, Na H-K, Lee J-S (2005) Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr 135:2993S–3001S

    PubMed  CAS  Google Scholar 

  • Talalay P, Fahey J (2001) Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr 131:3027S–3033S

    PubMed  CAS  Google Scholar 

  • Talalay P, Fahey JW, Healy ZR, Wehage SL, Benedict AL, Min C et al (2007) Sulforaphane mobilizes cellular defenses that protect skin against damage by UV radiation. Proc Natl Acad Sci USA 104:17500–17505. doi:10.1073/pnas.0708710104

    Article  PubMed  CAS  Google Scholar 

  • Thejass P, Kuttan G (2007) Immunomodulatory activity of Sulforaphane, a naturally occurring isothiocyanate from broccoli (Brassica oleracea). Phytomed 14:538–545. doi:10.1016/j.phymed.2006.09.013

    Article  CAS  Google Scholar 

  • Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62:5196–5203

    PubMed  CAS  Google Scholar 

  • Thimmulappa RK, Scollick C, Traore K, Yates M, Trush MA, Liby KT et al (2006) Nrf2-dependent protection from LPS induced inflammatory response and mortality by CDDO-imidazolide. Biochem Biophys Res Commun 351:883–889. doi:10.1016/j.bbrc.2006.10.102

    Article  PubMed  CAS  Google Scholar 

  • Traka M, Mithen R (2008) Glucosinolates, isothiocyanates and human health. Phytochem Rev (this issue)

  • Tucker KL, Selhub J, Wilson PW, Rosenberg IH (1996) Dietary pattern related to plasma folate and homocysteine concentrations in the Framingham Heart Study. J Nutr 126:3025–3031

    PubMed  CAS  Google Scholar 

  • Vallejo F, Tomás-Barberán FA, Ferreres F (2004) Characterisation of flavonols in broccoli (Brassica oleracea L. var. italica) by liquid chromatography-UV diode-array detection-electrospray ionisation mass spectrometry. J Chromatogr A 1054:181–193. doi:10.1016/j.chroma.2004.05.045

    Article  PubMed  CAS  Google Scholar 

  • Vang O, Jensen MB, Autrup H (1990) Induction of cytochrome P450IA1 in rat colon and liver by indole-3-carbinol and 5,6-benzoflavone. Carcinogenesis 11:1259–1263. doi:10.1093/carcin/11.8.1259

    Article  PubMed  CAS  Google Scholar 

  • Vang O, Frandsen H, Hansen KT, Sørensen JN, Sørensen H, Andersen O (2001a) Biochemical effects of dietary intakes of different broccoli samples. I. Differential modulation of cytochrome P-450 activities in rat liver, kidney, and colon. Metabolism 50:1123–1129. doi:10.1053/meta.2001.26743

    Article  PubMed  CAS  Google Scholar 

  • Vang O, Mortensen J, Andersen O (2001b) Biochemical effects of dietary intake of different broccoli samples. II. Multivariate analysis of contributions of specific glucosinolates in modulating cytochrome P-450 and antioxidant defense enzyme activities. Metabolism 50:1130–1135. doi:10.1053/meta.2001.26744

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven DT, Goldbohm RA, van Poppel G, Verhagen H (1996) Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol Biomarkers Prev 5:733–748

    PubMed  CAS  Google Scholar 

  • Voorrips LE, Goldbohm RA, van Poppel G, Sturmans F, Hermus RJJ, van den Brandt PA (2000) Vegetable and fruit consumption and risks of colon and rectal cancer in a prospective cohort study. Am J Epidemiol 152:1081–1092. doi:10.1093/aje/152.11.1081

    Article  PubMed  CAS  Google Scholar 

  • Wallig MA, Heinz-Taheny KM, Epps DL, Gossman T (2005) Synergy among phytochemicals within crucifers: does it translate into chemoprotection? J Nutr 135:2972S–2977S

    PubMed  CAS  Google Scholar 

  • Walters DG, Young PJ, Agus C, Knize MG, Boobis AR, Gooderham NJ et al (2004) Cruciferous vegetable consumption alters the metabolism of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in humans. Carcinogenesis 25:1659–1669. doi:10.1093/carcin/bgh164

    Article  PubMed  CAS  Google Scholar 

  • Wattenberg LW (1980) Inhibitors of chemical carcinogens. J Environ Pathol Toxicol 3:35–52

    PubMed  CAS  Google Scholar 

  • Wild AC, Gipp JJ, Mulcahy RT (1998) Overlapping antioxidant response element and PMA response element sequences mediate basal and beta-naphtoflavone-induced expression of the human gamma-glutamylcysteine synthetase catalytic subunit gene. Biochem J 332:373–381

    PubMed  CAS  Google Scholar 

  • Wong GY, Bradlow L, Sepkovic D, Mehl S, Mailman J, Osborne MP (1997) Dose-ranging study of indole-3-carbinol for breast cancer prevention. J Cell Biochem Suppl 28–29:111–116. doi:10.1002/(SICI)1097-4644(1997)28/29±<111::AID-JCB12>3.0.CO;2-K

    Article  PubMed  Google Scholar 

  • Woo KJ, Kwon TK (2007) Sulforaphane suppresses lipopolysaccharide-induced cyclooxygenase-2 (COX-2) expression through the modulation of multiple targets in COX-2 gene promoter. Int Immunopharmacol 7:1776–1783. doi:10.1016/j.intimp. 2007.09.018

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Noyan-Ashraf MH, Facci M, Wang R, Paterson PG, Ferrie A et al (2004) Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. Proc Natl Acad Sci USA 101:7094–7099. doi:10.1073/pnas.0402004101

    Article  PubMed  CAS  Google Scholar 

  • Xie J, Itzkowitz SH (2008) Cancer in inflammatory bowel disease. World J Gastroenterol 14:378–389. doi:10.3748/wjg.14.378

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Shen C, Chen G, Gelinas C, Kong AN (2005) Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through IkappaBalpha, IKK pathway in human prostate cancer PC-3 cells. Oncogene 24:4486–4495. doi:10.1038/sj.onc.1208656

    Article  PubMed  CAS  Google Scholar 

  • Yoon HY, Kang NI, Lee HK, Jang KY, Park JW, Park BH (2008) Sulforaphane protects kidneys against ischemia-reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme. Biochem Pharmacol 75:2214–2223. doi:10.1016/j.bcp. 2008.02.029

    Article  PubMed  CAS  Google Scholar 

  • Yuan JM, Gago-Dominguez M, Castelao JE, Hankin JH, Ross RK, Yu MC (1998) Cruciferous vegetables in relation to renal cell carcinoma. Int J Cancer 77:211–216. doi:10.1002/(SICI)1097-0215(19980717)77:2<211::AID-IJC7>3.0.CO;2-T

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Callaway E (2002) High cellular accumulation of sulforaphane, a dietary anticarcinogen, is followed by rapid transporter-mediated export as a glutathione conjugate. Biochem J 364:301–307

    PubMed  CAS  Google Scholar 

  • Zhang Y, Talalay P, Cho C-G, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA 89:2399–2403. doi:10.1073/pnas.89.6.2399

    Article  PubMed  CAS  Google Scholar 

  • Zhang SM, Hunter DJ, Rosner BA, Giovannucci EL, Colditz GA, Speizer FE et al (2000) Intakes of fruits, vegetables, and related nutrients and the risk of non-Hodgkin’s lymphoma among women. Cancer Epidemiol Biomarkers Prev 9:477–485

    PubMed  CAS  Google Scholar 

  • Zhao J, Moore A, Redell J, Dash P (2007) Enhancing expression of Nrf2-driven genes protects the blood–brain barrier after brain injury. J Neurosci 27:10240–10248. doi:10.1523/JNEUROSCI.1683-07.2007

    Article  PubMed  CAS  Google Scholar 

  • Zhou C, Poulton E, Grun F, Bammler T, Blumberg B, Thummel K et al (2007) The dietary isothiocyanate sulforaphane is an antagonist of the human steroid and xenobiotic nuclear receptor. Mol Pharmacol 71:220–229. doi:10.1124/mol.106.029264

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth H. Jeffery.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeffery, E.H., Araya, M. Physiological effects of broccoli consumption. Phytochem Rev 8, 283–298 (2009). https://doi.org/10.1007/s11101-008-9106-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-008-9106-4

Keywords

Navigation