Phytochemistry Reviews

, Volume 8, Issue 1, pp 135–148 | Cite as

Glucosinolates and the clubroot disease: defense compounds or auxin precursors?



The clubroot disease is caused by the obligate biotrophic protist Plasmodiophora brassicae and is one of the most damaging for the family of Brassicaceae. Since many economically important crops belong to this plant family, the understanding of mechanisms how the disease is developing, are of high importance. Glucosinolates, a group of secondary plant products in the family of Brassicaceae, have long been associated with clubroot disease symptoms. Measurements showed that several glucosinolates are induced in root galls. While aliphatic glucosinolates are regarded as defense compounds, analysis of Brassica cultivars as well as Arabidopsis thaliana mutants provided correlative evidence between disease severity and indole glucosinolate content. The latter have been discussed as precursors for auxin biosynthesis. Since high auxin levels are associated with large root galls, indole glucosinolates could contribute directly or indirectly to the extent of disease development. Transcriptome and proteome experiments have revealed evidence for the involvement of genes from the glucosinolate and auxin pathway in gall formation. These data have been complemented by expression and mutant analysis. It can be concluded that regulation of glucosinolate and IAA biosynthesis might differ in Brassica and Arabidopsis.


Auxin Brassicaceae Clubroot disease Glucosinolates Plasmodiophora brassicae 



Epithiospecifier protein


Epithiospecifier modifier




Indole-3-acetic acid










Jasmonic acid


Myrosinase binding protein


Myrosinase associated protein


Phenylacetic acid


Quantitative trait loci


Salicylic acid


  1. Agerbirk N, de Vos M, Kim JH, Jander G (2008) Indole glucosinolate breakdown an its biological effects. Phytochem Rev. doi:10.1007/s11101-008-9098-0
  2. Alix K, Lariagon C, Delourme R, Manzanares-Dauleux MJ (2007) Exploiting natural genetic diversity and mutant resources of Arabidopsis thaliana to study the A. thaliana Plasmodiophora brassicae interaction. Plant Breed 126:218–221CrossRefGoogle Scholar
  3. Ando S, Tsushima S, Tagiri A, Kamachi S, Konagaya K-I, Hagio T, Tabei Y (2006) Increase in BrAO1 gene expression and aldehyde oxidase activity during clubroot development in Chinese cabbage (Brassica rapa L.). Mol Plant Pathol 7:223–234CrossRefGoogle Scholar
  4. Archibald JM, Keeling PJ (2004) Actin and ubiquitin protein sequences support a Cercozoan/Foraminiferan ancestry for the Plasmodiophorid plant pathogens. J Eukaryot Microbiol 51:113–118PubMedCrossRefGoogle Scholar
  5. Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G, Bellini C (2000) The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc Natl Acad Sci USA 97:14819–14824PubMedCrossRefGoogle Scholar
  6. Bartel B, Fink GR (1994) Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana. Proc Natl Acad Sci USA 91:6649–6653PubMedCrossRefGoogle Scholar
  7. Bennett RN, Wenke T, Freudenberg B, Mellon FA, Ludwig-Müller J (2005) The tu8 mutation of Arabidopsis thaliana encoding a heterochromatin protein 1 causes defects in the induction of secondary metabolite biosynthesis. Plant Biol 7:348–357PubMedCrossRefGoogle Scholar
  8. Bischoff M, Löw R, Grsic S, Rausch T, Hilgenberg W, Ludwig-Müller J (1995) Infection with the obligate biotroph Plasmodiophora brassicae, the causal agent of the clubroot disease, does not affect expression of NIT1/2-related nitrilases in roots of Chinese cabbage. J Plant Physiol 147:341–345Google Scholar
  9. Bones AM, Rossiter JT (1996) The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol Plant 97:194–208CrossRefGoogle Scholar
  10. Braselton JP (1995) Current status of the Plasmodiophorids. Crit Rev Microbiol 21:263–275PubMedCrossRefGoogle Scholar
  11. Brodmann D, Schuller A, Ludwig-Müller J, Aeschbacher RA, Wiemken A, Boller T, Wingler A (2002) Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. Mol Plant Microbe Interact 15:693–700PubMedCrossRefGoogle Scholar
  12. Buczacki ST (1983) Plasmodiophora. An interrelationship between biological and practical problems. In: Buczacki ST (ed) Zoosporic plant pathogens. Academic Press, London, pp 161–191Google Scholar
  13. Bulman S, Siemens J, Ridgeway H, Eady C, Conner A (2006) Identification of genes from the obligate intracellular plant pathogen, Plasmodiophora brassicae. FEMS Microbiol Lett 264:198–204PubMedCrossRefGoogle Scholar
  14. Burow M, Zhang ZP, Ober JA, Lambrix VM, Wittstock U, Gershenzon J, Kliebenstein DJ (2008) ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis. Phytochemistry 69:663–671PubMedCrossRefGoogle Scholar
  15. Butcher DN, El-Tigani S, Ingram DS (1974) The role of indole glucosinolates in the club root disease of the cruciferae. Physiol Plant Pathol 4:127–140CrossRefGoogle Scholar
  16. Butcher DN, Searle LM, Mousdale DMA (1976) The role of glucosinolates in the club root disease of the cruciferae. Med Fac Landbouw Rijk 41/2:525–532Google Scholar
  17. Cao T, Srivastava S, Rahman MH, Kav NNV, Hotte N, Deyholos MK, Strelkov SE (2007) Proteome-level changes in the roots of Brassica napus as a result of Plasmodiophora brassicae infection. Plant Sci 174:97–115Google Scholar
  18. Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR, Normanly J, Bender J (2005) The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol 137:253–262PubMedCrossRefGoogle Scholar
  19. Cheah LH, Kent G, Gowers S (2001) Brassica crops and a Streptomyces sp. as potential biocontrol for clubroot of Brassicas. NZ Plant Prot 54:80–83Google Scholar
  20. Cheah LH, Gowers S, Marsh AT (2006) Clubroot control using Brassica break crops. Acta Hort 706:329–332Google Scholar
  21. Chen S, Glawischnig E, Jorgensen K, Naur P, Jorgensen B, Olsen CE, Hansen CH, Rasmussen H, Pickett JA, Halkier BA (2003) CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J 33:923–937PubMedCrossRefGoogle Scholar
  22. Chong C, Chiang MS, Crete R (1981) Thiocyanate ion content in relation to clubroot disease severity in cabbages. HortScience 16:663–664Google Scholar
  23. Chong C, Chiang MS, Crete R (1984) Studies in glucosinolates in clubroot resistant selections and susceptible commercial cultivars of cabbages. Euphytica 34:65–73CrossRefGoogle Scholar
  24. Devos S, Vissenberg K, Verbelen J-P, Prinsen E (2005) Infection of Chinese cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth: impacts on cell wall metabolism and hormonal balance. New Phytol 166:241–250PubMedCrossRefGoogle Scholar
  25. Devos S, Laukens K, Deckers P, Van Der Straeten D, Beeckman T, Inze D, van Onckelen H, Witters E, Prinsen E (2006) A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Mol Plant Microbe Interact 19:1431–1433PubMedCrossRefGoogle Scholar
  26. Donald EC, Porter LJ, Faggian R, Lancaster RA (2006) An integrated approach to the control of clubroot in vegetable Brassica crops. Acta Hortic 706:283–300Google Scholar
  27. Eriksson S, Andreasson E, Ekbom B, Graner G, Pontoppidan B, Taipalensuu J, Zhang J, Rask L, Meijer J (2002) Complex formation of myrosinase isoenzymes in oilseed rape seeds are dependent on the presence of myrosinase-binding proteins. Plant Physiol 129:1592–1599PubMedCrossRefGoogle Scholar
  28. Evans JL, Scholes JD (1995) How does clubroot alter the regulation of carbon metabolism in its host? Asp Appl Biol 42:125–132Google Scholar
  29. Fuchs H, Sacristan MD (1996) Identification of a gene in Arabidopsis thaliana controlling resistance to clubroot (Plasmodiophora brassicae) and characterization of the resistance response. Mol Plant Microbe Interact 9:91–97Google Scholar
  30. Gigolashvili T, Berger B, Mock H-P, Müller C, Weisshaar B, Flügge U-I (2007a) The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 50:886–901PubMedCrossRefGoogle Scholar
  31. Gigolashvili T, Yatusevich R, Berger B, Müller C, Flügge U-I (2007b) The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 51:247–261PubMedCrossRefGoogle Scholar
  32. Gigolashvili T, Engqvist M, Yatusevich R, Müller C, Flügge U-I (2008) HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol 177:627–642PubMedGoogle Scholar
  33. Gigolashvili T, Berger B, Flügge U-I (this issue) Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3-MYB transcription factors in Arabidopsis thaliana. Phytochem RevGoogle Scholar
  34. Grsic S, Sauerteig S, Neuhaus K, Albrecht M, Rossiter J, Ludwig-Müller J (1998) Physiological analysis of transgenic Arabidopsis thaliana plants expressing one nitrilase isoform in sense or antisense direction. J Plant Physiol 153:446–456Google Scholar
  35. Grsic S, Kirchheim B, Pieper K, Fritsch M, Hilgenberg W, Ludwig-Müller J (1999) Induction of auxin biosynthetic enzymes by jasmonic acid and in clubroot diseased Chinese cabbage plants. Physiol Plant 105:521–531CrossRefGoogle Scholar
  36. Grsic-Rausch S, Kobelt P, Siemens J, Bischoff M, Ludwig-Müller J (2000) Expression and localization of nitrilase during symptom development of the clubroot disease in Arabidopsis thaliana. Plant Physiol 122:369–378PubMedCrossRefGoogle Scholar
  37. Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100PubMedCrossRefGoogle Scholar
  38. Grubb CD, Zipp BJ, Ludwig-Müller J, Masuno MN, Molinski TF, Abel S (2004) Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J 40:893–908PubMedCrossRefGoogle Scholar
  39. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333PubMedCrossRefGoogle Scholar
  40. Haughn GW, Davin L, Giblin M, Underhill EW (1991) Biochemical genetics of plant secondary metabolites in Arabidopsis thaliana. The Glucosinolates. Plant Physiol 97:217–226PubMedCrossRefGoogle Scholar
  41. Helmlinger J, Rausch T, Hilgenberg W (1987) A soluble protein factor from Chinese cabbage converts indole-3-acetaldoxime to IAA. Phytochemistry 26:615–618CrossRefGoogle Scholar
  42. Hillebrand H, Bartling D, Weiler EW (1998) Structural analysis of the nit2/nit1/nit3 gene cluster encoding nitrilases, enzymes catalyzing the terminal activation step in indole-3-acetic acid biosynthesis in Arabidopsis thaliana. Plant Mol Biol 36:89–99PubMedCrossRefGoogle Scholar
  43. Hirai M (2006) Genetic analysis of clubroot resistance in Brassica crops. Breed Sci 56:223–229CrossRefGoogle Scholar
  44. Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97:2379–2384PubMedCrossRefGoogle Scholar
  45. Ingram DS, Tommerup IC (1972) The life history of Plasmodiophora brassicae Woron. Proc Royal Soc Lond B 180:103–112Google Scholar
  46. Inzé D, Follin A, van Lijsebettens M, Simoens C, Genetello M, van Montagu M, Schell J (1984) Genetic analyses of the individual T-DNA genes of Agrobacterium tumefaciens: Further evidence that two genes are involved in indole-3-acetic acid synthesis. Mol Gen Genet 194:265–274CrossRefGoogle Scholar
  47. Ishikawa T, Okazaki K, Kuroda H, Itoh K, Mitsui T, Hori H (2007a) Molecular cloning of Brassica rapa nitrilases and their expression during clubroot development. Mol Plant Pathol 8:623–637CrossRefGoogle Scholar
  48. Ishikawa T, Kuroda H, Okazaki K, Itoh K, Mitsui T, Hori H (2007b) Evaluation of roles of amidase which converts indole-3-acetamide to indole-3-acetic acid, in formation of clubroot in turnip. Bull Facul Agric Niigata Univ 60:53–60Google Scholar
  49. Kim JH, Durrett TP, Last RL, Jander G (2004) Characterization of the Arabidopsis TU8 glucosinolate mutation, an allele of TERMINAL FLOWER2. Plant Mol Biol 54:671–682PubMedCrossRefGoogle Scholar
  50. Klewer A, Luerßen H, Graf H, Siemens J (2001) Restriction Fragment Length Polymorphism markers to characterize Plasmodiophora brassicae single-spore isolates with different virulence patterns. J Phytopathol 149:121–127CrossRefGoogle Scholar
  51. Kobelt P (2000) Die Verbreitung von sekundären Plasmodien von Plasmodiophora brassicae (Wor.) im Wurzelgewebe von Arabidopsis thaliana nach immunhistologischer Markierung des plasmodialen Zytoskeletts. Dissertation, Freie Universität Berlin, GermanyGoogle Scholar
  52. Kroymann J, Textor S, Tokuhisa JG, Falk KL, Bartram S, Gershenzon J, Mitchell-Olds T (2001) A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol 127:1077–1088PubMedCrossRefGoogle Scholar
  53. Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein DJ, Gershenzon J (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 13:2793–2807PubMedCrossRefGoogle Scholar
  54. Ludwig-Müller J, Hilgenberg W (1990) Conversion of indole-3-acetaldoxime to indole-3-acetonitrile by plasma membranes from Chinese cabbage. Physiol Plant 79:311–318CrossRefGoogle Scholar
  55. Ludwig-Müller J, Cohen JD (2002) Identification and quantification of three active auxins in different tissues of Tropaeolum majus. Physiol Plant 115:320–329PubMedCrossRefGoogle Scholar
  56. Ludwig-Müller J, Schuller A (2008) What can we learn from clubroots: alterations in host roots and hormone homeostasis caused by Plasmodiophora brassicae. Eur J Plant Pathol (in press)Google Scholar
  57. Ludwig-Müller J, Bendel U, Thermann P, Ruppel M, Epstein E, Hilgenberg W (1993) Concentrations of indole-3-acetic acid in plants of tolerant and susceptible varieties of Chinese cabbage infected with Plasmodiophora brassicae Woron. New Phytol 125:763–769CrossRefGoogle Scholar
  58. Ludwig-Müller J, Kasperczyk N, Schubert B, Hilgenberg W (1995) Identification of salicylic acid in Chinese cabbage and its possible role during root infection with Plasmodiophora brassicae. Current Top Phytochem 14:39–45Google Scholar
  59. Ludwig-Müller J, Epstein E, Hilgenberg W (1996) Auxin-conjugate hydrolysis in Chinese cabbage: characterization of an amidohydrolase and its role during the clubroot disease. Physiol Plant 97:627–634CrossRefGoogle Scholar
  60. Ludwig-Müller J, Schubert B, Pieper K, Ihmig S, Hilgenberg W (1997) Glucosinolate content in susceptible and tolerant Chinese cabbage varieties during the development of the clubroot disease. Phytochemistry 44:407–414CrossRefGoogle Scholar
  61. Ludwig-Müller J, Pieper K, Ruppel M, Cohen JD, Epstein E, Kiddle G, Bennett R (1999a) Indole glucosinolate and auxin biosynthesis in Arabidopsis thaliana L. glucosinolate mutants and the development of the clubroot disease. Planta 208:409–419PubMedCrossRefGoogle Scholar
  62. Ludwig-Müller J, Ihmig S, Bennett R, Kiddle G, Ruppel M, Hilgenberg W (1999b) The host range of Plasmodiophora brassicae and its relationship to endogenous glucosinolate content. New Phytol 141:443–458CrossRefGoogle Scholar
  63. Matile P (1975) “Die Senfölbombe”: Zur Kompartimentierung des Myrosinasesystems. Biochem Physiol Pflanz 175:722–731Google Scholar
  64. Mattusch P (1994) Kohlhernieanfälligkeit eines Chinakohlsortiments. Gemüse 30:357–359Google Scholar
  65. Mikkelsen MD, Naur P, Halkier BA (2004) Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J 37:770–777PubMedCrossRefGoogle Scholar
  66. Mühlenberg I, Schuller A, Siemens J, Kobelt P, Ludwig-Müller J (2002) Plasmodiophora brassicae, the causal agent of clubroot disease, may penetrate plant cell walls via cellulase. Plant Protect Sci 38:69–72Google Scholar
  67. Müller P, Hilgenberg W (1986) Cytokinin biosynthesis by plasmodia of Plasmodiophora brassicae. Physiol Plant 66:245–250CrossRefGoogle Scholar
  68. Mullin WJ, Proudfoot KG, Collins MJ (1980) Glucosinolate content and clubroot of rutabaga and turnip. Can J Plant Sci 60:605–612CrossRefGoogle Scholar
  69. Nafisi M, Goregaoker S, Botanga CJ, Glawischnig E, Olsen CE, Halkier BA, Glazebrook J (2007) Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell 19:2039–2052PubMedCrossRefGoogle Scholar
  70. Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA (2003) CYP83A1 and CYP83B1, two nonredundant Cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol 133:63–72PubMedCrossRefGoogle Scholar
  71. Neuhaus K, Grsic-Rausch S, Sauerteig S, Ludwig-Müller J (2000) Arabidopsis plants transformed with nitrilase 1 or 2 in antisense direction are delayed in clubroot development. J Plant Physiol 156:756–761Google Scholar
  72. Ockendon JG, Buczacki ST (1979) Indole glucosinolate incidence and clubroot susceptibility of three cruciferous weeds. Trans Br Mycol Soc 72:156–157CrossRefGoogle Scholar
  73. Pedras MSC, Nycholat CM, Montaut S, Xu Y, Khan AQ (2002) Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip. Phytochemistry 59:611–625PubMedCrossRefGoogle Scholar
  74. Piao ZY, Deng YQ, Choi SR, Park YJ, Lim YP (2004) SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage (Brassica rapa ssp. pekinensis). Theor Appl Genet 108:1458–1465PubMedCrossRefGoogle Scholar
  75. Pollmann S, Neu D, Weiler EW (2003) Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid. Phytochemistry 62:293–300PubMedCrossRefGoogle Scholar
  76. Rausch T, Mattusch P, Hilgenberg W (1981a) Influence of club root disease on the growth kinetics of Chinese cabbage. Phytopathol Z 102:28–33CrossRefGoogle Scholar
  77. Rausch T, Butcher DN, Hilgenberg W (1981b) Nitrilase activity in clubroot diseased plants. Physiol Plant 52:467–470CrossRefGoogle Scholar
  78. Rausch T, Butcher DN, Hilgenberg W (1983) Indole-3-methylglucosinolate biosynthesis and metabolism in clubroot diseased plants. Physiol Plant 58:93–100CrossRefGoogle Scholar
  79. Rehn F, Arbeiter A, Galfe N, Reinhardt S, Siemens J (2006) Monogenic inherited clubroot resistance in Arabidopsis thaliana is dependent on expression of the gene sgt1a. In: Abstracts of Brassica 2006. Wageningen, The Netherlands, September 2006Google Scholar
  80. Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, Godde M, Uhl R, Palme K (2001) bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13:351–367PubMedCrossRefGoogle Scholar
  81. Rocherieux J, Glory P, Giboulot A, Boury S, Barbeyron G, Thomas G, Manzanares-Dauleux MJ (2004) Isolate-specific and broad-spectrum QTLs are involved in the control of clubroot in Brassica oleracea. Theor Appl Genet 108:1555–1563PubMedCrossRefGoogle Scholar
  82. Rodman JE (1991a) A taxonomic analysis of glucosinolate-producing plants. Part 1: Phenetics. Syst Bot 16:598–618CrossRefGoogle Scholar
  83. Rodman JE (1991b) A taxonomic analysis of glucosinolate-producing plants. Part 2: Cladistics. Syst Bot 16:619–629CrossRefGoogle Scholar
  84. Saito M, Kubo N, Matsumoto S, Suwabe K, Tsukada M, Hirai M (2006) Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa. Theor Appl Genet 114:81–91PubMedCrossRefGoogle Scholar
  85. Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, Koshiba T (1998) Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol 116:687–693PubMedCrossRefGoogle Scholar
  86. Siemens J, Nagel M, Ludwig-Müller J, Sacristán MD (2002) The interaction of Plasmodiophora brassicae and Arabidopsis thaliana: Parameters for disease quantification and screening of mutant lines. J Phytopathol 150:592–605CrossRefGoogle Scholar
  87. Siemens J, Keller I, Sarx J, Kunz S, Schuller A, Nagel W, Schmülling T, Parniske M, Ludwig-Müller J (2006) Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol Plant Microbe Interact 19:480–494PubMedCrossRefGoogle Scholar
  88. Siemens J, Glawischnig E, Ludwig-Müller J (2008) Indole glucosinolates and camalexin do not influence the development of the clubroot disease in Arabidopsis thaliana. J Phytopathol. doi:10.1111/j.1439-0434.2007.01359.x
  89. Skirycz A, Reichelt M, Burow M, Birkemeyer C, Rolcik J, Kopka J, Zanor MI, Gershenzon J, Strnad M, Szopa J, Müller-Röber B, Witt I (2006) DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant J 47:10–24PubMedCrossRefGoogle Scholar
  90. Textor S, de Kraker J-W, Hause B, Gershenzon J, Tokuhisa JG (2007) MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. Plant Physiol 144:60–71PubMedCrossRefGoogle Scholar
  91. Ugajin T, Takita K, Takahashi H, Muraoka S, Tada T, Mitsui T, Hayakawa T, Ohyama T, Hori H (2003) Increase in indole-3-acetic acid (IAA) level and nitrilase activity in turnips induced by Plasmodiophora brassicae infection. Plant Biotechnol 20:215–220Google Scholar
  92. Voorrips RE (1995) Plasmodiophora brassicae: aspects of pathogenesis and resistance in Brassica oleracea. Euphytica 83:139–146CrossRefGoogle Scholar
  93. Woodward AW, Bartel B (2005) Auxin: regulation, action and interaction. Ann Bot 95:707–735PubMedCrossRefGoogle Scholar
  94. Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory C (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309PubMedCrossRefGoogle Scholar
  95. Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JE, Normanly J, Chory J, Celenza JC (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev 16:3100–3112PubMedCrossRefGoogle Scholar
  96. Zhou N, Tootle TL, Glazebrook J (1999) Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Plant Cell 11:2419–2428PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institut für BotanikTechnische Universität DresdenDresdenGermany

Personalised recommendations