Skip to main content

A review of Piper spp. (Piperaceae) phytochemistry, insecticidal activity and mode of action

Abstract

The tropical plant family Piperaceae has provided many past and present civilizations with a source of diverse medicines and food grade spice. The secondary plant compounds that produce these desired qualities function also as chemical defenses for many species in the genus Piper. The compounds with the greatest insecticidal activity are the piperamides. Many studies have shown the effectiveness of Piper spp. extracts for the control of stored products pests and recently studies from our laboratory group have tested the extracts of Piper. nigrum, P. guineense and P. tuberculatum against insect pests of the home and garden. These results and those from investigations that examined the biochemical and molecular modes of action of the piperamides singly or in combination will be the focus of this review. The conclusions of our current work with Piperaceae are that Piper extracts offer a unique and useful source of biopesticide material for controlling small-scale insect out-breaks and reducing the likelihood of resistance development when applied as a synergist with other botanical insecticides such as pyrethrum.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

Kdr:

Knock-down resistance

MDP:

Methylenedioxyphenyl

PBO:

Piperonyl butoxide

PSMO:

Polysubstrate monooxygenase

References

  • Arnason JT, Durst T, Philogène BJR (2002) Prospection d’insecticides phytochimiques de plantes tempérées et tropicales communes ou rares. In: Regnault-Roger C, Philogène BJR, Vincent C (eds) Biopesticides d’origine végétale. Editions TEC and DOC, Paris pp 37–51

  • Baier AH, Webster BD (1992) Control of Acanthoscelides obtectus Say (Coleoptera: Bruchidae) in Phaseolus vulgaris L. seed stored on small farms-1. Evaluation of damage. J Stored Prod Res 28:289–293

    Article  CAS  Google Scholar 

  • Bernard CB, Arnason JT, Philogène BJR, Lam J, Waddell T (1989) Effects of lignans and other secondary metabolites of the Asteraceae on the PSMO activity of the European corn borer, Ostrinia nubilalis. Phytochemistry 28:1371–1378

    Article  Google Scholar 

  • Bhardwaj RK, Glaesser H, Becquemont L, Klotz U, Gupta SK, Fromm MF (2002) Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J Pharmacol Exp Ther 302:645–650

    PubMed  Article  CAS  Google Scholar 

  • Bourbonnais-Spear N, Awad R, Maquin P, Cal V, Sánchez-Vindas P, Poveda L, Arnason JT (2005) Plant use by the Q’Eqchi’ Maya of Belize in ethnopsychiatry and neurological pathology. Econ Bot 59:326–336

    Article  Google Scholar 

  • Budzinski JW, Foster BC, Vandenhoek S, Arnason JT (2000) An in vitro evaluation of human cytochrome P450 3A4 inhibition by selected commercial herbal extracts and tinctures. Phytomedicine 7:273–282

    PubMed  CAS  Google Scholar 

  • Burger W (1971) Flora Costaricensis. Fieldiana Botany 35

  • Dalvi RR, Dalvi PS (1991) Differences in the effects of piperine and piperonyl butoxide on hepatic drug-metabolizing enzyme system in rats. Drug Chem Toxicol 14:219–229

    Google Scholar 

  • de Paula VF, de A Barbosa LC, Demuner AJ, Piló-Veloso D, Picanço MC (2000) Synthesis and insecticidal activity of new amide derivatives of piperine. Pest Manage Sci 56:168–174

    Article  Google Scholar 

  • Dev S, Koul O (1997) Insecticides of Natural Origin. Hardwood Academic Publishers, Amsterdam, Netherlands p 365

    Google Scholar 

  • Devasahayam S, Abdulla Koya KM (1994) Field evaluation of insecticides for the control of scale (Lepidosaphes piperis Gr.) on black pepper (Piper nigrum L.). J Entomol Res 18:213–215

    CAS  Google Scholar 

  • Dyer LA, Palmer ADN (eds) (2004) Piper: a model genus for studies of phytochemistry, ecology and evolution. Kluwer Academic/Plenum Publishers, New York p 228

    Google Scholar 

  • Elliott M, Farnham AW, Janes NF, Johnson DM, Pulman DA, Sawicki RM (1986) Insecticidal amides with selective potency against a resistant (super-kdr) strain of houseflies (Musca domestica L.). Agric Biol Chem 50:1347–1349

    CAS  Google Scholar 

  • EPA (2006) Regulating biopesticides. United States Environmental Protection Agency. http://www.epa.gov/pesticides/biopesticides/

  • Evans PH, Bowers WS, Funk EJ (1984) Identification of fungicidal and nematocidal components in the leaves of Piper betle (Piperaceae). J Agric Food Chem 32:1254–1256

    Article  CAS  Google Scholar 

  • Gbewonyo WSK, Candy DJ, Anderson M (1993) Structure-activity relationships of insecticidal amides from Piper guineense root. Pestic Sci 37:57–66

    Article  CAS  Google Scholar 

  • Gersdorff WA, Piquett PG (1957) Comparative effects of piperettine in pyrethrum and allethrin mixtures as house fly sprays. J Econ Entomol 50:164–166

    CAS  Google Scholar 

  • Hodgson E, Levi PE (1998) Interactions of piperonyl butoxide with cytochrome P450. In: Jones DG (ed) Piperonyl Butoxide: the insecticide synergist Academic Press, San Diego CA, pp 41–53

    Google Scholar 

  • Isman MB (1994) Botanical insecticides. Pestic Outlook 5:26–30

    CAS  Google Scholar 

  • Iwu MM (ed) (1993) Handbook of African medicinal plants. CRC Press, Boca Raton, FL, p 435

    Google Scholar 

  • Jensen HR, Scott IM, Sims S, Trudeau VL, Arnason JT (2006a) Gene expression profiles of Drosophila melanogaster exposed to an insecticidal extract of Piper nigrum. J Agric Food Chem 54:1289–1295

    Article  CAS  Google Scholar 

  • Jensen HR, Scott IM, Sims S, Trudeau VL, Arnason JT (2006b) The effect of a synergistic concentration of a P. nigrum extract used in conjunction with pyrethrum upon gene expression in Drosophila melanogaster. Insect Mol Biol 15:329–339

    Article  CAS  Google Scholar 

  • Kéïta SM, Vincent C, Schmidt JP, Ramaswamy S, Bélanger A (2000) Effect of various essential oils on Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J Stored Prod Res 36:355–364

    PubMed  Article  Google Scholar 

  • Lee S-E, Park B-S, Kim M-K, Choi W-S, Kim H-T, Cho K-Y, Lee S-G, Lee H-S (2001) Fungicidal activity of pipernonaline, a piperidine alkaloid derived from long pepper, Piper longum L., against phytopathogenic fungi. Crop Prot 20:523–528

    Article  CAS  Google Scholar 

  • Lees G, Burt PE (1988) Neurotoxic actions of a lipid amide on the cockroach nerve cord and on locust somata maintained in short-term culture: a novel preparation for the study of Na+ channel pharmacology. Pesticid Sci 24:189–191

    Google Scholar 

  • Lydon J, Duke SO (1989) The potential of pesticides from plants. Herbs Spices Med Plants 4:1–41

    Google Scholar 

  • MacKinnon S, Chauret D, Wang M, Mata R, Pereda-Miranda R, Jiminez A, Bernard CB, Krishnamurty HG, Poveda LJ, Sanchez-Vindas PE, Arnason JT, Durst T (1997) Botanicals from the Piperaceae and Meliaceae of the American Neotropics: phytochemistry. In: Hedin PA, Hollingworth RM, Masler EP, Miyamoto J, Thompson DG (eds) Phytochemicals for pest control American Chemical Society, Washington, DC, pp 49–57

    Google Scholar 

  • Maitra S, Dombrowski SM, Waters LC, Ganguly R (1996) Three second chromosome-linked clustered Cyp6 genes show differential constitutive and barbital-induced expression in DDT-resistant and susceptible strains of Drosophila melanogaster. Gene 180:165–171

    PubMed  Article  CAS  Google Scholar 

  • Mbata GN, Oji OA, Nwana IE (1995) Insecticidal action of preparation from the brown pepper, Piper guineense Schum, seeds to Callosobruchus maculatus (Fabricius). Discov Innov 7:139–142

    Google Scholar 

  • McFerren MA, Cardova D, Rodriguez E, Rauh JJ (2002) In vitro neuropharmacological evaluation of piperovatine, an isobutylamide from Piper piscatorum (Piperaceae). J Ethnopharmacol 83:201–207

    PubMed  Article  CAS  Google Scholar 

  • Miyakado M, Nakayama I, Yoshioka H, Nakatani N (1979) The Piperaceae amides I : Structure of pipercide, a new insecticidal amide from Piper nigrum L. Agric Biol Chem 43:1609–1611

    CAS  Google Scholar 

  • Miyakado M, Nakayama I, Yoshioka H (1980) Insecticidal joint action of pipercide and co- occurring compounds isolated from Piper nigrum L. Agric Biol Chem 44:1701–1703

    CAS  Google Scholar 

  • Miyakado M, Nakayama I, Ohno N (1989) Insecticidal unsaturated isobutylamides. From natural products to agrochemical leads. In: Insecticides of plant origin. Amer Chem Soc Symp Ser 387, Washington, DC, pp 173–187

  • National Research council (2000) The future role of pesticides in U.S. agriculture. Committee on the future role of pesticides in U.S. agriculture, board on agriculture and natural resources and board on environmental studies and toxicology, Commission on Life Sciences, National Academy of Sciences, Washington, DC, p 301

    Google Scholar 

  • Okorie TG, Ogunro OF (1992) Effects of extracts and suspensions of the black pepper Piper guineense on the immature stages of Aedes agypti (Linn) (Diptera: Culicidae) and associated aquatic organisms. Discov Innov 4:59–63

    Google Scholar 

  • Parmar VS, Jain SC, Bisht KS, Jain R, Taneja P, Jha A, Tyagi OD, Prasad AK, Wengel J, Olsen CE, Boll PM (1997) Phytochemistry of the genus Piper. Phytochemistry 46:597–673

    Article  CAS  Google Scholar 

  • Parmar VS, Jain SC, Gupta S, Talwar S, Rajwanshi VK, Kumar R, Azim A, Malhotra S, Kumar N, Jain R, Sharma NK, Tyagi OD, Lawrie SJ, Errington W, Howarth OW, Olsen CE, Singh SK, Wengel J (1998) Polyphenols and alkaloids from Piper species. Phytochemistry 49:1069–1078

    Article  CAS  Google Scholar 

  • Perakis C, Louli V, Magoulas K (2005) Supercritical fluid extraction of black pepper oil. J Food Eng 71:386–393

    Article  Google Scholar 

  • Petersen RA, Zangerl AR, Berenbaum MR, Schuler MA (2001) Expression of CYP6B1 and CYP6B3 cytochrome P450 monooxygenases and furanocoumarin metabolism in different tissues of Papillio polyxenes (Lepidoptera: Papilionidae). Insect Biochem Mol Biol 31:679–690

    PubMed  Article  CAS  Google Scholar 

  • PMRA (2006) Update on reduced-risk pesticides in Canada. Pest Management Regulatory Agency, Health Canada, http://www.pmra-arla.gc.ca/english/pdf/nafta/naftajr/nafta-jr-pest-e.pdf

  • Ranjith AM, Pillalay VS, Sasikumaran S, Mammootty KP (1991) Record of Pterolophia griseovaria Breuning as a pest on pepper (Piper nigrum L.). Entomon 16:323–325

    Google Scholar 

  • Raut SK, Bhattacharya SS (1999) Pests and diseases of betelvine (Piper betle) and their natural enemies in India. Exp Appl Acarol 23:319–325

    Article  Google Scholar 

  • Reen RK, Singh J (1991) In vitro and in vivo inhibition of pulmunary cytochrome P450 activities by piperine, a major ingredient of Piper species. Indian J Exp Biol 29:568–573

    PubMed  CAS  Google Scholar 

  • Regnault-Roger C, Philogène BJR, Vincent C (eds) (2002) Biopesticides d’origine végétale. Editions TEC and DOC, Paris, p 337

    Google Scholar 

  • Santhosh-Babu PB (1994) Some aspects of biology of Longitarsus nigripennis mots. (Coleoptera: Chrysomelidae), a serious pest on black pepper, Piper nigrum L. Entomon 19:159–161

    Google Scholar 

  • Scott IM, Gagnon N, Lesage L, Philogène BJR, Arnason JT (2005a) Efficacy of botanical insecticides from Piper spp. (Piperaceae) extracts for control of European chafer (Coleoptera Scarabaeidae). J Econ Entomol 98:845–855

    CAS  Google Scholar 

  • Scott IM, Helson BV, Strunz GM, Finlay H, Sánchez-Vindas PE, Poveda L, Lyons BL, Philogène BJR, Arnason JT (2007) Efficacy of Piper Extracts (Piperaceae) for control of insect defoliators of forest and ornamental trees. Can Entomol (Revised and resubmitted Dec. 4 2006)

  • Scott IM, Jensen H, Nicol R, Lesage L, Bradbury R, Sánchez-Vindas P, Poveda L, Arnason JT, Philogène BJR (2004) Efficacy of Piper (Piperaceae) extracts for control of common home and garden insect pests. J Econ Entomol 97:1390–1403

    PubMed  CAS  Article  Google Scholar 

  • Scott IM, Jensen H, Scott JG, Isman MB, Arnason JT, Philogène BJR (2003) Botanical insecticides for controlling agricultural pests: piperamides and the Colorado potato beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Arch Insect Biochem Physiol 54:212–225

    PubMed  Article  CAS  Google Scholar 

  • Scott IM, Puniani E, Durst T, Phelps D, Merali S, Assabgui RA, Sánchez-Vindas P, Poveda L, Philogène BJR, Arnason JT (2002) Insecticidal activity of Piper tuberculatum Jacq. extracts synergistic interaction of piperamides. Agric For Entomol 4:137–144

    Article  Google Scholar 

  • Scott IM, Puniani E, Jensen H, Livesey JF, Poveda L, Sánchez-Vindas P, Durst T, Arnason JT (2005b) Analysis of Piperaceae germplasm by HPLC and LCMS: A method for isolating and identifying unsaturated amides from Piper spp extracts. J Agric Food Chem 53:1907–1913

    Article  CAS  Google Scholar 

  • Semler U, Gross GG (1988) Distribution of piperine in vegetative parts of Piper nigrum. Phytochemistry 27:1566–1567

    Article  CAS  Google Scholar 

  • Shultes RE, Raffauf RF (1990) The healing forest. Medicinal and toxic plants of the northwest Amazonia. Dudley TR (ed) Historical, ethno- and economic botany series, vol 2. Dioscorides Press, Portland, OR, p 484

  • Sighamony S, Anees I, Chanrakala T, Osmani Z (1986) Efficacy of certain indigenous plant products as grain protectants against Sitophilus oryzae (L.) and Rhyzopertha dominica (F.). J Stored Prod Res 22:21–23

    Article  Google Scholar 

  • Simpson BB, Ogorzaly MO (1995) Economic Botany: plants in our world. Simpson BB, Ogorzaly MO (eds) 2nd edn. McGraw-Hill Inc., New York, p 742

  • Singh G, Marimuthu P, Catalan C, deLampasona MP (2004) Chemical, antoxidant and antifungal activities of volatile oil of black pepper and its acetone extract. J Sci Food Agric 84:1878–1884

    Article  CAS  Google Scholar 

  • Singh A, Rao AR (1993) Evaluation of the modulatory influence of black pepper (Piper nigrum, L.) on the hepatic detoxication system. Cancer Lett 72:5–9

    PubMed  Article  CAS  Google Scholar 

  • Singh J, Reen RK (1994) Modulation of constitutive, benz[a]anthracene- and phenobarbital-inducible cytochromes P450 activities in rat hepatoma H4IIEC3/G- cells by piperine. Curr Sci 66:365–369

    CAS  Google Scholar 

  • Supreme Court of Canada (2001) 114957 Canada Ltée (Spraytech, Société d’arrosage) and Service des Espaces Verts Ltée v. Town of Hudson (Respondent)) http://www.lexum.umontreal.ca/csc-scc/en/pub/2001/vol2/html/2001scr2_0241.html

  • Tripathi AK, Jain DC, Kumar S (1996) Secondary metabolites and their biological and medicinal activities of Piper species plants. J Med Aromat Plant Sci 18:302–321

    CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Duval and J. Livesey for technical and analytical support (Biology Department, University of Ottawa); T. Durst and E. Puniani for piperamide synthesis (Chemistry Department, University of Ottawa) and L. Poveda and P. Sánchez-Vindas for Piper collection and identification (Universidad Nacional, Heredia 3000, Costa Rica). Funding was provided by the Ontario Ministry of Science and Technology, Ontario Graduate Scholarship (OGS), the Fonds québécois de recherche sur la nature et les technologies (FQRNT), Whitmire Micro-Gen, Canadian Organic Growers and Natural Sciences and Engineering Research Council (NSERC) Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. Scott.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scott, I.M., Jensen, H.R., Philogène, B.J.R. et al. A review of Piper spp. (Piperaceae) phytochemistry, insecticidal activity and mode of action. Phytochem Rev 7, 65–75 (2008). https://doi.org/10.1007/s11101-006-9058-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-006-9058-5

Keywords

  • Enzyme inhibition
  • Gene expression
  • Insecticidal activity
  • Piperaceae
  • Piperamides