Skip to main content
Log in

The molecular architecture of major enzymes from ajmaline biosynthetic pathway

  • Original Paper
  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

The biosynthetic pathway leading to the monoterpenoid indole alkaloid ajmaline in Rauvolfia serpentiin serpentina is one of the most studied in the field of natural product biosynthesis. Ajmaline has a complex structure which is based on a six-membered ring system harbouring nine chiral carbon atoms. There are about fifteen enzymes involved, including some involving the side reactions of the ajmaline biosynthetic pathway. All enzymes exhibit pronounced substrate specificity. In the recent years isolation and sequencing of their cDNAs has allowed a detailed sequence analysis and comparison with functionally related and occasionally un-related enzymes. Site-directed mutations of several of the ajmaline-synthesizing enzymes have been performed and their catalytic residues have been identified. Success with over-expression of the enzymes was an important step for their crystallization and structural analysis by X-ray crystallography. Crystals with sufficient resolution were obtained from the major enzymes of the pathway. Strictosidine synthase has a 3D-structure with a six-bladed β-propeller fold the first time such a fold found in the plant kingdom. Its ligand complexes with tryptamine and secologanin, as well as structure-based sequence alignment, indicate a possible evolutionary relationship to several primary sequence-unrelated structures with this fold. The structure of strictosidine glucosidase was determined and its structure has as a (β/α)8 barrel fold. Vinorine synthase provides the first 3D structure of a member of BAHD enzyme super-family. Raucaffricine glucosidase involved in a side-route of ajmaline biosynthesis has been crystallized. The ajmaline biosynthetic pathway is an outstanding example where many enzymes 3D-structure have been known and where there is a real potential for protein engineering to yield new alkaloid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barleben L, Ma X, Koepke J, Peng G, Michel H, Stöckigt J (2005) Expression, purification, crystallization and preliminary X-ray analysis of strictosidine glucosidase, an enzyme initiating biosynthetic pathways to a unique diversity of indole alkaloid skeletons. Biochim Biophys Acta 1747:89–92

    PubMed  CAS  Google Scholar 

  • Bayer A, Ma X, Stöckigt J (2004) Acetyltransfer in natural product biosynthesis – functional cloning and molecular analysis of vinorine synthase. Bioorg Med Chem 12:2787–2795

    Article  PubMed  CAS  Google Scholar 

  • Bracher D, Kutchan TM (1992) Strictosidine synthase from Rauvolfia serpentina: analysis of a gene involved in indole alkaloid biosynthesis. Arch Biochem Biophys 294:717–723

    Article  PubMed  CAS  Google Scholar 

  • Buglino J, Onwueme KC, Ferreras JA, Quadri LEN, Lima CD (2004) Crystal Structure of PapA5, a Phthiocerol Dimycocerosyl Transferase from Mycobacterium tuberculosis. J Biol Chem 279:30634–30642

    Google Scholar 

  • Chrzanowska M, Rozwadowska MD (2004) Asymmetric synthesis of isoquinoline alkaloids. Chem Rev 104:3341–3370

    Article  PubMed  CAS  Google Scholar 

  • Cox ED, Cook JC (1995) The Pictet–Spengler condensation: a new direction for an old reaction. Chem Rev 95:1791–1842

    Article  Google Scholar 

  • Creasey WA (1994) Pharmacology, biochemistry and clinical applications of the monoterpenoid alkaloids. In: Saxton JE (ed) Monoterpenoid Indole Alkaloids,␣Supplement to part 4. John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore, pp␣715–753

    Google Scholar 

  • D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340

    Article  PubMed  CAS  Google Scholar 

  • De-Eknamkul W, Ounaroon A, Tanahashi T, Kutchan T, Zenk MH (1997) Phytochemistry 45:477–484

    Article  CAS  Google Scholar 

  • De-Eknamkul W, Suttipanta N, Kutchan TM (2000) Purification and characterization of deacetylipecoside synthase from Alangium lamarckii. Thw. Phytochemistry 55:177–181

    Article  PubMed  CAS  Google Scholar 

  • DeLucas LJ, Hamrick D, Cosenza L, Nagy L, McCombs D, Bray T, Chait A, Stoops B, Belgovskiy A, Wilson WW, Parham M, Chernov N (2005) Protein crystallization: virtual screening and optimization. Prog Biophys Mol Biol 88:285–309

    Article  PubMed  CAS  Google Scholar 

  • DeWaal A, Meijer AH, Verpoorte R (1995) Strictosidine synthase from Catharanthus roseus: purification and characterization of multiple forms. Biochem J 306:571–580

    CAS  Google Scholar 

  • Edwards TA, Wilkinson BD, Wharton RP, Aggarwal AK (2003) Model of the brain tumor-pumilio translation repressor complex. Genes Dev 17:2508–2513

    Article  PubMed  CAS  Google Scholar 

  • Falbe J, Regitz M (1991) In: RÖMPP Chemie Lexikon, Georg Thieme Verlag Stuttgart-New York, Vol. 4, pp 34–37

  • Geerlings A, Ibanez MM, Memelink J, van Der Heijden R, Verpoorte R. (2000) Molecular cloning and analysis of strictosidine beta-d-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Biol Chem 275:3051–3056

    Article  PubMed  CAS  Google Scholar 

  • Gerasimenko I, Sheludko Y, Ma X, Stöckigt J (2002) Heterologous expression of a Rauvolfia cDNA encoding strictosidine glucosidase, a biosynthetic key to over 2000 monoterpenoid indole alkaloids. Eur J Biochem 269:2204–2213

    Article  PubMed  CAS  Google Scholar 

  • Gerasimenko I, Ma X, Sheludko Y, Mentele R, Lottspeich F, Stöckigt J (2004) Purification and partial amino acid sequences of the enzyme vinorine synthase involved in a crucial step of ajmaline biosynthesis. Bioorg Med Chem 12:2781–2786

    Article  PubMed  CAS  Google Scholar 

  • Gerlt JA, Raushel FM (2003) Evolution of function in (β/α)8 barrel enzymes. Curr Opin Chem Biol 7:252–264

    Article  PubMed  CAS  Google Scholar 

  • Gibbs MR, Moody PCE, Leslie AGW (1990) Crystal Structure of the ASP-199 asparagine mutant of chloramphenicol acetyltransferase to 2.35. Å resolution: structural consequences of disruption of a buried salt bridge. Biochemistry 29:11261–11265

    Article  PubMed  CAS  Google Scholar 

  • Gilliland GL, Tung M, Blakeslee DM, Ladner J (1994) The biological macromolecule crystallization database, version 3.0: new features, data, and the NASA archive for protein crystal growth data. Acta Crystallogr D 50:408–413

    Article  PubMed  CAS  Google Scholar 

  • Harel M, Aharoni A, Gaidukov L, Brumshtein B, Khersonsky O, Meged R, Dvir H, Ravelle RBG, McCarthy A, Toker L, Silman L, Sussman JL, Tawfik DS (2004) Structure and evolution of the serum paraoxonase family of detoxifying and antiatherosclerotic enzymes. Nat Struct Mol Biol 11:412–419

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    PubMed  CAS  Google Scholar 

  • Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. J Biochem 316:695–696

    Google Scholar 

  • Hoffmann L, Maury S, Martz F, Geoffry P, Legrand L (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J␣Biol Chem 278:95–103

    Article  PubMed  CAS  Google Scholar 

  • Jawad Z, Paoli M (2002) Novel sequences propel familiar folds. Structure 10:447–454

    Article  PubMed  CAS  Google Scholar 

  • Jeon H, Meng W, Takagi J, Eck MJ, Springer TA, Blacklow SC (2001) Implications for familial hypercholesterolemia from the structure of the LDL receptor YWTD-EGF domain pair. Nat Struct Biol 8:499–504

    Article  PubMed  CAS  Google Scholar 

  • Koepke J, Ma X, Fritzsch G, Michel H, Stöckigt J (2005) Crystallization and preliminary X-ray analysis of strictosidine synthase and its complex with the substrate tryptamine. Acta Crystallogr Sect D 61:690–693

    Article  Google Scholar 

  • Krupka HI, Rupp B, Segelke BW, Lekin TP, Wright D, Wu H-C, Todd P, Azarani A (2002) The high-speed Hydra-Plus-One system for a automated high-throughput protein crystallography. Acta Crystallogr D 58:1523–1526

    Article  PubMed  Google Scholar 

  • Kutchan TM, Hampp N, Lottspeich F, Beyreuther K, Zenk MH (1988) The cDNA clone for strictosidine synthase from Rauvolfia serpentina. DNA sequence determination and expression in Escherichia coli. FEBS Lett 237:40–44

    Article  PubMed  CAS  Google Scholar 

  • Kutchan TM (1993) Strictosidine: from alkaloid to enzyme to gene. Phytochemistry 32:493–506

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Koepke J, Fritzsch G, Diem R, Kutchan TM, Michel H, Stöckigt J (2004a) Crystallization and preliminary X-ray Crystallographic Analysis of strictosidine synthase from Rauvolfia – the first member of a novel enzyme family. Biochim Biophys Acta 1702:121–124

    CAS  Google Scholar 

  • Ma X, Panjikar S, Koepke J Loris E, Stöckigt J (2006) The structure of Rauvolfia serpentina stritosidine synthase is a novel six-bladed beta-propeller fold in plant proteins. The Plant Cell 18:907–920

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Koepke J, Bayer A, Linhard V, Fritzsch G, Zhang B, Michel H, Stöckigt J (2004b) Vinorine synthase from Rauvolfia: the first example of crystallization and preliminary X-ray diffraction analysis of an enzyme of the BAHD superfamily. Biochim Biophys Acta 1701:129–132

    PubMed  CAS  Google Scholar 

  • Ma X, Koepke J, Bayer A, Fritzsch G, Michel H, Stöckigt J (2005a) Crystallization and preliminary X-ray analysis of native and selenomethionyl vinorine synthase from Rauvolfia serpentina. Acta Crystallogr Sect D 61:694–696

    Article  Google Scholar 

  • Ma X, Koepke J, Panjikar S, Fritzsch G, Stöckigt J (2005b) Crystal structure of vinorine synthase, the first representative of the BAHD superfamily. J Biol Chem 280:13576–13583

    Article  CAS  Google Scholar 

  • Panjikar S, Parthasarathy V, Lamzin VS, Weiss MS, Tucker PA (2005) Auto-Rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. Acta Cryst D 61:449–457

    Article  Google Scholar 

  • Pfitzner A, Polz L, Stöckigt J (1986) Properties of Vinorine Synthase – the Rauvolfia Enzyme involved in the Formation of the Ajmaline Skeleton. Z Naturforsch 41c:103–114

    Google Scholar 

  • Pfitzner M, Zenk MH (1989) Homogenous strictosidine synthase isoenzymes from cell suspension cultures of Catharanthus roseus. Planta Med 55:525–530

    Article  PubMed  CAS  Google Scholar 

  • Pictet A, Spengler T (1911) Über die Bildung von Isochinolin-derivaten durch Übertragung von Methylal auf Phenyl-äthylamin, Phenyl-alanin und Tyrosin. Ber Dtsch Chem Ges 44:2030–2036

    CAS  Google Scholar 

  • Pons T, Gomez R, Chinea G, Valencia A (2003) Beta-propellers: associated functions and their role in human diseases. Curr Med Chem 10:505–524

    PubMed  CAS  Google Scholar 

  • Ruppert M, Stöckigt J (1999) Strictosidine – the biosynthetic key to monoterpenoid indole alkaloids. In: Sir␣Derek Barton, Nakanishi K (eds) Comprehensive␣Natural Products Chemistry Vol 4. Elsevier, Amsterdam, Lausanne, New York, Oxford, Shannon, Singapore, Tokyo, pp 109–138

    Google Scholar 

  • Ruppert M, Ma X, Stöckigt J (2005) Alkaloid biosynthesis in Rauvolfia–cDNA cloning of major enzymes of the ajmaline pathway. In: Knölker H-J (eds) Current Org Chem 9:1431–1444

    Google Scholar 

  • Ruppert M, Panjikar S, Barleben L, Stöckigt J (2006) Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis. Acta Crystallogr F 62:257–260

    Article  Google Scholar 

  • Ruyter CM, Stöckigt J (1991) Enzymatic formation of raucaffricine, the major indol alkaloid of Rauwolfia serpentina cell-suspension cultures. Helv Chim Acta 74:1707–1712

    Article  Google Scholar 

  • Samanani N, Liscombe DK, Facchini PJ (2004) Molecular cloning and characterization of norcoclaurine synthase, an enzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis. Plant J 40:302–313

    Article  PubMed  CAS  Google Scholar 

  • Scharff EI, Koepke J, Fritzsch G, Lücke C, Rüterjans H (2001) Crystal structure of diisopropylfluorophosphatase from Loligo vulgaris. Structure 9:493–502

    Article  PubMed  CAS  Google Scholar 

  • Schübel H, Stöckigt J, Feicht R, Simon H (1986) Partial purification and characterization of raucaffricine β-D-glucosidase from plant cell-suspension cultures␣of Rauwolfia serpentina. Helv Chim Acta 69:538–547

    Article  Google Scholar 

  • St-Pierre B, DeLuca V (2000) Evolution of acyltransferase genes: origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. In: John RI, Romeo T, Varin L, DeLuca V (eds) Recent Advances in Phytochemistry, Evolution of Metabolic Pathways Vol 34. Elsevier Science, Oxford, pp 285–315

    Google Scholar 

  • Suzuki H, Nakayama T, Nishino T (2003) Proposed mechanism and functional amino acid residues of malonyl-CoA: anthocyanin 5-O-glucoside-6”’-O-malonyltransferase from flowers of Salvia splendens, a member of the versatile plant acyltransferase family. Biochemistry 42:1764–1771

    Article  PubMed  CAS  Google Scholar 

  • Treimer JE, Zenk MH (1979) Purification and properties of strictosidine synthase, the key enzyme in indole alkaloid formation. Eur J Biochem 101:225–233

    Article  Google Scholar 

  • Van Duyne GD, Standaert RF, Karplus A, Schreiber SL, Clardy J (1993) Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and Rapamycin. J Mol Biol 229:105–124

    Article  PubMed  CAS  Google Scholar 

  • Warzecha H, Obitz P, Stöckigt J (1999) Purification, partial amino acid sequence and structure of the product of raucaffricine-O-beta-d-glucosidase from plant cell cultures of Rauvolfia serpentina. Phytochemistry 50:1099–1109

    Article  PubMed  CAS  Google Scholar 

  • Warzecha H, Gerasimenko I, Kutchan TM, Stöckigt J (2000) Molecular cloning and functional bacterial expression of a plant glucosidase specifically involved in alkaloid biosynthesis. Phytochemistry 54:657–666

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki Y, Sudo H, Yamazaki M, Aimi N, Saito K (2003) Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: cloning, characterization and differential expression in tissues and by␣stress compounds. Plant Cell Physiol 44: 395–403

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are very thankful to Mrs. Doris Rohr of our research group for cultivation of all plant cell systems, to Prof. F. Lottspeich and his coworkers Mrs. I. Mathes and Mr. R. Mentele (Max-Planck-Institute of Biochemistry, Martinsried, Germany) for their enthusiastic help in sequencing pre-purified Rauvolfia enzymes and to Prof. H. Michel, Dr. G. Fritzsch and Dr. J. Koepke (Max-Planck-Institute of Biophysics, Frankfurt/Main, Germany) for introducing us to structural biology research.

Our research was also supported by the Deutsche Forschungsgemeinschaft (Bonn, Bad-Godesberg, Germany), Fonds der Chemischen Industrie (Frankfurt/Main, Germany) and the Bundesministerium für Bildung und Forschung (BMBF), Bonn, Germany). Support in the form of access to synchrotron facilities by the European Community (Research Infrastructure Action under the FP6 “Structuring the European Research Area Programme”, contact number RII3/CT/2004/5060008) is also␣acknowledged and we thank Dr. Paul Tucker (EMBL Hamburg, Germany) for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Stöckigt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stöckigt, J., Panjikar, S., Ruppert, M. et al. The molecular architecture of major enzymes from ajmaline biosynthetic pathway. Phytochem Rev 6, 15–34 (2007). https://doi.org/10.1007/s11101-006-9016-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-006-9016-2

Keywords

Navigation