Skip to main content
Log in

Chilling-induced reduction of photosynthesis is mitigated by exposure to elevated CO2 concentrations

  • Original paper
  • Published:
Photosynthetica

Abstract

This work aimed to evaluate if chilling stress may be mitigated by elevated CO2 (EC) in Beta vulgaris L. plants. Photosynthetic rate was measured at 21% and 2% O2 after a short-term exposure of 5 h at four different treatments: 360 μmol(CO2) mol–1/25°C (AC); 360 μmol(CO2) mol–1/4°C (AC+LT); 700 μmol(CO2) mol–1/25°C (EC); 700 μmol(CO2) mol–1/4°C (EC+LT). Compared to AC+LT, EC+LT plants showed higher values of CO2 fixation, photochemical activity, and Rubisco amount. These latter invest a higher portion of photosynthetic electron flow to O2, differently from AC+LT plants that promote the regulated thermal dissipation processes. In EC+LT plants, the photosynthetic electron flow to O2 acts as a safety mechanism against the excess of absorbed light, upon return to prechilling conditions, allowing photosynthetic apparatus to maintain its efficiency. In AC+LT plants, the increase of thermal dissipation processes was not adequate to guarantee the PSII photoprotection and the photosynthetic recovery after chilling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AC:

ambient [CO2]

[CO2]:

CO2 concentration

Chl:

chlorophyll

C i :

intercellular CO2 concentration

EC:

elevated [CO2]

F0 :

minimal fluorescence yield of the dark-adapted state

F0’ :

minimal fluorescence yield of the light-adapted state

Fm :

maximal fluorescent yield of the dark-adapted state

Fm’ :

maximal fluorescence level in light-adapted state

Fv :

variable fluorescence

Fv/Fm :

maximum quantum yield of PSII photochemistry

Fs :

steady-state fluorescence yield

gs:

stomatal conductance

Jf :

electron transport rate

Jc :

electron transport rate used for CO2 assimilation

Jo :

electron transport rate used for photorespiration

K:

Kelvin

LT:

low temperature

P N :

net photosynthetic rate

RD:

dark respiration

TCA:

trichloroacetic acid

Vc :

carboxylation rate of Rubisco

Vo :

oxygenation rate of Rubisco

ΦPSII :

effective quantum yield of PSII photochemistry

FNPQ:

the yield of regulated energy dissipation

FNO:

the yield of nonregulated energy dissipation

References

  • Alam B., Jacob J.: Overproduction of photosynthetic electrons is associated with chilling injury in green leaves.–Photosynthetica 40: 91–95, 2002.

    Article  CAS  Google Scholar 

  • Allen D.J., Ort D.R.: Impacts of chilling temperatures on photosynthesis in warm climate plants.–Trends Plant Sci. 6: 36–42, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ainsworth E.A., Rogers A.: The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions.–Plant Cell Environ. 30: 258–270, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Arena C., Figlioli F., Sorrentino M.C. et al.: Ultrastructural, protein and photosynthetic alterations induced by Pb and Cd in Cynara cardunculus L., and its potential for phytoremediation.–Ecotoxicol. Environ. Safe. 145: 83–89, 2017.

    Article  CAS  Google Scholar 

  • Bertrand A., Prevost D., Bigras F.J., Castonguay Y.: Elevated atmospheric CO2 and strain of rhizobium after freezing tolerance and cold-induced molecular changes in Alfalfa. (Medicago sativa).–Ann. Bot.-London 99: 275–284. 2007.

    Article  CAS  Google Scholar 

  • Bigras F.J., Bertrand A.: Responses of Picea mariana to elevated CO2 concentration during growth, cold hardening and dehardening phenology, cold tolerance, photosynthesis and growth.–Tree Physiol. 26: 875–888, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Bilger W., Björkman O.: Role of xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in Hedera canariensis.–Photosynth. Res. 25: 173–185, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Boese S.R., Wolfe D.A., Melkonian J.J.: Elevated CO2 mitigates chilling-induced water stress and photosynthetic reduction during chilling.–Plant Cell Environ. 20: 625–632, 1997.

    Article  Google Scholar 

  • Cheng S-H., Moore B.D., Seemann J.R.: Effects of short-and longterm elevated CO2 on the expression of Ribulose-1,5-bisphosphate carboxylase/oxygenase genes and carbohydrate accumulation in leaves of Arabidopsis thaliana (L.) Heynh.–Plant Physiol. 116: 715–723, 1998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dahal K., Knowles V., Plaxton W.C., Hüner N.P.A.: Enhancement of photosynthetic performance, water use efficiency and grain yield during long-term growth under elevated CO2 in wheat and rye is growth temperature and cultivar depend.–Environ. Exp. Bot. 106: 207–220, 2014.

    Article  CAS  Google Scholar 

  • Drake B.G., Gonzales-Meler M.A., Long S.P.: More efficient plants: a consequence of rising atmospheric CO2?–Annu. Rev. Plant Phys. 48: 609–639, 1997.

    Article  CAS  Google Scholar 

  • Duarte B., Santos D., Silva H. et al.: Photochemical and biophysical feedbacks of C3 and C4 Mediterranean halophytes to atmospheric CO2 enrichment confirmed by their stable isotope signatures.–Plant Physiol. Bioch. 80: 10–22, 2014.

    Article  CAS  Google Scholar 

  • Epron D., Godard D., Cornic G., Genty B.: Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.).–Plant Cell Environ. 18: 43–51, 1995.

    Article  Google Scholar 

  • Flexas J., Escalona J.M., Medrano H.: Down-regulation of photosynthesis by drought under field conditions in Grapevines leaves.–Aust. J. Plant Physiol. 25: 893–900, 1998.

    Article  Google Scholar 

  • Fryer M.J., Andrews J.R., Oxborough K. et al.: Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature.–Plant Physiol. 116: 571–580, 1998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galmés J., Aranjuelo I., Medrano H., Flexas J.: Variation in Rubisco content and activity under variable climatic factors.–Photosynth. Res. 117: 73–90, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Genty B., Briantais J., Baker N.R.: The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.–Biochim. Biophys. Acta 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  • Govindachary S., Bukhov N.G., Joly D., Carpentier R.: Photosystem II inhibition by moderate light under low temperature in intact leaves of chilling-sensitive and tolerant plants.–Physiol. Plantarum 121: 322–333, 2004.

    Article  CAS  Google Scholar 

  • Gutiérrez D., Gutiérrez E., Pérez P. et al.: Acclimation to future atmospheric CO2 levels increases photochemical efficiency and mitigates photochemistry inhibition by warm temperatures in wheat under field chambers.–Physiol. Plantarum 137: 86–100, 2009.

    Article  CAS  Google Scholar 

  • Hamilton E.W., Heckathorn S.A., Joshi P. et al.: Interactive effects of elevated CO2 and growth temperature on the tolerance of photosynthesis to acute heat stress in C3 and C4 species.–J. Integr. Plant Biol. 50: 1375–1387, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Huang W., Zhang S.B., Cao K.F.: The different effects of chilling stress under moderate light intensity on photosystem II compared with photosystem I and subsequent recovery in tropical tree species.–Photosynth. Res. 103: 175–182, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Huner N.P.A., Öquist G., Hurry V.M. et al.: Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants.–Photosynth. Res. 37: 19–39, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Janská A. Maršík P., Zelenková S., Ovesná J.: Cold stress and acclimation–what is important for metabolic adjustment?–Plant Biol. 12: 395–405, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y.-P., Cheng F., Zhou Y.-H. et al.: Interactive effects of CO2 enrichment and brassinosteroid on CO2 assimilation and photosynthetic electron transport in Cucumis sativus.–Environ. Exp. Bot. 75: 98–106, 2012.

    Article  CAS  Google Scholar 

  • Krall J.P., Edwards G.E.: Relationship between Photosystem II activity and CO2 fixation in leaves.–Physiol. Plantarum 86: 180–187, 1992.

    Article  CAS  Google Scholar 

  • Kramer D.M., Johnson G., Kiirats O., Edwards G.E.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes.–Photosynth. Res. 79: 209–218, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Laing W.A., Greer D.H., Campbell B.C.: Strong responses of growth and photosynthesis of five C3 pasture species to elevated CO2 at low temperatures.–Funct. Plant Biol. 29: 1089–1096, 2002.

    Article  Google Scholar 

  • Leipner J., Basilidès A., Stamp P., Fracheboud Y.: Hardly increased oxidative stress after exposure to low temperature in chilling acclimated and non-acclimated maize leaves.–Plant. Biol. 2: 243–251, 2000.

    Article  CAS  Google Scholar 

  • Loveys B.R., Egerton J.J.G., Ball M.C.: Higher daytime leaf temperatures contribute to lower freeze tolerance under elevated CO2.–Plant Cell Environ. 29: 1077–1086, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Martin B., Ort D.R., Boyer J.S.: Impairment of photosynthesis by chilling-temperatures in tomato.–Plant Physiol. 68: 329–334, 1981.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin M., Gavazov K., Körner C. et al.: Reduced early growing season freezing resistence in alpine treeline plants under elevated atmospheric CO2.–Glob. Change Biol. 16: 1057–1070, 2010.

    Article  Google Scholar 

  • Medrano H., Bota J., Abadía A. et al.: Effects of drought on lightenergy dissipation mechanisms in high-light-acclimated, fieldgrown grapevines.–Funct. Plant Biol. 29: 1197–1207, 2002.

    Article  CAS  Google Scholar 

  • Melkonian J., Owens T.G., Wolfe D.W.: Gas exchange and coregulation of photochemical and non-photochemical quenching in bean during chilling at ambient and elevated carbon dioxide.–Photosynth. Res. 79: 71–82, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Meza-Basso L., Alberdi M., Raynal M. et al.: Changes in protein synthesis in rapeseed (Brassica napus) seedlings during a low temperature treatment.–Plant Physiol. 82: 733–738, 1986.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moore B.D, Cheng S.H., Sims D, Seemann J.R.: The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2.–Plant Cell Environ. 22: 567–582, 1999.

    Article  CAS  Google Scholar 

  • Qu M.N., Bunce J.A., Shi Z.S.: Does elevated CO2 protect photosynthesis from damage by high temperature via modifying leaf water status in maize seedlings?–Photosynthetica 52: 211–216, 2014.

    Article  CAS  Google Scholar 

  • Rai P., Chaturvedi A.K., Viswanathan D.S.C., Pal M.: Elevated CO2 enhances carbohydrate assimilation at flowering stage and seed yield in chickpea (Cicer arietinum).–Ind. J. Plant Physiol. 21: 114–121, 2016.

    Article  CAS  Google Scholar 

  • Rapacz M., Wolanin B., Hura K., Tyrka M.: The effects of cold acclimation on photosynthetic apparatus and the expression of COR14b in four genotypes of barley (Hordeum vulgare) contrasting in their tolerance to freezing and high-light treatment in cold conditions.–Ann. Bot.-London 101: 689–699, 2008.

    Article  CAS  Google Scholar 

  • Sanz-Sáez Á., Erice G., Aranjuelo I. et al.: Photosynthetic and molecular markers of CO2-mediated photosynthetic down regulation in nodulated alfalfa.–J. Integr. Plant Biol. 55: 721–734, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Seneweera S., Makino A., Hirotsu N., Norton S.Y.: New insight into photosynthetic acclimation to elevated CO2: the role of leaf nitrogen and ribulose-1,5-bisphosphate carboxylase/oxygenase content in rice leaves.–Environ. Exp. Bot. 71: 128–136, 2011.

    Article  CAS  Google Scholar 

  • Urban O., Hrstka M., Zitová M. et al.: Effect of season, needle age and elevated CO2 concentration on photosynthesis and Rubisco acclimation in Picea abies.–Plant Physiol. Bioch. 58: 135–141, 2012.

    Article  CAS  Google Scholar 

  • Urbonaviciute A., Samuoliene G., Sakalauskaite J. et al.: The effect of elevated CO2 concentrations on leaf carbohydrate, chlorophyll contents and photosynthesis in radish.–Pol. J. Environ. Stud. 15: 921–925, 2006.

    CAS  Google Scholar 

  • Venema J.H., Posthumus F., de Vries M., van Hasselt P.R.: Differential response of domestic and wild Lycopersicon species to chilling under low light: growth, carbohydrate content, photosynthesis and the xanthophyll cycle.–Physiol. Plantarum 105: 81–88, 1999.

    Article  CAS  Google Scholar 

  • Venema J.H., Villerius L., van Hasselt P.R.: Effects of acclimation to suboptimal temperature on chilling-induced photodamage: comparison between a domestic and a high-altitude wild Lycopersicon species.–Plant Sci. 152: 153–163, 2000.

    Article  CAS  Google Scholar 

  • von Caemmerer S., Farquhar G.D.: Some relationship between the biochemistry of photosynthesis and the gas exchange of leaves.–Planta 153: 376–387, 1981.

    Article  Google Scholar 

  • von Caemmerer S.: Biochemical Models of Leaf Photosynthesis. Pp. 165. CSIRO Publishing, Collingwood 2000.

    Google Scholar 

  • Wang L.J., Loescher W., Duan W. et al.: Heat acclimation induced acquired heat tolerance and cross adaptation in different grape cultivars: relationships to photosynthetic energy partitioning.–Funct. Plant Biol. 36: 516–526, 2009.

    Article  CAS  Google Scholar 

  • Zheng C., Chen Z., Xia J. et al.: Chilling acclimation provides immunity to stress by altering regulatory networks and inducing genes with protective functions in cassava.–BMC Plant Biol. 14: 207, 2014.

    Article  CAS  Google Scholar 

  • Zhou Y.H., Yo O.J., Huang L.R., Nogués S.: The relationship between CO2 assimilation, photosynthetic electron transport and water-water cycle in chill-exposed cucumber leaves under low light and subsequent recovery.–Plant Cell Environ. 27: 1503–1514, 2004.

    Article  Google Scholar 

  • Ziska L.H.: Growth temperature can alter the temperature dependent stimulation of photosynthesis by elevated carbon dioxide in Albutilon theophrasti.–Physiol. Plantarum 111: 322–328, 2001.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Arena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arena, C., Vitale, L. Chilling-induced reduction of photosynthesis is mitigated by exposure to elevated CO2 concentrations. Photosynthetica 56, 1259–1267 (2018). https://doi.org/10.1007/s11099-018-0843-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0843-3

Additional key words

Navigation