Skip to main content
Log in

Comparative photosynthetic attributes of emmer and modern wheats in response to water and nitrogen supply

  • Original paper
  • Published:
Photosynthetica

Abstract

A field study was conducted with the aim to elucidate photosynthetic responses of five emmer hulled wheat (Triticum turgidum ssp. dicoccum) accessions to 30 (N-limited) and 100 kg(N) ha–1 (N-sufficient) conditions at control and drought stress (irrigation after 30–40% and 60–70% depletion of available soil water, respectively). Chlorophyll (Chl) a and Chl b concentrations of the emmer wheats remained unchanged but net photosynthetic rate and dry mass increased and decreased, respectively, when received a sufficient amount of N. Smaller drought-induced decreases in Chl concentration, membrane stability index, and dry mass were concomitant to a greater decrease in intercellular CO2 concentration of emmer compared to the durum (Triticum turgidum) and bread wheats (Triticum aestivum). The lack of negative effect of insufficient N on Chl concentration and dry mass of emmer wheat suggests that this type of wheat possesses an obvious potential for organic farming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASW:

available soil water

Cars:

carotenoids

Chl:

chlorophyll

C i :

intercellular CO2 concentration

E :

transpiration rate

Fv/Fm :

maximal quantum efficiency of PSII

gs:

stomatal conductance to the CO2

LAI:

leaf area index

LSD:

least significant difference

M c :

mesophyll conductance

modern wheats:

free-threshing durum and bread wheats

MSI:

membrane stability index

N:

nitrogen

P N :

net photosynthetic rate

ROS:

reactive oxygen species

SDM:

plant aboveground dry mass

WUE:

water-use efficiency

WUEi :

intrinsic water-use efficiency

References

  • Allen R.G., Pereira L.S., Raes D. et al.: Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper. Pp. 56. FAO, Rome 1998.

    Google Scholar 

  • Andrews M., Lea P.J.: Our nitrogen ‘footprint’: the need for increased crop nitrogen use efficiency.–Ann. App. Biol. 163: 165–169, 2013.

    Article  CAS  Google Scholar 

  • Arzani A.: Emmer (Triticum turgidum spp. dicoccum) flour and breads.–In: Preedy V.R., Watson R.R., Patel V.B. (ed.): Flour and Breads and their Fortification in Health and Disease Prevention. Pp. 69–78. Academic Press, Elsevier, London–Burlington–San Diego 2011.

    Chapter  Google Scholar 

  • Ashraf M., Arfan M., Ashraf M.Y.: Water relations, gas exchange characteristics, and the level of some metabolites in two cultivars of spring wheat under different N regimes.–Acta Physiol. Plant. 24: 407–415, 2002.

    Article  CAS  Google Scholar 

  • Askari E., Ehsanzadeh P.: Drought stress mitigation by foliar application of salicylic acid and their interactive effects on physiological characteristics of fennel (Foeniculum vulgare Mill.) genotypes.–Acta Physiol. Plant. 37: 1–14, 2015.

    Article  CAS  Google Scholar 

  • Araus J.L., Slafer G.A., Raynolds M.P. et al.: Plant breeding and drought in C3 cereals: What should we breed for?–Ann. Bot.-London 89: 925–940, 2002.

    Article  Google Scholar 

  • Bajji M., Kinet J.M., Lutts S.: The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat.–Plant Growth Regul. 36: 61–70, 2002.

    Article  CAS  Google Scholar 

  • Breštic M., Živcák M., Kunderlíková K. et al.: High temperature specifically affects the photoprotective responses of chlorophyll b deficient wheat mutant lines.–Photosynth. Res. 130: 251–266, 2015.

    Article  CAS  Google Scholar 

  • Castagna R., Minoia C., Porfiri O. et al.: Nitrogen level and seeding rate effects on the performance of hulled wheats (Triticum monococcum L., Triticum dicoccum Schübler and Triticum spelta L.) evaluated in contrasting agronomic environments.–J. Agron. Crop Sci. 176: 173–181, 1996.

    Article  Google Scholar 

  • Cechin I.: Photosynthesis and chlorophyll fluorescence in two hybrids of Sorghum under different nitrogen and water regimes.–Photosynthetica 35: 233–240, 1998.

    Article  CAS  Google Scholar 

  • Chapagain T., Riseman A.: Nitrogen and carbon transformations, water use efficiency and ecosystem productivity in monocultures and wheat-bean intercropping systems.–Nutr. Cycl. Agroecosys. 101: 107–121, 2015.

    Article  CAS  Google Scholar 

  • Ercoli L., Mariotti M., Masoni A. et al.: Relationship between nitrogen and chlorophyll content and spectral properties in maize leaves.–Eur. J. Agron. 2: 113–117, 1993.

    Article  Google Scholar 

  • Farooq M., Wahid A., Kobayashi N. et al.: Plant drought stress: effects, mechanisms and management.–Agron. Sustain. Dev. 29: 185–212, 2009.

    Article  Google Scholar 

  • Fischer R.A., Rees D., Sayre K.D. et al.: Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies.–Crop Sci. 38: 1467–1475, 1998.

    Article  Google Scholar 

  • Flexas J., Galmés J., Gallé A. et al.: Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement.–Aust J. Grape Wine Res. 16: 106–121, 2010.

    Article  CAS  Google Scholar 

  • Gadallah M.A.A.: Effect of water stress, abscisic acid and proline on cotton plants.–J. Arid Environ. 30: 315–325, 1995.

    Article  Google Scholar 

  • Guo W., Li B., Zhang X., Wang R.: Architectural plasticity and growth responses of Hippophae rhamnoides and Caragana intermedia seedlings to simulated water stress.–J. Arid Environ. 69: 385–399, 2007.

    Article  Google Scholar 

  • Kiani M., Gheysari M., Mostafazadeh-Fard B. et al.: Effect of the interaction of water and nitrogen on sunflower under drip irrigation in an arid region.–Agr. Water Manage. 171: 162–172, 2016.

    Article  Google Scholar 

  • Konvalina P., Capouchová I., Stehno Z.: Agronomically important traits of emmer wheat.–Plant Soil Environ. 58: 341–346, 2012.

    Article  Google Scholar 

  • Lawlor D.W., Cornic G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants.–Plant Cell Environ. 25: 275–294, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Lea P.J., Azevedo R.A.: Nitrogen use efficiency. 1. Uptake of nitrogen from the soil.–Ann. Appl. Biol. 149: 243–247, 2006.

    Article  CAS  Google Scholar 

  • Lichtenthaler H.K., Wellburn W.R.: Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents.–Biochem. Soc. T. 11: 591–592, 1994.

    Article  Google Scholar 

  • Liu F., Jensen C.R., Shahanzari A. et al.: ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying.–Plant Sci. 168: 831–836, 2005.

    Article  CAS  Google Scholar 

  • Marino S., Cocozza C., Tognetti R., Alvino A.: Nitrogen supply effect on emmer (Triticum dicoccum Schübler) ecophysiolo-gical and yield performance.–Int. J. Plant Prod. 10: 457–468, 2016.

    Google Scholar 

  • Marino S., Tognetti R., Alvino A.: Effects of varying nitrogen fertilization on crop yield and grain quality of emmer grown in a typical Mediterranean environment in central Italy.–Eur. J. Agron. 34: 172–180, 2011.

    Article  CAS  Google Scholar 

  • Medrano H., Tomás M., Martorell S. et al.: From leaf to wholeplant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target.–Crop J. 3: 220–228, 2015.

    Article  Google Scholar 

  • Ögren E.: Suboptimal nitrogen status sensitizes the photosynthetic apparatus in willow leaves to long term but not short term water stress.–Photosynth. Res. 18: 263–275, 1988.

    Article  PubMed  Google Scholar 

  • Pan X., Lada R.R., Caldwell C.D. et al.: Water-stress and Nnutrition effects on photosynthesis and growth of Brassica carinata.–Photosynthetica 49: 309–315, 2011.

    Article  CAS  Google Scholar 

  • Potters G., Pasternak T.P., Guisez Y. et al.: Stress-induced morphogenic responses: growing out of trouble?–Trends Plant Sci. 12: 98–105, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Pourazari F., Vico G., Ehsanzadeh P. et al.: Contrasting growth pattern and nitrogen economy in ancient and modern wheat varieties.–Can. J. Plant Sci. 95: 851–860, 2015.

    Article  Google Scholar 

  • Prsa I., Stampar F., Vodnik D. et al.: Influence of nitrogen on leaf chlorophyll content and photosynthesis of ‘Golden Delicious’ apple.–Acta Agr. Scand. B-S. P. 57: 283–289, 2007.

    CAS  Google Scholar 

  • Robinson J.M., Burkey K.O.: Foliar CO2 photoassimilation and chloroplast linear electron transport rates in nitrogen-sufficient and nitrogen-limited soybean plants.–Photosynth. Res. 54: 209–217, 1997.

    Article  CAS  Google Scholar 

  • Seemann J.R., Critchley C.: Effects of salt stress on the growth, ion content, stomatal behavior and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L.–Planta 164: 151–162, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Shao H.B., Liang Z.S., Shao M.A.: Changes of anti-oxidative enzymes and MDA content under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage.–Colloid. Surface. B 45: 7–13, 2005.

    Article  CAS  Google Scholar 

  • Thormann I., Fiorino E., Halewood M. et al.: Plant genetic resources collections and associated information as a baseline resource for genetic diversity studies: an assessment of the IBPGR-supported collections.–Gen. Res. Crop Evol. 62: 1279–1293, 2015.

    Article  Google Scholar 

  • van Keulen H., Stol W.: Quantitative aspects of nitrogen nutrition in crops.–Fert. Res. 27: 151–160, 1991.

    Article  Google Scholar 

  • Venora G., Calcagno F.: Study of stomatal parameters for selection of drought resistant varieties in Triticum durum DESF.–Euphytica 57: 275–283, 1991.

    Article  Google Scholar 

  • Wu F.Z., Bao W.K., Zhou Z.Q. et al.: Carbon accumulation, nitrogen and phosphorus use efficiency of Sophora davidii seedlings in response to nitrogen supply and water stress.–J. Arid Environ. 73: 1067–1073, 2009.

    Article  Google Scholar 

  • Yousefzadeh Najafabadi M., Ehsanzadeh P.: Photosynthetic and antioxidative upregulations in drought-stressed sesame (Sesamum indicum L.) subjected to foliar-applied salicylic acid.–Photosynthetica 55: 611–622, 2017.

    Article  CAS  Google Scholar 

  • Zhang R.H., Zhang X.H., Camberato J.J et al.: Photosynthetic performance of maize hybrids to drought stress.–Russ. J. Plant Physl+ 62: 788–796, 2015.

    Article  CAS  Google Scholar 

  • Zhao C., Liu Q.: Effects of soil warming and nitrogen fertilization on leaf physiology of Pinus tabulaeformis seedlings.–Acta Physiol. Plant. 34: 1837–1846, 2012.

    Article  CAS  Google Scholar 

  • Živcák M., Kalaji H.M., Shao H.B. et al.: Photosynthetic proton and electron transport in wheat leaves under prolonged moderate drought stress.–J. Photoch. Photobio. B 137: 2014 107–115, 2014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ehsanzadeh.

Additional information

Acknowledgements: Financial support for conducting this study has been granted by the Isfahan University of Technology, Isfahan, Iran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaghar, M., Ehsanzadeh, P. Comparative photosynthetic attributes of emmer and modern wheats in response to water and nitrogen supply. Photosynthetica 56, 1224–1234 (2018). https://doi.org/10.1007/s11099-018-0825-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0825-5

Additional key words

Navigation