Morpho-physiological and biochemical responses of muskmelon genotypes to different degree of water deficit

  • W. A. Ansari
  • N. Atri
  • B. Singh
  • P. Kumar
  • S. Pandey
Article
  • 1 Downloads

Abstract

Morpho-physiological and biochemical analyses were carried out in eight diverse indigenous muskmelon (Cucumis melo L.) genotypes exposed to different degrees of water deficit (WD). The ability of genotypes MM-7, and especially MM-6, to counteract better the negative effect of WD was associated with maintaining higher relative water content (RWC), photosynthetic rate, efficiency of PSII, and photosynthetic pigments compare to other genotypes. Furthermore, MM-6 showed a better ability to maintain cellular homeostasis than the others. It was indicated by a stimulated antioxidative defense system, i.e., higher activities of antioxidant enzymes, accumulation of nonenzymatic antioxidants together with lower concentration of reactive oxygen species and malondialdehyde. However, the genotypes MM-2 and MM-5 suffered greatly due to WD and showed reduced RWC, photosynthetic rates, pigment content, and exhibited higher oxidative stress observed as lower antioxidant enzyme activities.

Additional key words

antioxidant enzyme muskmelon photosynthesis proline reactive oxygen species 

Abbreviations

APX

ascorbate peroxidase

Car

caroteinods

CAT

catalase

DM

dry mass

DMRT

Duncan’s multiple range tests

DWD

days of water deficit

EL

electrolyte leakage

FM

fresh mass

Fv/Fm

maximal quantum yield of PSII photochemistry

GR

glutathione reductase

gs

stomatal conductance

MDA

malondialdehyde

PN

net photosynthetic rate

POD

guaiacol peroxidase

RWC

relative water content

SOD

superoxide dismutase

SWC

soil water content

WD

water deficit

WW

well

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adibah M.S.R., Ainuddin AN.: Epiphytic plants responses to light and water stress.–Asian J. Plant Sci. 10: 97–107, 2011.CrossRefGoogle Scholar
  2. Ahmadi-Mirabad A., Lotfi M., Roozban M.R.: Growth, yield, yield components and water-use efficiency in irrigated cantaloupes under full and deficit irrigation.–Electron. J. Biol. 10: 79–84, 2014.Google Scholar
  3. Ahmadi-Mirabad A., Lotfi M., Roozban M.R.: Impact of waterdeficit stress on growth, yield and sugar content of cantaloupe (Cucumis melo L.).–Int. J. Agric. Crop Sci. 5: 2778–2782, 2013.Google Scholar
  4. Ansari W.A., Atri M., Singh B. et al.: Changes in antioxidant enzyme activities and gene expression in two muskmelon genotypes under progressive water stress.–Biol. Plantarum 61: 333–341, 2017.CrossRefGoogle Scholar
  5. Arora A., Sairam R.K., Srivastava G.C.: Oxidative stress and antioxidative system in plants.–Curr. Sci. 82: 1227–1238, 2002.Google Scholar
  6. Ashraf M., Foolad M.R.: Roles of glycine betaine and proline in improving plant abiotic stress resistance.–Environ. Exp. Bot. 59: 206–216, 2007.CrossRefGoogle Scholar
  7. Bates L.S., Walden R.P., Teare I.D.: Rapid determination of free proline for water stress studies.–Plant Soil 39: 205–207, 1973.CrossRefGoogle Scholar
  8. Boyer J.S.: Measurement of the water status of plants.–Annu. Rev. Plant Physiol. 9: 351–363, 1968.Google Scholar
  9. Cabello M.J., Castellanos M.T., Romojaro F. et al.: Yield and quality of melon grown under different irrigation and nitrogen rates.–Agr. Water Manage. 96: 866–874, 2009.CrossRefGoogle Scholar
  10. Carvalho M.H.C.: Drought stress and reactive oxygen species.–Plant Signal Behav. 3: 156–165, 2008.CrossRefGoogle Scholar
  11. Cha-um S., Nhung N.T.H., Kirdmanee C.: Effect of mannitol and salt-induced iso-osmotic stress on proline accumulation, photosynthetic abilities and growth characters of rice cultivars (Oryza sativa L. spp. indica).–Pak. J. Bot. 42: 927–941, 2010.Google Scholar
  12. Cha-um S., Samphumphuang T., Kirdmanee C.: Glycinebetaine alleviates water deficit stress in indica rice using proline accumulation, photosynthetic efficiencies, growth performances and yield attributes.–Aust. J. Crop Sci. 7: 213–218, 2013.Google Scholar
  13. Cha-um S., Supaibulwatana K., Kirdmanee C.: Glycinebetaine accumulation, physiological characterizations and growth efficiency in salt tolerant and salt sensitive lines of indica rice (Oryza sativa L. spp. indica) response to salt stress.–J. Agron. Crop. Sci. 193: 157–166, 2007.CrossRefGoogle Scholar
  14. Chaves M.M., Pereira J.S., Maroco J. et al.: How plants cope with water stress in the field? Photosynthesis and growth.–Ann. Bot.-London 89: 907–916, 2002.CrossRefGoogle Scholar
  15. Colla G., Rouphael Y., Jawad R. et al.: The effectiveness of grafting to improve NaCl and CaCl2 tolerance in cucumber.–Sci. Hortic.-Amsterdam 164: 380–391, 2013.CrossRefGoogle Scholar
  16. Deeba F., Pandey A.K.., Ranjan S. et al.: Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress.–Plant Physiol. Bioch. 53: 6–18, 2012.CrossRefGoogle Scholar
  17. Deng X., Hu Z.A., Wang H.X. et al.: A comparison of photosynthetic apparatus of the detached leaves of the resurrection plant Boea hygrometrica with its non-tolerant relative Chirita heterotricha in response to dehydration and rehydration.–Plant Sci. 165: 851–861, 2003.CrossRefGoogle Scholar
  18. Dhillon N.P., Monforte A.J., Pitrat M. et al.: Melon landraces of India: contributions and importance.–Plant Breed. Rev. 35: 85–150, 2011.Google Scholar
  19. Esfandiari E., Shakiba M.R., Mahboob S.A. et al.: The effect of water stress on the antioxidant content, protective enzyme activities, proline content and lipid peroxidation in wheat seedling.–Pak. J. Biol. Sci. 11: 1916–1922, 2008.CrossRefPubMedGoogle Scholar
  20. Feng X.H., Wu D.K.: Planting cucurbits in gravel mulched land.–China Cucurb. Veget. 1: 57–58, 2007.Google Scholar
  21. Fleury D., Jefferies S., Kuchel H. et al.: Genetic and genomic tools to improve drought tolerance in wheat.–J. Exp. Bot. 61: 3211–3222, 2010.CrossRefPubMedGoogle Scholar
  22. Foyer C.H., Descourvières P., Kunert K.J.: Protection against oxygen radicals: an important defense mechanism studied in transgenic plants.–Plant Cell Environ. 17: 507–523, 1994.CrossRefGoogle Scholar
  23. Gill S.S., Tuteja A.N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.–Plant Physiol. Bioch. 48: 909–930, 2010.CrossRefGoogle Scholar
  24. Heath R.L., Packer L.: Photoperoxidation in isolated chloroplasts: I. Kinetics and stechiometry of fatty acid peroxidation.–Arch. Biochem. Biophys. 125: 189–198, 1968.Google Scholar
  25. Hessini K., Martinez J.P., Gandour M. et al.: Effect of water stress on growth, osmotic adjustment, cell wall elasticity and water-use efficiency in Spartina alterniflora.–Environ. Exp. Bot. 67: 312–319, 2009.CrossRefGoogle Scholar
  26. Huang Z., Zou Z., He C. et al.: Physiological and photosynthetic responses of melon (Cucumis melo L.) seedlings to three Glomus species under water deficit.–Plant Soil 339: 391–399, 2011.CrossRefGoogle Scholar
  27. Ibrahim E.A.: Variability, heritability and genetic advance in Egyptian sweet melon (Cucumis melo var. Aegyptiacus L.) under water stress condition.–Int. J. Plant Breed. Genet. 6: 238–244, 2012.CrossRefGoogle Scholar
  28. Jaleel C.A., Gopi R., Panneerselvam R.: Growth and photosynthetic pigments responses of two varieties of Catharanthus roseus to triadimefon treatment.–C. R. Biol. 331: 272–277, 2008.CrossRefPubMedGoogle Scholar
  29. Jana S., Choudhuri M.A.: Glycolate metabolism of three submerged aquatic angiosperm during aging.–Aquat. Bot. 12: 345–354, 1981.CrossRefGoogle Scholar
  30. Kausar A., Ashraf M.Y., Ali I. et al.: Evaluation of sorghum varieties/lines for salt tolerance using physiological indices as screening tool.–Pak. J. Bot. 44: 47–52, 2012.Google Scholar
  31. Khare N., Goyary D., Singh N.K et al.: Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance.–Plant Cell Tiss. Org. Cult. 103: 267–277, 2010.Google Scholar
  32. Kravic N., Markovic K., Andelkovic V. et al.: Growth, proline accumulation and peroxidase activity in maize seedlings under osmotic stress.–Acta Physiol. Plant. 35: 233–239, 2013.CrossRefGoogle Scholar
  33. Kumar P., Lucini L., Rouphael Y. et al.: Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato.–Front. Plant Sci. 6: 477, 2015a.PubMedPubMedCentralGoogle Scholar
  34. Kumar P., Rouphael Y., Cardarelli M. et al.: Effect of nickel and grafting combination on yield, fruit quality, antioxidative enzyme activities, lipid peroxidation, and mineral composition of tomato.–J. Plant Nutr. Soil Sci. 178: 848–860, 2015b.CrossRefGoogle Scholar
  35. Kusvuran S.: Effects of drought and salt stresses on growth, stomatal conductance, leaf water and osmotic potentials of melon genotypes (Cucumis melo L.).–Afr. J. Agr. Research 7: 775–781, 2012.Google Scholar
  36. Lawlor D.W.: Limitation to photosynthesis in water-stressed leaves: Stomatal metabolism and the role of ATP.–Ann. Bot.-London 89: 871–885, 2002.CrossRefGoogle Scholar
  37. Lee B.R., Jin Y.L., Avice J.C. et al.: Increased proline loading to phloem and its effects on nitrogen uptake and assimilation in water-stressed white clover (Trifolium repens).–New Phytol. 182: 654–663, 2009.CrossRefPubMedGoogle Scholar
  38. Lichtenthaler H.K., Buschmann C.: Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy.–In: Wrolstad R.E., Acree T.E., An H. et al. (ed.): Current Protocols in Food Analytical Chemistry. Pp. F4.3.1–F4.3.8. John Wiley & Sons, New York 2001.Google Scholar
  39. Lowry O.H, Rosebrough J.J, Farr A.L. et al.: Estimation of protein with the folin-phenol reagent.–J. Biol. Chem. 193: 265–275, 1951.PubMedGoogle Scholar
  40. Matsui T., Singh B.B.: Root characteristics in cowpea related to drought tolerance at the seedling stage.–Exp. Agr. 39: 29–38, 2003.CrossRefGoogle Scholar
  41. Maxwell K., Johnson G.N.: Chlorophyll fluorescence–a practical guide.–J. Exp. Bot. 51: 659–668, 2000.CrossRefPubMedGoogle Scholar
  42. McKersie B.D., Bowley S.R., Jones K.S.: Winter survival of transgenic alfalfa over expressing superoxide dismutase.–Plant Physiol. 119: 839–848, 1999.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mo Y., Yang R., Liu L. et al.: Growth, photosynthesis and adaptive responses of wild and domesticated watermelon genotypes to drought stress and subsequent re-watering.–Plant Growth Regul. 79: 229–241, 2016.CrossRefGoogle Scholar
  44. Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate specific peroxides in spinach chloroplast.–Plant Cell Physiol. 22: 867–880, 1981.Google Scholar
  45. Ober E.S, Sharp R.E.: Regulation of root growth responses to water deficit.–In: Jenks M.A., Hasegawa P.M., Jain S.M. (ed.): Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Pp. 33–53. Springer, Dortrecht 2007.CrossRefGoogle Scholar
  46. Pandey S., Ansari W.A., Atri N. et al.: Standardization of screening technique and evaluation of muskmelon genotypes for drought tolerance.–Plant Genet. Resour.-C. DOI:10.1017/S1479262116000253, 2016.Google Scholar
  47. Pandey S., Ansari W.A., Jha A. et al.: Evaluation of melons and indigenous Cucumis spp. genotypes for drought tolerance.–Acta Hortic. 979: 335–339, 2013.Google Scholar
  48. Pandey S., Rai M., Prasanna H.C. et al.: ‘Kashi Madhu’: a new muskmelon cultivar with high total soluble solids.–HortScience 43: 245–246, 2008.Google Scholar
  49. Penella C., Nebauer S.G., Bautista A.S. et al.: Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: physiological responses.–J. Plant Physiol. 171: 842–851, 2014.CrossRefPubMedGoogle Scholar
  50. Petridis A., Therios I., Samouris G. et al.: Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars.–Plant Physiol. Bioch. 60: 1–11, 2012.CrossRefGoogle Scholar
  51. Rai A.C, Singh M., Shah K.: Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants.–Plant Physiol. Bioch. 61: 108–114, 2012.CrossRefGoogle Scholar
  52. Rai G.K., Rai N.P., Rathaur S.: Expression of rd29A::AtDREB1A/CBF3 in tomato alleviates droughtinduced oxidative stress by regulating key enzymatic and nonenzymatic antioxidants.–Plant Physiol. Bioch. 69: 90–100, 2013.CrossRefGoogle Scholar
  53. Ranjbarfordoei A., Samson R., Damme P.V.: Chlorophyll fluorescence performance of sweet almond [Prunus dulcis (Miller) D. Webb] in response to salinity stress induced by NaCl.–Photosynthetica 44: 513–522, 2006.Google Scholar
  54. Ratnayaka H., Molin W.T., Sterling T.M.: Physiological and antioxidant responses of cotton and spurred anoda under interference and mild drought.–J. Exp. Bot. 54: 2293–2305, 2003.CrossRefPubMedGoogle Scholar
  55. Ryser P.: Intra-and interspecific variation in root length, root turnover and the underlying parameters.–In: Lambers H, Poorter H, van Vuuren M.M.I. (ed.): Inherent Variation in Plant Growth. Physiological Mechanism and Ecological Consequences. Pp. 441–465. Backhuys Publishers, Leiden 1998.Google Scholar
  56. Sánchez-Rodríguez E., Rubio-Wilhelmi M.M., Cervilla L.M. et al.: Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants.–Plant Sci. 178: 30–40, 2010.CrossRefGoogle Scholar
  57. Serraj R., Krishnamurthy L., Kashiwagi J. et al.: Variation in root traits of chickpea (Cicer arietinum L.) grown under terminal drought.–Field Crop. Res. 88: 115–127, 2004.CrossRefGoogle Scholar
  58. Shah K., Kumar R.G., Verma S. et al.: Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings.–Plant Sci. 161: 1135–1144, 2001.CrossRefGoogle Scholar
  59. Shao H.B., Jiang S.Y., Li F.M. et al.: Some advances in plant stress physiology and their implications in the systems biology era.–Colloid. Surface B 54: 33–36, 2007.CrossRefGoogle Scholar
  60. Simova-Stoilova L., Vaseva I., Grigorova B. et al.: Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery.–Plant. Physiol. Bioch. 48: 200–206, 2010.CrossRefGoogle Scholar
  61. Singh B.K., Sharma S.R., Singh B.: Antioxidant enzymes in cabbage: variability and inheritance of superoxide dismutase, peroxidase and catalase.–Sci. Hortic.-Amsterdam 124: 9–13, 2010.CrossRefGoogle Scholar
  62. Sofo A., Tuzio A.C., Dichio B. et al.: Influence of water deficit and rewatering on the components of the ascorbate glutathione cycle in four interspecific Prunus hybrids.–Plant Sci. 169: 403–412, 2005.CrossRefGoogle Scholar
  63. Tahi H., Wahbi S., Modafar C.E. et al.: Changes in antioxidant activities and phenol content in tomato plants subjected to partial root drying and regulated deficit irrigation.–Plant Biosyst. 142: 550–562, 2008.CrossRefGoogle Scholar
  64. Valentovic P., Luxová M., Kolarovic L. et al.: Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars.–Plant Soil Environ. 52: 186–191, 2006.CrossRefGoogle Scholar
  65. Wang C.Q., Li R.C.: Enhancement of superoxide dismutase activity in the leaves of white clover (Trifolium repens L.) in response to polyethylene glycol-induced water stress.–Acta Physiol. Plant. 30: 841–847, 2008.CrossRefGoogle Scholar
  66. Wang H., Zhang L., Ma J. et al.: Effects of water stress on reactive oxygen species generation and protection system in rice during grain-filling stage.–Agr. Sci. China 9: 633–641, 2010.CrossRefGoogle Scholar
  67. Zhang J., Jia W., Yang J., Ismail A.M.: Role of ABA in integrating plant responses to drought and salt stresses.–Field Crops Res. 97: 111–119, 2006.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • W. A. Ansari
    • 1
    • 2
  • N. Atri
    • 2
  • B. Singh
    • 1
  • P. Kumar
    • 3
  • S. Pandey
    • 1
  1. 1.ICAR–Indian Institute of Vegetable ResearchP.O.-Jakhani (Shahanshahpur)Varanasi (Uttar Pradesh)India
  2. 2.Department of Botany, M.M.VBanaras Hindu UniversityVaranasi (Uttar Pradesh)India
  3. 3.ICAR–Central Arid Zone Research InstituteJodhpur (Rajasthan)India

Personalised recommendations