Advertisement

Photosynthetica

, Volume 56, Issue 4, pp 1113–1122 | Cite as

Effect of light quality on leaf photosynthetic characteristics and fruit quality of peach (Prunus persica L. Batch)

  • B.-B. Zhang
  • J.-L. Xu
  • M. Zhou
  • D.-H. Yan
  • R.-J. Ma
Original paper
  • 61 Downloads

Abstract

Different light filters affect leaf photosynthetic features and fruit quality. Consequently, selecting the appropriate covering filter for rain-shelter cultivation of peaches is a key part of successful production. We used a late-maturing peach variety ‘Xiahui 8’ to study differences in leaf photosynthetic features, chlorophyll fluorescence characteristics, and fruit quality under neutral, red, yellow, green, and blue filter, with natural light as control. The results showed that the leaf photosynthetic ability and internal quality under the neutral filter treatment were elevated compared with the control, and the appearance color was the same as the control. Leaves under neutral filter could maintain higher photosynthetic ability than other filter treatments. In addition, the fruits could also keep higher quality when treated with neutral filter. Therefore, the application of neutral filter in rain-shelter cultivation of ‘Xinhui 8’ peaches is recommended for maintaining high photosynthetic capacity and for improving fruit quality.

Additional key words

appearance internal quality irradiance spectrum 

Abbreviations

a*

red saturation

Ant

anthocyanin

b*

yellow saturation

C

color chroma

Chl

chlorophyll

Ci

intercellular CO2 concentration

CUE

carbon-use efficiency

DAFB

days after full bloom

E

transpiration

ETR

electron transport rate

F0

minimal fluorescence level in dark-adapted leaves

F0'

minimal fluorescence level in light-adapted leaves

Fm

maximal fluorescence level in dark-adapted leaves

FM

fresh matter

Fm'

maximal fluorescence level in light-adapted leaves

Fs

steady-state fluorescence in the light-adapted state

Fv

variable fluorescence level in dark-adapted leaves

Fv/Fm

maximum quantum yield of PSII

gs

stomatal conductance

h°

hue angle

HPLC

high performance liquid chromatography

L*

lightness

LUE

apparent light-use efficiency

Ls

light-saturation point

NPQ

nonphotochemical quenching

PN

net photosynthetic rate

qP

photochemical quenching coefficient

R/FR

red to far-red ratio

SSC

soluble solid content

WUE

water-use efficiency

ΦPSII

effective quantum yield of PSII photochemistry

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams-Phillips L., Barry C., Giovannoni J.: Signal transduction systems regulating fruit ripening.–Trends Plant Sci. 9: 331–338, 2004.CrossRefPubMedGoogle Scholar
  2. Bastías R.M., Corelli-Grappadelli L.: Light quality management in fruit orchards: physiological and technological aspects.–Chil. J. Agr. Res. 72: 574–581, 2012.CrossRefGoogle Scholar
  3. Batschauer A.: Photoreceptors of higher plants.–Planta 206: 479–492, 1998.CrossRefPubMedGoogle Scholar
  4. Brecht J.K., Huber D.J., Sherman M. et al.: Methyl bromide inhibits ripening and ethylene production in tomato (Lycopersicon esculentum Mill.) fruit.–Plant Growth Regul. 5: 29–35, 1986.CrossRefGoogle Scholar
  5. Buschmann C., Meier D., Kleudgen H.K. et al.: Regulation of chloroplast development by red and blue light.–Photochem. Photobiol. 27: 195–198, 1978.CrossRefGoogle Scholar
  6. Cleland R.E., Melis A., Neale P.J.: Mechanism of photoinhibition: photochemical reaction center inactivation in photo systém II of chloroplasts.–Photosynth. Res. 9: 79–88, 1986.CrossRefPubMedGoogle Scholar
  7. Dussi M.C., Sugar D., Wrolstad R.E.: Characterizing and quantifying anthocyanins in red pears and the effect of light quality on fruit color.–J. Am. Soc. Hortic. Sci. 120: 785–789, 1995.Google Scholar
  8. Feng F., Li M., Ma F. et al.: Phenylpropanoid metabolites and expression of key genes involved in anthocyanin biosynthesis in the shaded peel of apple fruit in response to sun exposure.–Plant Physiol. Bioch. 69: 54–61, 2013.CrossRefGoogle Scholar
  9. Francis F.J.: Color quality evaluation of horticultural crops.–HortScience 15: 58–59, 1980.Google Scholar
  10. Fukumoto L.R., Mazza G.: Assessing antioxidant and prooxidant activities of phenolic compounds.–J. Agr. Food Chem. 48: 3597–3604, 2000.CrossRefGoogle Scholar
  11. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.–Biochim. Biophys. Acta 990: 87–92, 1989.CrossRefGoogle Scholar
  12. Guan H.P., Janes H.W.: Light regulation of sink metabolism in tomato fruit.–Plant Physiol. 96: 916–921, 1991.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Heraut-Bron V., Robin C., Varlet-Grancher C. et al.: Light quality (red: far-red ratio): does it affect photosynthetic activity, net CO2 assimilation, and morphology of young white clover leaves?–Can. J. Bot. 77: 1425–1431, 1999.CrossRefGoogle Scholar
  14. Hudina M., Stampar F.: Bagging of ‘Concorde’ pears (Pyrus communis L.) influences fruit quality.–Acta Hortic. 909: 625–630, 2011.CrossRefGoogle Scholar
  15. Iglesias I., Alegre S.: The effect of anti-hail nets on fruit protection, radiation, temperature, quality and profitability of ‘Mondial Gala’ apples.–J. Appl. Hortic. 8: 91–100, 2006.Google Scholar
  16. Infante R., Contador L., Rubio P. et al.: Postharvest sensory and phenolic characterization of ‘Elegant Lady’ and ‘Carson’ peaches.–Chil. J. Agr. Res. 71: 445–451, 2011.CrossRefGoogle Scholar
  17. Kircher S., Kozma-Bognar L., Kim L. et al.: Light qualitydependent nuclear import of the plant photoreceptors phytochrome A and B.–Plant Cell 11: 1445–1456, 1999.PubMedPubMedCentralGoogle Scholar
  18. Koukounaras A., Siomos A.S., Sfakiotakis E.: Impact of heat treatment on ethylene production and yellowing of modified atmosphere packaged rocket leaves.–Postharvest Biol. Tec. 54: 172–176, 2009.CrossRefGoogle Scholar
  19. Koyama K., Ikeda H., Poudel P.R. et al.: Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape.–Phytochemistry 78: 54–64, 2012.CrossRefPubMedGoogle Scholar
  20. Lichtenthaler H.K., Wellburn A.R.: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents.–Biochem. Soc. T. 11: 591–592, 1983.CrossRefGoogle Scholar
  21. Liu Y.S., Roof S., Ye Z.B. et al.: Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato.–P. Natl. Acad. Sci. USA 101: 9897–9902, 2004.CrossRefGoogle Scholar
  22. Ma R.J., Zhang B.B., Yan J. et al.: [Effects of light wave on coloration and quality in ‘Flavortop’ nectarine fruit.]–Nonwood Forest Res. 32: 109–113, 2014. [In Chinese]Google Scholar
  23. Ma R.J., Zhang B.B., Cai Z.X.: [Evaluation of peach rootstock waterlogging tolerance based on the responses of the photosynthetic indexes to continuous submergence stress.]–Acta Hortic. Sin. 40: 409–416, 2013. [In Chinese]Google Scholar
  24. Marshall B., Biscoe P.V.: A model for C3 leaves describing the dependence of net photosynthesis on irradiance.–J. Exp. Bot. 31: 29–39, 1980.CrossRefGoogle Scholar
  25. Maxwell K., Johnson G.N.: Chlorophyll fluorescence: a practical guide.–J. Exp. Bot. 51: 659–668, 2000.CrossRefPubMedGoogle Scholar
  26. Miao L.X., Zhang Y.C., Yang X.F. et al.: Colored light-quality selective plastic films affect anthocyanin content, enzyme activities, and the expression of flavonoid genes in strawberry (Fragaria × ananassa) fruit.–Food Chem. 207: 93–100, 2016.CrossRefPubMedGoogle Scholar
  27. Mitchell F.G., Mayer G., Maxie E.C. et al.: Cold storage effects on fresh market peaches, nectarines & plums: estimating freezing points; using low temperatures to delay internal breakdown.–Calif. Agr. 28: 12–14, 1974.Google Scholar
  28. Ni Z.J., Zhang Z., Gao Z.H. et al: Effects of bagging on sugar metabolism and the activity of sugar metabolism related enzymes during fruit development of Qingzhong loquat.–Afr. J. Biotechnol. 10: 4212–4216, 2011.Google Scholar
  29. Nijs I., Ferris R., Blum H. et al.: Stomatal regulation in a changing climate: a field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE).–Plant Cell Environ. 20: 1041–1050, 1997.CrossRefGoogle Scholar
  30. Poudel P.R., Kataoka I., Mochioka R.: Effect of red-and bluelight-emitting diodes on growth and morphogenesis of grapes.–Plant Cell Tiss. Org. 92: 147–153, 2008.CrossRefGoogle Scholar
  31. Pourmorad F., Hosseinimehr S.J., Shahabimajd N.: Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants.–Afr. J. Biotechnol. 5: 1142–1145, 2006.Google Scholar
  32. Ramalho J.C., Marques N.C., Semedo J.N. et al.: Photosynthetic performance and pigment composition of leaves from two tropical species is determined by light quality.–Plant Biol. 4: 112–120, 2002.CrossRefGoogle Scholar
  33. Rapparini F., Rotondi A., Baraldi R.: Blue light regulation of the growth of Prunus persica plants in a long term experiment: morphological and histological observations.–Trees 14: 169–176, 1999.Google Scholar
  34. Sӕbø A., Krekling T., Appelgren M.: Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro.–Plant Cell Tiss. Org. 41: 177–185, 1995.CrossRefGoogle Scholar
  35. Schuerger A.C., Brown C.S., Stryjewski E.C.: Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light.–Ann. Bot.-London 79: 273–282, 1997.CrossRefGoogle Scholar
  36. Shibuya T., Endo R., Hayashi N. et al.: High-light-like photosynthetic responses of Cucumis sativus leaves acclimated to fluorescent illumination with a high red: far-red ratio: interaction between light quality and quantity.–Photosynthetica 50: 623–629, 2012.CrossRefGoogle Scholar
  37. Svanella L., Gaudillère M., Gaudillère J.P. et al.: Organic acid concentration is little controlled by phosphoenolpyruvate carboxylase activity in peach fruit.–Funct. Plant Biol. 26: 579–585, 1999.Google Scholar
  38. Tawaha K., Alali F.Q., Gharaibeh M. et al.: Antioxidant activity and total phenolic content of selected Jordanian plant species.–Food Chem. 104: 1372–1378, 2007.CrossRefGoogle Scholar
  39. Ubi B.E., Honda C., Bessho H. et al.: Expression analysis of anthocyanin biosynthetic genes in apple skin: effect of UV-B and temperature.–Plant Sci. 170: 571–578, 2006.CrossRefGoogle Scholar
  40. van Kooten O., Snel J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology.–Photosyn. Res. 25: 147–150, 1990.CrossRefPubMedGoogle Scholar
  41. Vizzotto G., Pinton R., Varanini Z. et al.: Sucrose accumulation in developing peach fruit.–Physiol. Plantarum 96: 225–230, 1996.CrossRefGoogle Scholar
  42. Voss D.H.: Relating colorimeter measurement of plant color to the Royal Horticultural Society colour chart.–HortScience 27: 1256–1260, 1992.Google Scholar
  43. Wang H., Gu M., Cui J.X. et al.: Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus.–J. Photoch. Photobio. B 96: 30–37, 2009.CrossRefGoogle Scholar
  44. Wang T., Gonzalez A.R., Gbur E.E. et al.: Organic acid changes during ripening of processing peaches.–J. Food Sci. 58: 631–632, 1993.CrossRefGoogle Scholar
  45. Widmer A.: Light intensity and fruit quality under hail protection nets.–Acta Hortic. 557: 421–426, 2001.CrossRefGoogle Scholar
  46. Xiong J.Q., Patil G.G., Moe R. et al.: Effects of diurnal temperature alternations and light quality on growth, morphogenesis and carbohydrate content of Cucumis sativus L.–Sci. Hortic.-Amsterdam 128: 54–60, 2011.CrossRefGoogle Scholar
  47. Yu H., Ong B.L.: Effect of radiation quality on growth and photosynthesis of Acacia mangium seedlings.–Photosynthetica 41: 349–355, 2003.CrossRefGoogle Scholar
  48. Zapsalis C., Francis F.J.: Cranberrv anthocyanins.–J. Food Sci. 30: 396–399, 1965.CrossRefGoogle Scholar
  49. Zhang B.B., Jiang W.B., Weng M.L. et al.: [Effects of shading on photosynthetic characteristics of red-leaf peach.]–Acta Hortic. Sin. 37: 1287–1294, 2010. [In Chinese]Google Scholar
  50. Zhang B.B., Guo J.Y., Ma R.J. et al.: Relationship between the bagging microenvironment and fruit quality in ‘Guibao’ peach [Prunus persica (L.) Batsch].–J. Hortic. Sci. Biotech. 90: 303–310, 2015.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • B.-B. Zhang
    • 1
  • J.-L. Xu
    • 1
  • M. Zhou
    • 1
  • D.-H. Yan
    • 2
  • R.-J. Ma
    • 1
  1. 1.Institute of PomologyJiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory of Horticultural Crop Genetic ImprovementNanjing, JiangsuChina
  2. 2.Fenghuang Agricultural Science and Technology CompanySuzhou, JiangsuChina

Personalised recommendations