, Volume 56, Issue 4, pp 1031–1038 | Cite as

Photosynthetic and yield responses of rice (Oryza sativa L.) to different water management strategies in subtropical China

  • X. H. Wu
  • W. Wang
  • X. L. Xie
  • C. M. Yin
  • K. J. Xie
Original paper


An experiment was performed to study gas exchange and chlorophyll fluorescence responses of rice (Oryza sativa L.) to various regimes, such as flooding–midseason drying–flooding (FDF), flooding–midseason drying–saturation (FDS), and flooding–rain-fed (FR) regimes. Compared to FDF, FR resulted in an obvious decrease in net photosynthetic rate (PN), due to the decrease in stomatal conductance and the increase in stomatal limitation. In contrast, FDS plants did not suffer stomatal limitation and had comparable PN with FDF plants. For diurnal light-saturated electron transport rate and saturation irradiance, FDF performed the best, which was followed by FDS and FR successively. FR and FDS plants tended to suffer from midday depression. FDS reduced irrigated water by 17.2% compared to FDF for comparable yields. The results suggested that FDS can be an effective irrigation regime to save water.

Additional key words

rapid light curve water productivity water saving 



ambient CO2 concentration




intercellular CO2 concentration


transpiration rate


saturation irradiance


electron transport rate


light–saturated ETR


flooding–midseason drying–flooding water regime


flooding–midseason drying–saturating water regime


flooding–rain-fed water regime


maximal fluorescence yield of the light-adapted state


instantaneous fluorescence


stomatal conductance


stomatal limitation value


net photosynthetic rate


rapid light curve


water productivity


effective quantum yield of PSII photochemistry


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akram H.M., Ali A., Sattar A. et al.: Impact of water deficit stress on various physiological and agronomic traits of three basmati rice (Oryza sativa L.) cultivars.–J. Anim. Plant Sci. 23: 1415–1423, 2013.Google Scholar
  2. Alberto M.C.R, Wassmann R., Hirano T. et al.: CO2/heat fluxes in rice fields: Comparative assessment of flooded and nonflooded fields in the Philippines.–Agr. Forest Meteorol. 149: 1737–1750, 2009.CrossRefGoogle Scholar
  3. Alberto M.C.R., Wassmann R., Hirano T. et al.: Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines.–Agr. Water Manage. 98: 1417–1430, 2011.CrossRefGoogle Scholar
  4. Ambavaram M.M.R., Basu S., Krishnan A. et al.: Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress.–Nat. Commun. 5: 5302, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barker R., Tuong T.P., Li Y. et al.: Growing more rice with less water: Research findings from a study in China.–Paddy Water Environ. 2: 185–185, 2004.CrossRefGoogle Scholar
  6. Belder P., Bouman B.A.M., Cabangon R. et al.: Effect of watersaving irrigation on rice yield and water use in typical lowland conditions in Asia.–Agr. Water Manage. 65: 193–210, 2004.CrossRefGoogle Scholar
  7. Bouman B.A.M., Lampayan R.M., Tuong T.P.: Water Management in Irrigated Rice: Coping with Water Scarcity. Pp. 54. Int. Rice Res. Inst., Los Baños 2007.Google Scholar
  8. Bouman B.A.M., Toung T.P.: Field water management to save water and increase its productivity in irrigated lowland rice.–Agr. Water Manage. 49: 11–30, 2001.CrossRefGoogle Scholar
  9. Chu G., Chen T., Wang Z. et al.: Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice.–Field Crop. Res. 162: 108–119, 2014.CrossRefGoogle Scholar
  10. Elliott J., Deryng D., Müller C. et al.: Constraints and potentials of future irrigation water availability on agricultural production under climate change.–P. Natl. Acad. Sci. USA 111: 3239–3244, 2013.CrossRefGoogle Scholar
  11. Escasinas R.O., Zamora O.B.: Agronomic response of lowland rice PSB Rc 18 (Oryza sativa L.) to different water, spacing and nutrient management.–Philipp. J. Crop Sci. 36: 37–46, 2011.Google Scholar
  12. FAO (Food and Agriculture Organization of the United Nations): The Database of FAOSTAT. 2014. Available online:, accessed on May 19, 2017.
  13. Fong J.D.M., Masunaga T., Sato K.: Assessment of the influence of water management on yield component and morphological behavior of rice at post-heading stage.–Paddy Water Environ. 14: 211–220, 2016.CrossRefGoogle Scholar
  14. Foyer C.H., Noctor G.: Leaves in the dark see the light.–Science 284: 599–601, 1999.CrossRefPubMedGoogle Scholar
  15. Gururani M.A., Venkatesh J., Tran L.S.P.: Regulation of photosynthesis during abiotic stress-induced photoinhibition.–Mol. Plant 8: 1304–1320, 2015.CrossRefPubMedGoogle Scholar
  16. He C.L.: Effects of furrow irrigation on the growth, production, and water use efficiency of direct sowing rice.–Sci. World J. 10: 1483–1497, 2010.CrossRefGoogle Scholar
  17. He H., Yang R., Jia B. et al.: Rice photosynthetic productivity and PSII photochemistry under nonflooded irrigation.–Sci. Word J. 2014: 839658, 2014.Google Scholar
  18. Khush G.S.: What it will take to feed 5.0 billion rice consumers in 2030.–Plant Mol. Biol. 59: 1–6, 2005.CrossRefPubMedGoogle Scholar
  19. Kumagai E., Araki T., Ueno O.: Effect of nitrogen-deficiency on midday photoinhibition in flag leaves of different rice (Oryza sativa L.) cultivars.–Photosynthetica 47: 241–246, 2009.CrossRefGoogle Scholar
  20. Kumar A., Nayak A.K., Pani D.R. et al.: Physiological and morphological responses of four different rice cultivars to soil water potential based deficit irrigation management strategies.–Field Crop. Res. 205: 78–94, 2017.CrossRefGoogle Scholar
  21. Lampayan R.M., Rejesus R.M., Singleton G.R. et al.: Adoption and economics of alternate wetting and drying water management for irrigated lowland rice.–Field Crop. Res. 170: 95–108, 2015.CrossRefGoogle Scholar
  22. Lal R., Delgado J.A., Gulliford J. et al.: Adapting agriculture to drought and extreme events.–J. Soil Water Conserv. 67: 162A–167A, 2012.CrossRefGoogle Scholar
  23. Matsuo N., Ozawa K., Mochizuki T.: Physiological and morphological traits related to water use by three rice (Oryza sativa L.) genotypes grown under aerobic rice systems.–Plant Soil 335: 349–361, 2010.CrossRefGoogle Scholar
  24. Nguyen H.T., Fischer K.S., Fukai S.: Physiological responses to various water saving systems in rice.–Field Crop. Res. 112: 189–198, 2009.CrossRefGoogle Scholar
  25. Ohsumi A., Hamasaki A., Nakagawa H. et al.: Response of leaf photosynthesis to vapor pressure difference in rice (Oryza sativa L.) varieties in relation to stomatal and leaf internal conductance.–Plant Prod. Sci. 11: 184–191, 2008.CrossRefGoogle Scholar
  26. Pan S.G., Cao C.G., Cai M.L. et al.: Effects of irrigation regime and nitrogen management on grain yield, quality and water productivity in rice.–J. Food Agric. Environ. 7: 559–564, 2009.Google Scholar
  27. Perdomo J.A., Conesa M.A, Medrano H. et al.: Effects of longterm individual and combined water and temperature stress on the growth of rice, wheat and maize: relationship with morphological and physiological acclimation.–Physiol. Plantarum 155: 149–165, 2015.CrossRefGoogle Scholar
  28. Perdomo J.A., Capo-Bauca S., Carmo-Silva E. et al.: Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit.–Front. Plant Sci. 8: 490, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Pieters A.J., El Souki S.: Effects of drought during grain filling on PSII activity in rice.–J. Plant Physiol. 162: 903–911, 2005.CrossRefPubMedGoogle Scholar
  30. Pieters A.J., Nùñez M.: Photosynthesis, water use efficiency, and d13C in two rice genotypes with contrasting response to water deficit.–Photosynthetica 46: 574–580, 2008.CrossRefGoogle Scholar
  31. Platt T., Gallegos C.L., Harrison W.G.: Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton.–J. Mar. Res. 38: 687–701, 1980.Google Scholar
  32. Ralph P.J., Gademann R.: Rapid light curves: a powerful tool to assess photosynthetic activity.–Aquat. Bot. 82: 222–237, 2005.CrossRefGoogle Scholar
  33. Stuerz S., Sow A., Muller B. et al.: Canopy microclimate and gas-exchange in response to irrigation system in lowland rice in the Sahel.–Field Crop. Res. 163: 64–73, 2014.CrossRefGoogle Scholar
  34. Tabbal D.F., Bouman B.A.M., Bhuiyan S.I. et al.: On-farm strategies for reducing water input in irrigated rice: case studies in the Philippines.–Agr. Water Manage. 56: 93–112, 2002.CrossRefGoogle Scholar
  35. Thakur A.K., Mohanty R.K., Patil D.U. et al.: Impact of water management on yield and water productivity with system of rice intensification (SRI) and conventional transplanting system in rice.–Paddy Water Environ. 12: 413–424, 2014.CrossRefGoogle Scholar
  36. Wei X., Holman I., Lin E. et al.: Climate change, water availability and future cereal production in China.–Agr. Ecosyst. Environ. 135: 58–69, 2010.CrossRefGoogle Scholar
  37. Yan C., Chen H., Fan T. et al.: Rice flag leaf physiology, organ and canopy temperature in response to water stress.–Plant Prod. Sci. 15: 92–99, 2012.CrossRefGoogle Scholar
  38. Yan T., Wang J., Huang J.: Urbanization, agricultural water use, and regional and national crop production in China.–Ecol. Model. 318: 226–235, 2015.CrossRefGoogle Scholar
  39. Yoshida S.: Physiological analysis of rice yield.–In: Yoshida S. (ed.): Fundamentals of Rice Crop Science. Pp. 231–251. Int. Rice Res. Inst., Los Baños 1981.Google Scholar
  40. Zain N.A.M., Ismail M.R., Puteh A. et al.: Impact of cyclic water stress on growth, physiological responses and yield of rice (Oryza sativa L.) grown in tropical environment.–Cienc. Rural. 44: 2136–2141, 2014.CrossRefGoogle Scholar
  41. Zhou Q., Ju C.X., Wang Z.Q. et al.: Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation.–J. Integr. Agr. 16: 1028–1043, 2017.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • X. H. Wu
    • 1
    • 2
  • W. Wang
    • 1
  • X. L. Xie
    • 1
  • C. M. Yin
    • 1
  • K. J. Xie
    • 3
  1. 1.Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical AgricultureChinese Academy of SciencesChangsha, HunanChina
  2. 2.Faculty of Life Science and TechnologyCentral South University of Forestry and TechnologyChangsha, HunanChina
  3. 3.Hunan Agricultural Resources and Environmental Protection Management StationChangsha, HunanChina

Personalised recommendations