Advertisement

Photosynthetica

, Volume 56, Issue 4, pp 1212–1217 | Cite as

Photosynthesis and leaf development of cherry tomato seedlings under different LED-based blue and red photon flux ratios

  • X. Y. Liu
  • X. L. Jiao
  • T. T. Chang
  • S. R. Guo
  • Z. G. Xu
Brief Communication
  • 215 Downloads

Abstract

We investigated the photosynthesis and leaf development of cherry tomato seedlings grown under five different combinations of red and blue light provided by light-emitting diodes (LEDs). Fresh biomass increased significantly under treatments with blue light percentages of 50, 60, and 75%, with 50% blue-light-grown seedlings accumulating significantly more dry mass. The 25% blue-light-grown seedlings were obviously weaker than those from the other LED treatments. An increase in net photosynthetic rate upon blue light exposure (25–60%) was associated with increases in leaf mass per unit leaf area, leaf area, leaf density, stomatal number, chloroplast and mesophyll cell development, and chlorophyll contents. Our results imply that photosynthesis and leaf development in cherry tomato seedlings are associated with both the proportion and quantity of blue light.

Additional key words

chloroplasts leaf density mesophyll cell morphology stomata 

Abbreviations

B

blue light

Ci

intercellular CO2 concentration

Chl

chlorophyll

CP

chloroplast

CW

cell wall

DM

dry mass

FM

fresh mass

G

grana

LA

leaf area

LD

leaf density

LMA

leaf mass per unit leaf area

PT

palisade tissue cells

S

stroma

SG

starch grain

SPT

spongy tissue cells

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11099_2018_814_MOESM1_ESM.pdf (198 kb)
Supplementary material, approximately 199 KB.

References

  1. Chang T.T., Liu X.Y., Xu Z.G. et al.: [Effects of light spectral energy distribution on growth and development of tomato seedlings.]–Sci. Agri. Sinica 43: 1748–1756, 2010. [In Chinese]Google Scholar
  2. Cope K.R., Snowden M.C., Bugbee B.: Photobiological interactions of blue light and photosynthetic photon flux: effects of monochromatic and broadspectrum light sources.–Photochem. Photobiol. 90: 574–584, 2014.CrossRefPubMedGoogle Scholar
  3. Duan Y.F., Wang Y.N., Li X.: [A simplified method for observing stomata by shaving off mesophyll cells to obtain epidermis from leaf and its application.]–Acta Agricult. Boreal. Sin. 23: 73–76, 2008. [In Chinese]Google Scholar
  4. Fan X.X., Xu Z.G., Liu X.Y. et al.: Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light.–Sci. Hortic.-Amsterdam 153: 50–55, 2013a.CrossRefGoogle Scholar
  5. Fan X.X., Zang J., Xu Z.G. et al.: Effects of different light quality on growth, chlorophyll concentration and chlorophyll biosynthesis precursors of non-heading Chinese cabbage (Brassica campestris L.).–Acta Physiol. Plant. 35: 2721–2726, 2013b.CrossRefGoogle Scholar
  6. Gonçalves B., Correia C.M., Silva A.P. et al.: Leaf structure and function of sweet cherry tree (Prunus avium L.) cultivars with open and dense canopies.–Sci. Hortic.-Amsterdam 116: 381–387, 2008.CrossRefGoogle Scholar
  7. Gutu A., Nesbit A.D., Alverson A.J. et al.: Unique role for translation initiation factor 3 in the light color regulation of photosynthetic gene expression.–P. Natl. Acad. Sci. USA 110: 16253–16258, 2013.CrossRefGoogle Scholar
  8. Hernández R., Kubota C.: Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs.–Environ. Exp. Bot. 121: 66–74, 2016.CrossRefGoogle Scholar
  9. Hogewoning S.W., Trouwborst G., Maljaars H. et al.: Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light.–J. Exp. Bot. 61: 3107–3117, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Lawson T., von Caemmerer S., Baroli I.: Photosynthesis and stomatal behaviour.–In: Lüttge U., Canóvas F.M., Matyssek R. (ed.): Progress in Botany, Vol. 72. Pp. 265–304. Springer, Heidelberg 2011.Google Scholar
  11. Liu X.Y., Guo S.R., Xu Z.G. et al.: Regulation of chloroplast ultra-structure, cross-section anatomy of leaves and morphology of stomata of cherry tomato by different light irradiations of LEDs.–HortScience 46: 217–221, 2011.Google Scholar
  12. Liu X.Y., Xu Z.G., Chang T.T. et al.: Growth and photosynthesis of cherry tomato seedling exposed to different low light of led light quality.–Acta Bot. Boreal. Occident. Sin. 30: 725–732, 2010.Google Scholar
  13. Matos F.S., Wolfgramm R., Cavatte P.C. et al.: Phenotypic plasticity in response to light in the coffee tree.–Environ. Exp. Bot. 67: 421–427, 2009.CrossRefGoogle Scholar
  14. Matsuda R., Ohashi-Kaneko K., Fujiwara K. et al.: Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance.–Soil Sci. Plant Nutr. 53: 459–465, 2007.CrossRefGoogle Scholar
  15. Miao Y.X., Wang X.Z., Gao L.H. et al.: Blue light is more essential than red light for maintaining the activities of photosystem II and I and photosynthetic electron transport capacity in cucumber leaves.–J. Integr. Agr. 15: 87–100, 2016.CrossRefGoogle Scholar
  16. Nanya K., Ishigami Y., Hikosaka S. et al.: Effects of blue and red light on stem elongation and flowering of tomato seedlings.–Acta Hortic. 956: 264–266, 2012.Google Scholar
  17. Paul M.J., Pellny T.K.: Carbon metabolite feedback regulation of leaf photosynthesis and development.–J. Exp. Bot. 54: 539–547, 2003.CrossRefPubMedGoogle Scholar
  18. Samuoliene G., Brazaityte A., Urbonaviciute A. et al.: The effect of red and blue light component on the growth and development of frigo strawberries.–Zemdirbyste 97: 99–104, 2010.Google Scholar
  19. Schuerger A.C., Brown C.S., Stryjewski E.C.: Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light.–Ann. Bot.-London 79: 273–282, 1997.CrossRefGoogle Scholar
  20. Su N.N., Wu Q., Shen Z.G. et al.: Effects of light quality on the chloroplastic ultra-structure and photosynthetic characteristics of cucumber seedlings.–Plant Growth Regul. 73: 227–235, 2014.CrossRefGoogle Scholar
  21. Terashima I., Fujita T., Inoue T. et al.: Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green.–Plant Cell Physiol. 50: 684–697, 2009.CrossRefPubMedGoogle Scholar
  22. Vogelmann T.C.: Plant tissue optics.–Annu. Rev. Plant Phys. 44: 231–251, 2003.CrossRefGoogle Scholar
  23. Wang X.Y., Xu X.M., Cui J.: The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultra-structure of Cucumis sativus grown under weak light.–Photosynthetica 53: 213–222, 2015.CrossRefGoogle Scholar
  24. Xu W.D., Liu X.Y., Jiao X.L. et al.: [Effect of blue light quantity on growth and quality of lettuce.]–J. Nanjing Agr. Univ. 38: 890–895, 2015a. [In Chinese]Google Scholar
  25. Xu D.Q., Gao W., Ruan J.: [Effects of light quality on plant growth and development.]–Plant Physiol. J. 51: 1217–1234, 2015b. [In Chinese]Google Scholar
  26. Yao Y.C., Wang S.H., Kong Y.: [Characteristics of photosynthetic mechanism in different peach species under low light intensity.]–Sci. Agricult. Sin. 40: 855–863, 2007. [In Chinese]Google Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • X. Y. Liu
    • 1
  • X. L. Jiao
    • 1
  • T. T. Chang
    • 1
  • S. R. Guo
    • 2
  • Z. G. Xu
    • 1
  1. 1.College of AgricultureNanjing Agricultural UniversityNanjing, JiangsuChina
  2. 2.College of HorticultureNanjing Agricultural UniversityNanjing, JiangsuChina

Personalised recommendations